Spaces:
Running
on
A10G
Running
on
A10G
# ------------------------------------------------------------------------------ | |
# Copyright (c) Microsoft | |
# Licensed under the MIT License. | |
# The deconvolution code is based on Simple Baseline. | |
# (https://github.com/microsoft/human-pose-estimation.pytorch/blob/master/lib/models/pose_resnet.py) | |
# Modified by Zigang Geng ([email protected]). | |
# ------------------------------------------------------------------------------ | |
import torch | |
import torch.nn as nn | |
from timm.models.layers import trunc_normal_, DropPath | |
from mmcv.cnn import (build_conv_layer, build_norm_layer, build_upsample_layer, | |
constant_init, normal_init) | |
from omegaconf import OmegaConf | |
from ldm.util import instantiate_from_config | |
import torch.nn.functional as F | |
from evp.models import UNetWrapper, TextAdapterDepth | |
class VPDDepthEncoder(nn.Module): | |
def __init__(self, out_dim=1024, ldm_prior=[320, 640, 1280+1280], sd_path=None, text_dim=768, | |
dataset='nyu' | |
): | |
super().__init__() | |
self.layer1 = nn.Sequential( | |
nn.Conv2d(ldm_prior[0], ldm_prior[0], 3, stride=2, padding=1), | |
nn.GroupNorm(16, ldm_prior[0]), | |
nn.ReLU(), | |
nn.Conv2d(ldm_prior[0], ldm_prior[0], 3, stride=2, padding=1), | |
) | |
self.layer2 = nn.Sequential( | |
nn.Conv2d(ldm_prior[1], ldm_prior[1], 3, stride=2, padding=1), | |
) | |
self.out_layer = nn.Sequential( | |
nn.Conv2d(sum(ldm_prior), out_dim, 1), | |
nn.GroupNorm(16, out_dim), | |
nn.ReLU(), | |
) | |
self.apply(self._init_weights) | |
### stable diffusion layers | |
config = OmegaConf.load('./v1-inference.yaml') | |
if sd_path is None: | |
config.model.params.ckpt_path = '../checkpoints/v1-5-pruned-emaonly.ckpt' | |
else: | |
config.model.params.ckpt_path = f'../{sd_path}' | |
sd_model = instantiate_from_config(config.model) | |
self.encoder_vq = sd_model.first_stage_model | |
self.unet = UNetWrapper(sd_model.model, use_attn=False) | |
del sd_model.cond_stage_model | |
del self.encoder_vq.decoder | |
del self.unet.unet.diffusion_model.out | |
for param in self.encoder_vq.parameters(): | |
param.requires_grad = False | |
if dataset == 'nyu': | |
self.text_adapter = TextAdapterDepth(text_dim=text_dim) | |
class_embeddings = torch.load('nyu_class_embeddings.pth') | |
else: | |
raise NotImplementedError | |
self.register_buffer('class_embeddings', class_embeddings) | |
self.gamma = nn.Parameter(torch.ones(text_dim) * 1e-4) | |
def _init_weights(self, m): | |
if isinstance(m, (nn.Conv2d, nn.Linear)): | |
trunc_normal_(m.weight, std=.02) | |
nn.init.constant_(m.bias, 0) | |
def forward_features(self, feats): | |
x = self.ldm_to_net[0](feats[0]) | |
for i in range(3): | |
if i > 0: | |
x = x + self.ldm_to_net[i](feats[i]) | |
x = self.layers[i](x) | |
x = self.upsample_layers[i](x) | |
return self.out_conv(x) | |
def forward(self, x, class_ids=None,img_paths=None): | |
with torch.no_grad(): | |
latents = self.encoder_vq.encode(x).mode().detach() | |
if class_ids is not None: | |
class_embeddings = self.class_embeddings[class_ids.tolist()] | |
else: | |
class_embeddings = self.class_embeddings | |
c_crossattn = self.text_adapter(latents, class_embeddings, self.gamma) # NOTE: here the c_crossattn should be expand_dim as latents | |
t = torch.ones((x.shape[0],), device=x.device).long() | |
# import pdb; pdb.set_trace() | |
outs = self.unet(latents, t, c_crossattn=[c_crossattn]) | |
feats = [outs[0], outs[1], torch.cat([outs[2], F.interpolate(outs[3], scale_factor=2)], dim=1)] | |
x = torch.cat([self.layer1(feats[0]), self.layer2(feats[1]), feats[2]], dim=1) | |
return self.out_layer(x) | |
class VPDDepth(nn.Module): | |
def __init__(self, args=None): | |
super().__init__() | |
self.max_depth = args.max_depth | |
embed_dim = 192 | |
channels_in = embed_dim*8 | |
channels_out = embed_dim | |
if args.dataset == 'nyudepthv2': | |
self.encoder = VPDDepthEncoder(out_dim=channels_in, dataset='nyu') | |
else: | |
raise NotImplementedError | |
self.decoder = Decoder(channels_in, channels_out, args) | |
self.decoder.init_weights() | |
self.last_layer_depth = nn.Sequential( | |
nn.Conv2d(channels_out, channels_out, kernel_size=3, stride=1, padding=1), | |
nn.ReLU(inplace=False), | |
nn.Conv2d(channels_out, 1, kernel_size=3, stride=1, padding=1)) | |
for m in self.last_layer_depth.modules(): | |
if isinstance(m, nn.Conv2d): | |
normal_init(m, std=0.001, bias=0) | |
def forward(self, x, class_ids=None,img_paths=None): | |
# import pdb; pdb.set_trace() | |
b, c, h, w = x.shape | |
x = x*2.0 - 1.0 # normalize to [-1, 1] | |
if h == 480 and w == 480: | |
new_x = torch.zeros(b, c, 512, 512, device=x.device) | |
new_x[:, :, 0:480, 0:480] = x | |
x = new_x | |
elif h==352 and w==352: | |
new_x = torch.zeros(b, c, 384, 384, device=x.device) | |
new_x[:, :, 0:352, 0:352] = x | |
x = new_x | |
elif h == 512 and w == 512: | |
pass | |
else: | |
raise NotImplementedError | |
conv_feats = self.encoder(x, class_ids) | |
if h == 480 or h == 352: | |
conv_feats = conv_feats[:, :, :-1, :-1] | |
out = self.decoder([conv_feats]) | |
out_depth = self.last_layer_depth(out) | |
out_depth = torch.sigmoid(out_depth) * self.max_depth | |
return {'pred_d': out_depth} | |
class Decoder(nn.Module): | |
def __init__(self, in_channels, out_channels, args): | |
super().__init__() | |
self.deconv = args.num_deconv | |
self.in_channels = in_channels | |
# import pdb; pdb.set_trace() | |
self.deconv_layers = self._make_deconv_layer( | |
args.num_deconv, | |
args.num_filters, | |
args.deconv_kernels, | |
) | |
conv_layers = [] | |
conv_layers.append( | |
build_conv_layer( | |
dict(type='Conv2d'), | |
in_channels=args.num_filters[-1], | |
out_channels=out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1)) | |
conv_layers.append( | |
build_norm_layer(dict(type='BN'), out_channels)[1]) | |
conv_layers.append(nn.ReLU(inplace=True)) | |
self.conv_layers = nn.Sequential(*conv_layers) | |
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False) | |
def forward(self, conv_feats): | |
# import pdb; pdb.set_trace() | |
out = self.deconv_layers(conv_feats[0]) | |
out = self.conv_layers(out) | |
out = self.up(out) | |
out = self.up(out) | |
return out | |
def _make_deconv_layer(self, num_layers, num_filters, num_kernels): | |
"""Make deconv layers.""" | |
layers = [] | |
in_planes = self.in_channels | |
for i in range(num_layers): | |
kernel, padding, output_padding = \ | |
self._get_deconv_cfg(num_kernels[i]) | |
planes = num_filters[i] | |
layers.append( | |
build_upsample_layer( | |
dict(type='deconv'), | |
in_channels=in_planes, | |
out_channels=planes, | |
kernel_size=kernel, | |
stride=2, | |
padding=padding, | |
output_padding=output_padding, | |
bias=False)) | |
layers.append(nn.BatchNorm2d(planes)) | |
layers.append(nn.ReLU(inplace=True)) | |
in_planes = planes | |
return nn.Sequential(*layers) | |
def _get_deconv_cfg(self, deconv_kernel): | |
"""Get configurations for deconv layers.""" | |
if deconv_kernel == 4: | |
padding = 1 | |
output_padding = 0 | |
elif deconv_kernel == 3: | |
padding = 1 | |
output_padding = 1 | |
elif deconv_kernel == 2: | |
padding = 0 | |
output_padding = 0 | |
else: | |
raise ValueError(f'Not supported num_kernels ({deconv_kernel}).') | |
return deconv_kernel, padding, output_padding | |
def init_weights(self): | |
"""Initialize model weights.""" | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
normal_init(m, std=0.001, bias=0) | |
elif isinstance(m, nn.BatchNorm2d): | |
constant_init(m, 1) | |
elif isinstance(m, nn.ConvTranspose2d): | |
normal_init(m, std=0.001) | |