Spaces:
Running
on
A10G
Running
on
A10G
import argparse, os, sys, glob | |
from omegaconf import OmegaConf | |
from PIL import Image | |
from tqdm import tqdm | |
import numpy as np | |
import torch | |
from main import instantiate_from_config | |
from ldm.models.diffusion.ddim import DDIMSampler | |
def make_batch(image, mask, device): | |
image = np.array(Image.open(image).convert("RGB")) | |
image = image.astype(np.float32)/255.0 | |
image = image[None].transpose(0,3,1,2) | |
image = torch.from_numpy(image) | |
mask = np.array(Image.open(mask).convert("L")) | |
mask = mask.astype(np.float32)/255.0 | |
mask = mask[None,None] | |
mask[mask < 0.5] = 0 | |
mask[mask >= 0.5] = 1 | |
mask = torch.from_numpy(mask) | |
masked_image = (1-mask)*image | |
batch = {"image": image, "mask": mask, "masked_image": masked_image} | |
for k in batch: | |
batch[k] = batch[k].to(device=device) | |
batch[k] = batch[k]*2.0-1.0 | |
return batch | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--indir", | |
type=str, | |
nargs="?", | |
help="dir containing image-mask pairs (`example.png` and `example_mask.png`)", | |
) | |
parser.add_argument( | |
"--outdir", | |
type=str, | |
nargs="?", | |
help="dir to write results to", | |
) | |
parser.add_argument( | |
"--steps", | |
type=int, | |
default=50, | |
help="number of ddim sampling steps", | |
) | |
opt = parser.parse_args() | |
masks = sorted(glob.glob(os.path.join(opt.indir, "*_mask.png"))) | |
images = [x.replace("_mask.png", ".png") for x in masks] | |
print(f"Found {len(masks)} inputs.") | |
config = OmegaConf.load("models/ldm/inpainting_big/config.yaml") | |
model = instantiate_from_config(config.model) | |
model.load_state_dict(torch.load("models/ldm/inpainting_big/last.ckpt")["state_dict"], | |
strict=False) | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
model = model.to(device) | |
sampler = DDIMSampler(model) | |
os.makedirs(opt.outdir, exist_ok=True) | |
with torch.no_grad(): | |
with model.ema_scope(): | |
for image, mask in tqdm(zip(images, masks)): | |
outpath = os.path.join(opt.outdir, os.path.split(image)[1]) | |
batch = make_batch(image, mask, device=device) | |
# encode masked image and concat downsampled mask | |
c = model.cond_stage_model.encode(batch["masked_image"]) | |
cc = torch.nn.functional.interpolate(batch["mask"], | |
size=c.shape[-2:]) | |
c = torch.cat((c, cc), dim=1) | |
shape = (c.shape[1]-1,)+c.shape[2:] | |
samples_ddim, _ = sampler.sample(S=opt.steps, | |
conditioning=c, | |
batch_size=c.shape[0], | |
shape=shape, | |
verbose=False) | |
x_samples_ddim = model.decode_first_stage(samples_ddim) | |
image = torch.clamp((batch["image"]+1.0)/2.0, | |
min=0.0, max=1.0) | |
mask = torch.clamp((batch["mask"]+1.0)/2.0, | |
min=0.0, max=1.0) | |
predicted_image = torch.clamp((x_samples_ddim+1.0)/2.0, | |
min=0.0, max=1.0) | |
inpainted = (1-mask)*image+mask*predicted_image | |
inpainted = inpainted.cpu().numpy().transpose(0,2,3,1)[0]*255 | |
Image.fromarray(inpainted.astype(np.uint8)).save(outpath) | |