Spaces:
Running
on
A10G
Running
on
A10G
Upload mask_predictor.py
Browse files- refer/lib/mask_predictor.py +72 -0
refer/lib/mask_predictor.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from torch.nn import functional as F
|
4 |
+
from collections import OrderedDict
|
5 |
+
|
6 |
+
|
7 |
+
class SimpleDecoding(nn.Module):
|
8 |
+
def __init__(self, dims, factor=2):
|
9 |
+
super(SimpleDecoding, self).__init__()
|
10 |
+
|
11 |
+
hidden_size = dims[-1]//factor
|
12 |
+
c4_size = dims[-1]
|
13 |
+
c3_size = dims[-2]
|
14 |
+
c2_size = dims[-3]
|
15 |
+
c1_size = dims[-4]
|
16 |
+
|
17 |
+
self.conv1_4 = nn.Conv2d(c4_size+c3_size, hidden_size, 3, padding=1, bias=False)
|
18 |
+
self.bn1_4 = nn.BatchNorm2d(hidden_size)
|
19 |
+
self.relu1_4 = nn.ReLU()
|
20 |
+
self.conv2_4 = nn.Conv2d(hidden_size, hidden_size, 3, padding=1, bias=False)
|
21 |
+
self.bn2_4 = nn.BatchNorm2d(hidden_size)
|
22 |
+
self.relu2_4 = nn.ReLU()
|
23 |
+
|
24 |
+
self.conv1_3 = nn.Conv2d(hidden_size + c2_size, hidden_size, 3, padding=1, bias=False)
|
25 |
+
self.bn1_3 = nn.BatchNorm2d(hidden_size)
|
26 |
+
self.relu1_3 = nn.ReLU()
|
27 |
+
self.conv2_3 = nn.Conv2d(hidden_size, hidden_size, 3, padding=1, bias=False)
|
28 |
+
self.bn2_3 = nn.BatchNorm2d(hidden_size)
|
29 |
+
self.relu2_3 = nn.ReLU()
|
30 |
+
|
31 |
+
self.conv1_2 = nn.Conv2d(hidden_size + c1_size, hidden_size, 3, padding=1, bias=False)
|
32 |
+
self.bn1_2 = nn.BatchNorm2d(hidden_size)
|
33 |
+
self.relu1_2 = nn.ReLU()
|
34 |
+
self.conv2_2 = nn.Conv2d(hidden_size, hidden_size, 3, padding=1, bias=False)
|
35 |
+
self.bn2_2 = nn.BatchNorm2d(hidden_size)
|
36 |
+
self.relu2_2 = nn.ReLU()
|
37 |
+
|
38 |
+
self.conv1_1 = nn.Conv2d(hidden_size, 2, 1)
|
39 |
+
|
40 |
+
def forward(self, x_c4, x_c3, x_c2, x_c1):
|
41 |
+
# fuse Y4 and Y3
|
42 |
+
if x_c4.size(-2) < x_c3.size(-2) or x_c4.size(-1) < x_c3.size(-1):
|
43 |
+
x_c4 = F.interpolate(input=x_c4, size=(x_c3.size(-2), x_c3.size(-1)), mode='bilinear', align_corners=True)
|
44 |
+
x = torch.cat([x_c4, x_c3], dim=1)
|
45 |
+
x = self.conv1_4(x)
|
46 |
+
x = self.bn1_4(x)
|
47 |
+
x = self.relu1_4(x)
|
48 |
+
x = self.conv2_4(x)
|
49 |
+
x = self.bn2_4(x)
|
50 |
+
x = self.relu2_4(x)
|
51 |
+
# fuse top-down features and Y2 features
|
52 |
+
if x.size(-2) < x_c2.size(-2) or x.size(-1) < x_c2.size(-1):
|
53 |
+
x = F.interpolate(input=x, size=(x_c2.size(-2), x_c2.size(-1)), mode='bilinear', align_corners=True)
|
54 |
+
x = torch.cat([x, x_c2], dim=1)
|
55 |
+
x = self.conv1_3(x)
|
56 |
+
x = self.bn1_3(x)
|
57 |
+
x = self.relu1_3(x)
|
58 |
+
x = self.conv2_3(x)
|
59 |
+
x = self.bn2_3(x)
|
60 |
+
x = self.relu2_3(x)
|
61 |
+
# fuse top-down features and Y1 features
|
62 |
+
if x.size(-2) < x_c1.size(-2) or x.size(-1) < x_c1.size(-1):
|
63 |
+
x = F.interpolate(input=x, size=(x_c1.size(-2), x_c1.size(-1)), mode='bilinear', align_corners=True)
|
64 |
+
x = torch.cat([x, x_c1], dim=1)
|
65 |
+
x = self.conv1_2(x)
|
66 |
+
x = self.bn1_2(x)
|
67 |
+
x = self.relu1_2(x)
|
68 |
+
x = self.conv2_2(x)
|
69 |
+
x = self.bn2_2(x)
|
70 |
+
x = self.relu2_2(x)
|
71 |
+
|
72 |
+
return self.conv1_1(x)
|