Spaces:
Runtime error
Runtime error
import torch | |
from inference.tts.base_tts_infer import BaseTTSInfer | |
from modules.tts.portaspeech.portaspeech_flow import PortaSpeechFlow | |
from utils.commons.ckpt_utils import load_ckpt | |
from utils.commons.hparams import hparams | |
class PortaSpeechFlowInfer(BaseTTSInfer): | |
def build_model(self): | |
ph_dict_size = len(self.ph_encoder) | |
word_dict_size = len(self.word_encoder) | |
model = PortaSpeechFlow(ph_dict_size, word_dict_size, self.hparams) | |
model.eval() | |
load_ckpt(model, hparams['work_dir'], 'model') | |
return model | |
def forward_model(self, inp): | |
sample = self.input_to_batch(inp) | |
with torch.no_grad(): | |
output = self.model( | |
sample['txt_tokens'], | |
sample['word_tokens'], | |
ph2word=sample['ph2word'], | |
word_len=sample['word_lengths'].max(), | |
infer=True, | |
forward_post_glow=True, | |
spk_id=sample.get('spk_ids') | |
) | |
mel_out = output['mel_out'] | |
wav_out = self.run_vocoder(mel_out) | |
wav_out = wav_out.cpu().numpy() | |
return wav_out[0] | |
if __name__ == '__main__': | |
PortaSpeechFlowInfer.example_run() | |