Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from cgitb import enable
|
2 |
+
from ctypes.wintypes import HFONT
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
import torch
|
6 |
+
import gradio as gr
|
7 |
+
import numpy as np
|
8 |
+
import torchvision.transforms as transforms
|
9 |
+
|
10 |
+
|
11 |
+
from torch.autograd import Variable
|
12 |
+
from network.Transformer import Transformer
|
13 |
+
from huggingface_hub import hf_hub_download
|
14 |
+
|
15 |
+
from PIL import Image
|
16 |
+
|
17 |
+
import logging
|
18 |
+
|
19 |
+
logging.basicConfig(level=logging.INFO)
|
20 |
+
logger = logging.getLogger(__name__)
|
21 |
+
|
22 |
+
# Constants
|
23 |
+
|
24 |
+
MODEL_PATH = "models"
|
25 |
+
COLOUR_MODEL = "RGB"
|
26 |
+
|
27 |
+
MODEL_REPO = "NDugar/horse_to_zebra_cycle_GAN"
|
28 |
+
MODEL_FILE = "h2z-85epoch.pth"
|
29 |
+
|
30 |
+
# Model Initalisation
|
31 |
+
#shinkai_model_hfhub = hf_hub_download(repo_id=MODEL_REPO_SHINKAI, filename=MODEL_FILE_SHINKAI)
|
32 |
+
#hosoda_model_hfhub = hf_hub_download(repo_id=MODEL_REPO_HOSODA, filename=MODEL_FILE_HOSODA)
|
33 |
+
#miyazaki_model_hfhub = hf_hub_download(repo_id=MODEL_REPO_MIYAZAKI, filename=MODEL_FILE_MIYAZAKI)
|
34 |
+
model_hfhub = hf_hub_download(repo_id=MODEL_REPO, filename=MODEL_FILE)
|
35 |
+
|
36 |
+
#shinkai_model = Transformer()
|
37 |
+
#hosoda_model = Transformer()
|
38 |
+
#miyazaki_model = Transformer()
|
39 |
+
model = Transformer()
|
40 |
+
|
41 |
+
enable_gpu = torch.cuda.is_available()
|
42 |
+
map_location = torch.device("cuda") if enable_gpu else "cpu"
|
43 |
+
|
44 |
+
model.load_state_dict(torch.load(model_hfhub, map_location=map_location))
|
45 |
+
|
46 |
+
shinkai_model.eval()
|
47 |
+
hosoda_model.eval()
|
48 |
+
miyazaki_model.eval()
|
49 |
+
kon_model.eval()
|
50 |
+
|
51 |
+
|
52 |
+
# Functions
|
53 |
+
|
54 |
+
def get_model():
|
55 |
+
return model
|
56 |
+
|
57 |
+
|
58 |
+
def adjust_image_for_model(img):
|
59 |
+
logger.info(f"Image Height: {img.height}, Image Width: {img.width}")
|
60 |
+
return img
|
61 |
+
|
62 |
+
|
63 |
+
def inference(img, style):
|
64 |
+
img = adjust_image_for_model(img)
|
65 |
+
input_image = img.convert(COLOUR_MODEL)
|
66 |
+
input_image = np.asarray(input_image)
|
67 |
+
input_image = input_image[:, :, [2, 1, 0]]
|
68 |
+
input_image = transforms.ToTensor()(input_image).unsqueeze(0)
|
69 |
+
input_image = -1 + 2 * input_image
|
70 |
+
|
71 |
+
if enable_gpu:
|
72 |
+
logger.info(f"CUDA found. Using GPU.")
|
73 |
+
input_image = Variable(input_image).cuda()
|
74 |
+
else:
|
75 |
+
logger.info(f"CUDA not found. Using CPU.")
|
76 |
+
input_image = Variable(input_image).float()
|
77 |
+
model = get_model()
|
78 |
+
output_image = model(input_image)
|
79 |
+
output_image = output_image[0]
|
80 |
+
# BGR -> RGB
|
81 |
+
output_image = output_image[[2, 1, 0], :, :]
|
82 |
+
output_image = output_image.data.cpu().float() * 0.5 + 0.5
|
83 |
+
|
84 |
+
return transforms.ToPILImage()(output_image)
|
85 |
+
|
86 |
+
|
87 |
+
# Gradio setup
|
88 |
+
|
89 |
+
title = "Horse 2 Zebra GAN"
|
90 |
+
description = "Gradio Demo for CycleGAN"
|
91 |
+
|
92 |
+
gr.Interface(
|
93 |
+
fn=inference,
|
94 |
+
inputs=[
|
95 |
+
gr.inputs.Image(
|
96 |
+
type="pil",
|
97 |
+
label="Input Photo",
|
98 |
+
),
|
99 |
+
],
|
100 |
+
outputs=gr.outputs.Image(
|
101 |
+
type="pil",
|
102 |
+
label="Output Image",
|
103 |
+
),
|
104 |
+
title=title,
|
105 |
+
description=description,
|
106 |
+
article=article,
|
107 |
+
examples=examples,
|
108 |
+
allow_flagging="never",
|
109 |
+
allow_screenshot=False,
|
110 |
+
).launch(enable_queue=True)
|