Spaces:
Runtime error
Runtime error
import math | |
import random | |
from functools import partial | |
from inspect import isfunction | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from tqdm import tqdm | |
from modules.tts.fs2_orig import FastSpeech2Orig | |
from modules.tts.diffspeech.net import DiffNet | |
from modules.tts.commons.align_ops import expand_states | |
def exists(x): | |
return x is not None | |
def default(val, d): | |
if exists(val): | |
return val | |
return d() if isfunction(d) else d | |
# gaussian diffusion trainer class | |
def extract(a, t, x_shape): | |
b, *_ = t.shape | |
out = a.gather(-1, t) | |
return out.reshape(b, *((1,) * (len(x_shape) - 1))) | |
def noise_like(shape, device, repeat=False): | |
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1))) | |
noise = lambda: torch.randn(shape, device=device) | |
return repeat_noise() if repeat else noise() | |
def linear_beta_schedule(timesteps, max_beta=0.01): | |
""" | |
linear schedule | |
""" | |
betas = np.linspace(1e-4, max_beta, timesteps) | |
return betas | |
def cosine_beta_schedule(timesteps, s=0.008): | |
""" | |
cosine schedule | |
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ | |
""" | |
steps = timesteps + 1 | |
x = np.linspace(0, steps, steps) | |
alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2 | |
alphas_cumprod = alphas_cumprod / alphas_cumprod[0] | |
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1]) | |
return np.clip(betas, a_min=0, a_max=0.999) | |
beta_schedule = { | |
"cosine": cosine_beta_schedule, | |
"linear": linear_beta_schedule, | |
} | |
DIFF_DECODERS = { | |
'wavenet': lambda hp: DiffNet(hp), | |
} | |
class AuxModel(FastSpeech2Orig): | |
def forward(self, txt_tokens, mel2ph=None, spk_embed=None, spk_id=None, | |
f0=None, uv=None, energy=None, infer=False, **kwargs): | |
ret = {} | |
encoder_out = self.encoder(txt_tokens) # [B, T, C] | |
src_nonpadding = (txt_tokens > 0).float()[:, :, None] | |
style_embed = self.forward_style_embed(spk_embed, spk_id) | |
# add dur | |
dur_inp = (encoder_out + style_embed) * src_nonpadding | |
mel2ph = self.forward_dur(dur_inp, mel2ph, txt_tokens, ret) | |
tgt_nonpadding = (mel2ph > 0).float()[:, :, None] | |
decoder_inp = decoder_inp_ = expand_states(encoder_out, mel2ph) | |
# add pitch and energy embed | |
if self.hparams['use_pitch_embed']: | |
pitch_inp = (decoder_inp_ + style_embed) * tgt_nonpadding | |
decoder_inp = decoder_inp + self.forward_pitch(pitch_inp, f0, uv, mel2ph, ret, encoder_out) | |
# add pitch and energy embed | |
if self.hparams['use_energy_embed']: | |
energy_inp = (decoder_inp_ + style_embed) * tgt_nonpadding | |
decoder_inp = decoder_inp + self.forward_energy(energy_inp, energy, ret) | |
# decoder input | |
ret['decoder_inp'] = decoder_inp = (decoder_inp + style_embed) * tgt_nonpadding | |
if self.hparams['dec_inp_add_noise']: | |
B, T, _ = decoder_inp.shape | |
z = kwargs.get('adv_z', torch.randn([B, T, self.z_channels])).to(decoder_inp.device) | |
ret['adv_z'] = z | |
decoder_inp = torch.cat([decoder_inp, z], -1) | |
decoder_inp = self.dec_inp_noise_proj(decoder_inp) * tgt_nonpadding | |
if kwargs['skip_decoder']: | |
return ret | |
ret['mel_out'] = self.forward_decoder(decoder_inp, tgt_nonpadding, ret, infer=infer, **kwargs) | |
return ret | |
class GaussianDiffusion(nn.Module): | |
def __init__(self, dict_size, hparams, out_dims=None): | |
super().__init__() | |
self.hparams = hparams | |
out_dims = hparams['audio_num_mel_bins'] | |
denoise_fn = DIFF_DECODERS[hparams['diff_decoder_type']](hparams) | |
timesteps = hparams['timesteps'] | |
K_step = hparams['K_step'] | |
loss_type = hparams['diff_loss_type'] | |
spec_min = hparams['spec_min'] | |
spec_max = hparams['spec_max'] | |
self.denoise_fn = denoise_fn | |
self.fs2 = AuxModel(dict_size, hparams) | |
self.mel_bins = out_dims | |
if hparams['schedule_type'] == 'linear': | |
betas = linear_beta_schedule(timesteps, hparams['max_beta']) | |
else: | |
betas = cosine_beta_schedule(timesteps) | |
alphas = 1. - betas | |
alphas_cumprod = np.cumprod(alphas, axis=0) | |
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) | |
timesteps, = betas.shape | |
self.num_timesteps = int(timesteps) | |
self.K_step = K_step | |
self.loss_type = loss_type | |
to_torch = partial(torch.tensor, dtype=torch.float32) | |
self.register_buffer('betas', to_torch(betas)) | |
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) | |
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) | |
# calculations for diffusion q(x_t | x_{t-1}) and others | |
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) | |
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) | |
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) | |
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) | |
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) | |
# calculations for posterior q(x_{t-1} | x_t, x_0) | |
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod) | |
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) | |
self.register_buffer('posterior_variance', to_torch(posterior_variance)) | |
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain | |
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20)))) | |
self.register_buffer('posterior_mean_coef1', to_torch( | |
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))) | |
self.register_buffer('posterior_mean_coef2', to_torch( | |
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))) | |
self.register_buffer('spec_min', torch.FloatTensor(spec_min)[None, None, :hparams['keep_bins']]) | |
self.register_buffer('spec_max', torch.FloatTensor(spec_max)[None, None, :hparams['keep_bins']]) | |
def q_mean_variance(self, x_start, t): | |
mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start | |
variance = extract(1. - self.alphas_cumprod, t, x_start.shape) | |
log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape) | |
return mean, variance, log_variance | |
def predict_start_from_noise(self, x_t, t, noise): | |
return ( | |
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - | |
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise | |
) | |
def q_posterior(self, x_start, x_t, t): | |
posterior_mean = ( | |
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start + | |
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t | |
) | |
posterior_variance = extract(self.posterior_variance, t, x_t.shape) | |
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape) | |
return posterior_mean, posterior_variance, posterior_log_variance_clipped | |
def p_mean_variance(self, x, t, cond, clip_denoised: bool): | |
noise_pred = self.denoise_fn(x, t, cond=cond) | |
x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred) | |
if clip_denoised: | |
x_recon.clamp_(-1., 1.) | |
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) | |
return model_mean, posterior_variance, posterior_log_variance | |
def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False): | |
b, *_, device = *x.shape, x.device | |
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond, clip_denoised=clip_denoised) | |
noise = noise_like(x.shape, device, repeat_noise) | |
# no noise when t == 0 | |
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) | |
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise | |
def q_sample(self, x_start, t, noise=None): | |
noise = default(noise, lambda: torch.randn_like(x_start)) | |
return ( | |
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + | |
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise | |
) | |
def p_losses(self, x_start, t, cond, noise=None, nonpadding=None): | |
noise = default(noise, lambda: torch.randn_like(x_start)) | |
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) | |
x_recon = self.denoise_fn(x_noisy, t, cond) | |
if self.loss_type == 'l1': | |
if nonpadding is not None: | |
loss = ((noise - x_recon).abs() * nonpadding.unsqueeze(1)).mean() | |
else: | |
# print('are you sure w/o nonpadding?') | |
loss = (noise - x_recon).abs().mean() | |
elif self.loss_type == 'l2': | |
loss = F.mse_loss(noise, x_recon) | |
else: | |
raise NotImplementedError() | |
return loss | |
def forward(self, txt_tokens, mel2ph=None, spk_embed=None, spk_id=None, | |
ref_mels=None, f0=None, uv=None, energy=None, infer=False, **kwargs): | |
b, *_, device = *txt_tokens.shape, txt_tokens.device | |
ret = self.fs2(txt_tokens, mel2ph=mel2ph, spk_embed=spk_embed, spk_id=spk_id, | |
f0=f0, uv=uv, energy=energy, infer=infer, skip_decoder=(not infer), **kwargs) | |
cond = ret['decoder_inp'].transpose(1, 2) | |
if not infer: | |
t = torch.randint(0, self.K_step, (b,), device=device).long() | |
x = ref_mels | |
x = self.norm_spec(x) | |
x = x.transpose(1, 2)[:, None, :, :] # [B, 1, M, T] | |
ret['diff_loss'] = self.p_losses(x, t, cond) | |
# nonpadding = (mel2ph != 0).float() | |
# ret['diff_loss'] = self.p_losses(x, t, cond, nonpadding=nonpadding) | |
ret['mel_out'] = None | |
else: | |
ret['fs2_mel'] = ret['mel_out'] | |
fs2_mels = ret['mel_out'] | |
t = self.K_step | |
fs2_mels = self.norm_spec(fs2_mels) | |
fs2_mels = fs2_mels.transpose(1, 2)[:, None, :, :] | |
x = self.q_sample(x_start=fs2_mels, t=torch.tensor([t - 1], device=device).long()) | |
if self.hparams.get('gaussian_start') is not None and self.hparams['gaussian_start']: | |
print('===> gaussian start.') | |
shape = (cond.shape[0], 1, self.mel_bins, cond.shape[2]) | |
x = torch.randn(shape, device=device) | |
for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t): | |
x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond) | |
x = x[:, 0].transpose(1, 2) | |
ret['mel_out'] = self.denorm_spec(x) | |
return ret | |
def norm_spec(self, x): | |
return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1 | |
def denorm_spec(self, x): | |
return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min | |
def cwt2f0_norm(self, cwt_spec, mean, std, mel2ph): | |
return self.fs2.cwt2f0_norm(cwt_spec, mean, std, mel2ph) | |
def out2mel(self, x): | |
return x |