File size: 7,689 Bytes
d1b91e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

# Copyright 2019 Shigeki Karita
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

"""Multi-Head Attention layer definition."""

import math

import numpy
import torch
from torch import nn


class MultiHeadedAttention(nn.Module):
    """Multi-Head Attention layer.
    Args:
        n_head (int): The number of heads.
        n_feat (int): The number of features.
        dropout_rate (float): Dropout rate.
    """

    def __init__(self, n_head, n_feat, dropout_rate):
        """Construct an MultiHeadedAttention object."""
        super(MultiHeadedAttention, self).__init__()
        assert n_feat % n_head == 0
        # We assume d_v always equals d_k
        self.d_k = n_feat // n_head
        self.h = n_head
        self.linear_q = nn.Linear(n_feat, n_feat)
        self.linear_k = nn.Linear(n_feat, n_feat)
        self.linear_v = nn.Linear(n_feat, n_feat)
        self.linear_out = nn.Linear(n_feat, n_feat)
        self.attn = None
        self.dropout = nn.Dropout(p=dropout_rate)

    def forward_qkv(self, query, key, value):
        """Transform query, key and value.
        Args:
            query (torch.Tensor): Query tensor (#batch, time1, size).
            key (torch.Tensor): Key tensor (#batch, time2, size).
            value (torch.Tensor): Value tensor (#batch, time2, size).
        Returns:
            torch.Tensor: Transformed query tensor (#batch, n_head, time1, d_k).
            torch.Tensor: Transformed key tensor (#batch, n_head, time2, d_k).
            torch.Tensor: Transformed value tensor (#batch, n_head, time2, d_k).
        """
        n_batch = query.size(0)
        q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
        k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
        v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
        q = q.transpose(1, 2)  # (batch, head, time1, d_k)
        k = k.transpose(1, 2)  # (batch, head, time2, d_k)
        v = v.transpose(1, 2)  # (batch, head, time2, d_k)

        return q, k, v

    def forward_attention(self, value, scores, mask):
        """Compute attention context vector.
        Args:
            value (torch.Tensor): Transformed value (#batch, n_head, time2, d_k).
            scores (torch.Tensor): Attention score (#batch, n_head, time1, time2).
            mask (torch.Tensor): Mask (#batch, 1, time2) or (#batch, time1, time2).
        Returns:
            torch.Tensor: Transformed value (#batch, time1, d_model)
                weighted by the attention score (#batch, time1, time2).
        """
        n_batch = value.size(0)
        if mask is not None:
            mask = mask.unsqueeze(1).eq(0)  # (batch, 1, *, time2)
            min_value = float(
                numpy.finfo(torch.tensor(0, dtype=scores.dtype).numpy().dtype).min
            )
            scores = scores.masked_fill(mask, min_value)
            self.attn = torch.softmax(scores, dim=-1).masked_fill(
                mask, 0.0
            )  # (batch, head, time1, time2)
        else:
            self.attn = torch.softmax(scores, dim=-1)  # (batch, head, time1, time2)

        p_attn = self.dropout(self.attn)
        x = torch.matmul(p_attn, value)  # (batch, head, time1, d_k)
        x = (
            x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k)
        )  # (batch, time1, d_model)

        return self.linear_out(x)  # (batch, time1, d_model)

    def forward(self, query, key, value, mask):
        """Compute scaled dot product attention.
        Args:
            query (torch.Tensor): Query tensor (#batch, time1, size).
            key (torch.Tensor): Key tensor (#batch, time2, size).
            value (torch.Tensor): Value tensor (#batch, time2, size).
            mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
                (#batch, time1, time2).
        Returns:
            torch.Tensor: Output tensor (#batch, time1, d_model).
        """
        q, k, v = self.forward_qkv(query, key, value)
        scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
        return self.forward_attention(v, scores, mask)


class RelPositionMultiHeadedAttention(MultiHeadedAttention):
    """Multi-Head Attention layer with relative position encoding.
    Paper: https://arxiv.org/abs/1901.02860
    Args:
        n_head (int): The number of heads.
        n_feat (int): The number of features.
        dropout_rate (float): Dropout rate.
    """

    def __init__(self, n_head, n_feat, dropout_rate):
        """Construct an RelPositionMultiHeadedAttention object."""
        super().__init__(n_head, n_feat, dropout_rate)
        # linear transformation for positional ecoding
        self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
        # these two learnable bias are used in matrix c and matrix d
        # as described in https://arxiv.org/abs/1901.02860 Section 3.3
        self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
        self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
        torch.nn.init.xavier_uniform_(self.pos_bias_u)
        torch.nn.init.xavier_uniform_(self.pos_bias_v)

    def rel_shift(self, x, zero_triu=False):
        """Compute relative positinal encoding.
        Args:
            x (torch.Tensor): Input tensor (batch, time, size).
            zero_triu (bool): If true, return the lower triangular part of the matrix.
        Returns:
            torch.Tensor: Output tensor.
        """
        zero_pad = torch.zeros((*x.size()[:3], 1), device=x.device, dtype=x.dtype)
        x_padded = torch.cat([zero_pad, x], dim=-1)

        x_padded = x_padded.view(*x.size()[:2], x.size(3) + 1, x.size(2))
        x = x_padded[:, :, 1:].view_as(x)

        if zero_triu:
            ones = torch.ones((x.size(2), x.size(3)))
            x = x * torch.tril(ones, x.size(3) - x.size(2))[None, None, :, :]

        return x

    def forward(self, query, key, value, pos_emb, mask):
        """Compute 'Scaled Dot Product Attention' with rel. positional encoding.
        Args:
            query (torch.Tensor): Query tensor (#batch, time1, size).
            key (torch.Tensor): Key tensor (#batch, time2, size).
            value (torch.Tensor): Value tensor (#batch, time2, size).
            pos_emb (torch.Tensor): Positional embedding tensor (#batch, time2, size).
            mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
                (#batch, time1, time2).
        Returns:
            torch.Tensor: Output tensor (#batch, time1, d_model).
        """
        q, k, v = self.forward_qkv(query, key, value)
        q = q.transpose(1, 2)  # (batch, time1, head, d_k)

        n_batch_pos = pos_emb.size(0)
        p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
        p = p.transpose(1, 2)  # (batch, head, time1, d_k)

        # (batch, head, time1, d_k)
        q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
        # (batch, head, time1, d_k)
        q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)

        # compute attention score
        # first compute matrix a and matrix c
        # as described in https://arxiv.org/abs/1901.02860 Section 3.3
        # (batch, head, time1, time2)
        matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))

        # compute matrix b and matrix d
        # (batch, head, time1, time2)
        matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
        matrix_bd = self.rel_shift(matrix_bd)

        scores = (matrix_ac + matrix_bd) / math.sqrt(
            self.d_k
        )  # (batch, head, time1, time2)

        return self.forward_attention(v, scores, mask)