

TensorFlow	in	1	Day:	Make	your	own
Neural	Network

By	Krishna	Rungta

	
	
	
	
	
	
	

Copyright	2018	-	All	Rights	Reserved	–	Krishna	Rungta

ALL	RIGHTS	RESERVED.	No	part	of	this	publication	may	be	reproduced	or
transmitted	in	any	form	whatsoever,	electronic,	or	mechanical,	including
photocopying,	recording,	or	by	any	informational	storage	or	retrieval	system
without	express	written,	dated	and	signed	permission	from	the	author.

Table	Of	Content
Chapter	1:	What	is	Deep	learning?

1.	 What	is	Deep	learning?
2.	 Deep	learning	Process
3.	 Classification	of	Neural	Networks
4.	 Types	of	Deep	Learning	Networks
5.	 Feed-forward	neural	networks
6.	 Recurrent	neural	networks	(RNNs)
7.	 Convolutional	neural	networks	(CNN)

Chapter	2:	Machine	Learning	vs	Deep	Learning

1.	 What	is	AI?
2.	 What	is	ML?
3.	 What	is	Deep	Learning?
4.	 Machine	Learning	Process
5.	 Deep	Learning	Process
6.	 Automate	Feature	Extraction	using	DL
7.	 Difference	between	Machine	Learning	and	Deep	Learning
8.	 When	to	use	ML	or	DL?

Chapter	3:	What	is	TensorFlow?

1.	 What	is	TensorFlow?
2.	 History	of	TensorFlow
3.	 TensorFlow	Architecture
4.	 Where	can	Tensorflow	run?
5.	 Introduction	to	Components	of	TensorFlow

6.	 Why	is	TensorFlow	popular?
7.	 List	of	Prominent	Algorithms	supported	by	TensorFlow

Chapter	4:	Comparison	of	Deep	Learning	Libraries

1.	 8	Best	Deep	learning	Libraries	/Framework
2.	 MICROSOFT	COGNITIVE	TOOLKIT(CNTK)
3.	 TenserFlow	Vs	Theano	Vs	Torch	Vs	Keras	Vs	infer.net	Vs	CNTK	Vs

MXNet	Vs	Caffe:	Key	Differences

Chapter	5:	How	to	Download	and	Install	TensorFlow	Windows	and	Mac

1.	 TensorFlow	Versions
2.	 Install	Anaconda
3.	 Create	.yml	file	to	install	Tensorflow	and	dependencies
4.	 Launch	Jupyter	Notebook
5.	 Jupyter	with	the	main	conda	environment

Chapter	6:	Jupyter	Notebook	Tutorial

1.	 What	is	Jupyter	Notebook?
2.	 Jupyter	Notebook	App
3.	 How	to	use	Jupyter

Chapter	7:	Tensorflow	on	AWS

1.	 PART	1:	Set	up	a	key	pair
2.	 PART	2:	Set	up	a	security	group
3.	 Launch	your	instance	(Windows	users)
4.	 Part	4:	Install	Docker
5.	 Part	5:	Install	Jupyter
6.	 Part	6:	Close	connection

Chapter	8:	TensorFlow	Basics:	Tensor,	Shape,	Type,	Graph,	Sessions	&
Operators

1.	 What	is	a	Tensor?
2.	 Representation	of	a	Tensor
3.	 Types	of	Tensor
4.	 Shape	of	tensor
5.	 Type	of	data
6.	 Creating	operator
7.	 Variables

Chapter	9:	Tensorboard:	Graph	Visualization	with	Example

Chapter	10:	NumPy

1.	 What	is	NumPy?
2.	 Why	use	NumPy?
3.	 How	to	install	NumPy?
4.	 Mathematical	Operations	on	an	Array
5.	 Shape	of	Array
6.	 np.zeros	and	np.ones
7.	 Reshape	and	Flatten	Data
8.	 hstack	and	vstack

Chapter	11:	Pandas

1.	 What	is	Pandas?
2.	 Why	use	Pandas?
3.	 How	to	install	Pandas?
4.	 What	is	a	data	frame?
5.	 What	is	a	Series?
6.	 Concatenation

Chapter	12:	Scikit-Learn

1.	 What	is	Scikit-learn?
2.	 Download	and	Install	scikit-learn
3.	 Machine	learning	with	scikit-learn
4.	 Step	1)	Import	the	data
5.	 Step	2)	Create	the	train/test	set
6.	 Step	3)	Build	the	pipeline
7.	 Step	4)	Using	our	pipeline	in	a	grid	search

Chapter	13:	Linear	Regression

1.	 Linear	regression
2.	 How	to	train	a	linear	regression	model
3.	 How	to	train	a	Linear	Regression	with	TensorFlow
4.	 Pandas
5.	 Numpy	Solution
6.	 Tensorflow	solution

Chapter	14:	Linear	Regression	Case	Study

1.	 Summary	statistics
2.	 Facets	Overview
3.	 Facets	Deep	Dive
4.	 Install	Facet
5.	 Overview
6.	 Graph
7.	 Facets	Deep	Dive

Chapter	15:	Linear	Classifier	in	TensorFlow

1.	 What	is	Linear	Classifier?

2.	 How	Binary	classifier	works?
3.	 How	to	Measure	the	performance	of	Linear	Classifier?
4.	 Linear	Classifier	with	TensorFlow

Chapter	16:	Kernel	Methods

1.	 Why	do	you	need	Kernel	Methods?
2.	 What	is	a	Kernel	in	machine	learning?
3.	 Type	of	Kernel	Methods
4.	 Train	Gaussian	Kernel	classifier	with	TensorFlow

Chapter	17:	TensorFlow	ANN	(Artificial	Neural	Network)

1.	 What	is	Artificial	Neural	Network?
2.	 Neural	Network	Architecture
3.	 Limitations	of	Neural	Network
4.	 Example	Neural	Network	in	TensorFlow
5.	 Train	a	neural	network	with	TensorFlow

Chapter	18:	ConvNet(Convolutional	Neural	Network):	TensorFlow	Image
Classification

1.	 What	is	Convolutional	Neural	Network?
2.	 Architecture	of	a	Convolutional	Neural	Network
3.	 Components	of	Convnets
4.	 Train	CNN	with	TensorFlow

Chapter	19:	Autoencoder	with	TensorFlow

1.	 What	is	an	Autoencoder?
2.	 How	does	Autoencoder	work?
3.	 Stacked	Autoencoder	Example

4.	 Build	an	Autoencoder	with	TensorFlow

Chapter	20:	RNN(Recurrent	Neural	Network)	TensorFlow

1.	 What	do	we	need	an	RNN?
2.	 What	is	RNN?
3.	 Build	an	RNN	to	predict	Time	Series	in	TensorFlow

Chapter	1:	What	is	Deep	learning?

What	is	Deep	learning?

Deep	learning	is	a	computer	software	that	mimics	the	network	of	neurons	in	a
brain.	It	is	a	subset	of	machine	learning	and	is	called	deep	learning	because	it
makes	use	of	deep	neural	networks.

Deep	learning	algorithms	are	constructed	with	connected	layers.

The	first	layer	is	called	the	Input	Layer
The	last	layer	is	called	the	Output	Layer
All	layers	in	between	are	called	Hidden	Layers.	The	word	deep	means	the
network	join	neurons	in	more	than	two	layers.

Each	Hidden	layer	is	composed	of	neurons.	The	neurons	are	connected	to	each
other.	The	neuron	will	process	and	then	propagate	the	input	signal	it	receives	the
layer	above	it.	The	strength	of	the	signal	given	the	neuron	in	the	next	layer
depends	on	the	weight,	bias	and	activation	function.

The	network	consumes	large	amounts	of	input	data	and	operates	them	through

multiple	layers;	the	network	can	learn	increasingly	complex	features	of	the	data
at	each	layer.

Deep	learning	Process

A	deep	neural	network	provides	state-of-the-art	accuracy	in	many	tasks,	from
object	detection	to	speech	recognition.	They	can	learn	automatically,	without
predefined	knowledge	explicitly	coded	by	the	programmers.

To	grasp	the	idea	of	deep	learning,	imagine	a	family,	with	an	infant	and	parents.
The	toddler	points	objects	with	his	little	finger	and	always	says	the	word	'cat.'	As
its	parents	are	concerned	about	his	education,	they	keep	telling	him	'Yes,	that	is	a
cat'	or	'No,	that	is	not	a	cat.'	The	infant	persists	in	pointing	objects	but	becomes
more	accurate	with	'cats.'	The	little	kid,	deep	down,	does	not	know	why	he	can
say	it	is	a	cat	or	not.	He	has	just	learned	how	to	hierarchies	complex	features
coming	up	with	a	cat	by	looking	at	the	pet	overall	and	continue	to	focus	on
details	such	as	the	tails	or	the	nose	before	to	make	up	his	mind.

A	neural	network	works	quite	the	same.	Each	layer	represents	a	deeper	level	of
knowledge,	i.e.,	the	hierarchy	of	knowledge.	A	neural	network	with	four	layers
will	learn	more	complex	feature	than	with	that	with	two	layers.

The	learning	occurs	in	two	phases.

The	first	phase	consists	of	applying	a	nonlinear	transformation	of	the	input
and	create	a	statistical	model	as	output.
The	second	phase	aims	at	improving	the	model	with	a	mathematical	method
known	as	derivative.

The	neural	network	repeats	these	two	phases	hundreds	to	thousands	of	time	until
it	has	reached	a	tolerable	level	of	accuracy.	The	repeat	of	this	two-phase	is	called

an	iteration.

To	give	an	example,	take	a	look	at	the	motion	below,	the	model	is	trying	to	learn
how	to	dance.	After	10	minutes	of	training,	the	model	does	not	know	how	to
dance,	and	it	looks	like	a	scribble.

After	48	hours	of	learning,	the	computer	masters	the	art	of	dancing.

Classification	of	Neural	Networks

Shallow	neural	network:	The	Shallow	neural	network	has	only	one	hidden
layer	between	the	input	and	output.

Deep	neural	network:	Deep	neural	networks	have	more	than	one	layer.	For
instance,	Google	LeNet	model	for	image	recognition	counts	22	layers.

Nowadays,	deep	learning	is	used	in	many	ways	like	a	driverless	car,	mobile
phone,	Google	Search	Engine,	Fraud	detection,	TV,	and	so	on.

Types	of	Deep	Learning	Networks

Feed-forward	neural	networks

The	simplest	type	of	artificial	neural	network.	With	this	type	of	architecture,
information	flows	in	only	one	direction,	forward.	It	means,	the	information's
flows	starts	at	the	input	layer,	goes	to	the	"hidden"	layers,	and	end	at	the	output
layer.	The	network

does	not	have	a	loop.	Information	stops	at	the	output	layers.

Recurrent	neural	networks	(RNNs)

RNN	is	a	multi-layered	neural	network	that	can	store	information	in	context
nodes,	allowing	it	to	learn	data	sequences	and	output	a	number	or	another
sequence.	In	simple	words	it	an	Artificial	neural	networks	whose	connections
between	neurons	include	loops.	RNNs	are	well	suited	for	processing	sequences
of	inputs.

Example,	if	the	task	is	to	predict	the	next	word	in	the	sentence	"Do	you	want
a…………?

The	RNN	neurons	will	receive	a	signal	that	point	to	the	start	of	the
sentence.
The	network	receives	the	word	"Do"	as	an	input	and	produces	a	vector	of
the	number.	This	vector	is	fed	back	to	the	neuron	to	provide	a	memory	to
the	network.	This	stage	helps	the	network	to	remember	it	received	"Do"	and
it	received	it	in	the	first	position.
The	network	will	similarly	proceed	to	the	next	words.	It	takes	the	word
"you"	and	"want."	The	state	of	the	neurons	is	updated	upon	receiving	each
word.
The	final	stage	occurs	after	receiving	the	word	"a."	The	neural	network	will

provide	a	probability	for	each	English	word	that	can	be	used	to	complete
the	sentence.	A	well-trained	RNN	probably	assigns	a	high	probability	to
"café,"	"drink,"	"burger,"	etc.

Common	uses	of	RNN

Help	securities	traders	to	generate	analytic	reports
Detect	abnormalities	in	the	contract	of	financial	statement
Detect	fraudulent	credit-card	transaction
Provide	a	caption	for	images
Power	chatbots
The	standard	uses	of	RNN	occur	when	the	practitioners	are	working	with
time-series	data	or	sequences	(e.g.,	audio	recordings	or	text).

Convolutional	neural	networks	(CNN)

CNN	is	a	multi-layered	neural	network	with	a	unique	architecture	designed	to
extract	increasingly	complex	features	of	the	data	at	each	layer	to	determine	the
output.	CNN's	are	well	suited	for	perceptual	tasks.

CNN	is	mostly	used	when	there	is	an	unstructured	data	set	(e.g.,	images)	and	the
practitioners	need	to	extract	information	from	it

For	instance,	if	the	task	is	to	predict	an	image	caption:

The	CNN	receives	an	image	of	let's	say	a	cat,	this	image,	in	computer	term,
is	a	collection	of	the	pixel.	Generally,	one	layer	for	the	greyscale	picture
and	three	layers	for	a	color	picture.
During	the	feature	learning	(i.e.,	hidden	layers),	the	network	will	identify
unique	features,	for	instance,	the	tail	of	the	cat,	the	ear,	etc.
When	the	network	thoroughly	learned	how	to	recognize	a	picture,	it	can
provide	a	probability	for	each	image	it	knows.	The	label	with	the	highest
probability	will	become	the	prediction	of	the	network.

Reinforcement	Learning

Reinforcement	learning	is	a	subfield	of	machine	learning	in	which	systems	are
trained	by	receiving	virtual	"rewards"	or	"punishments,"	essentially	learning	by
trial	and	error.	Google's	DeepMind	has	used	reinforcement	learning	to	beat	a
human	champion	in	the	Go	games.	Reinforcement	learning	is	also	used	in	video
games	to	improve	the	gaming	experience	by	providing	smarter	bot.

One	of	the	most	famous	algorithms	are:

Q-learning
Deep	Q	network
State-Action-Reward-State-Action	(SARSA)
Deep	Deterministic	Policy	Gradient	(DDPG)

Applications/	Examples	of	deep	learning
applications

AI	in	Finance:	The	financial	technology	sector	has	already	started	using	AI	to
save	time,	reduce	costs,	and	add	value.	Deep	learning	is	changing	the	lending
industry	by	using	more	robust	credit	scoring.	Credit	decision-makers	can	use	AI
for	robust	credit	lending	applications	to	achieve	faster,	more	accurate	risk
assessment,	using	machine	intelligence	to	factor	in	the	character	and	capacity	of
applicants.

Underwrite	is	a	Fintech	company	providing	an	AI	solution	for	credit	makers
company.	underwrite.ai	uses	AI	to	detect	which	applicant	is	more	likely	to	pay
back	a	loan.	Their	approach	radically	outperforms	traditional	methods.

AI	in	HR:	Under	Armour,	a	sportswear	company	revolutionizes	hiring	and
modernizes	the	candidate	experience	with	the	help	of	AI.	In	fact,	Under	Armour
Reduces	hiring	time	for	its	retail	stores	by	35%.	Under	Armour	faced	a	growing
popularity	interest	back	in	2012.	They	had,	on	average,	30000	resumes	a	month.
Reading	all	of	those	applications	and	begin	to	start	the	screening	and	interview
process	was	taking	too	long.	The	lengthy	process	to	get	people	hired	and	on-
boarded	impacted	Under	Armour's	ability	to	have	their	retail	stores	fully	staffed,
ramped	and	ready	to	operate.

At	that	time,	Under	Armour	had	all	of	the	'must	have'	HR	technology	in	place
such	as	transactional	solutions	for	sourcing,	applying,	tracking	and	onboarding
but	those	tools	weren't	useful	enough.	Under	armour	choose	HireVue,	an	AI
provider	for	HR	solution,	for	both	on-demand	and	live	interviews.	The	results
were	bluffing;	they	managed	to	decrease	by	35%	the	time	to	fill.	In	return,	the
hired	higher	quality	staffs.

AI	in	Marketing:	AI	is	a	valuable	tool	for	customer	service	management	and

personalization	challenges.	Improved	speech	recognition	in	call-center
management	and	call	routing	as	a	result	of	the	application	of	AI	techniques
allows	a	more	seamless	experience	for	customers.

For	example,	deep-learning	analysis	of	audio	allows	systems	to	assess	a
customer's	emotional	tone.	If	the	customer	is	responding	poorly	to	the	AI
chatbot,	the	system	can	be	rerouted	the	conversation	to	real,	human	operators
that	take	over	the	issue.

Apart	from	the	three	examples	above,	AI	is	widely	used	in	other
sectors/industries.

Why	is	Deep	Learning	Important?

Deep	learning	is	a	powerful	tool	to	make	prediction	an	actionable	result.	Deep
learning	excels	in	pattern	discovery	(unsupervised	learning)	and	knowledge-
based	prediction.	Big	data	is	the	fuel	for	deep	learning.	When	both	are
combined,	an	organization	can	reap	unprecedented	results	in	term	of
productivity,	sales,	management,	and	innovation.

Deep	learning	can	outperform	traditional	method.	For	instance,	deep	learning
algorithms	are	41%	more	accurate	than	machine	learning	algorithm	in	image
classification,	27	%	more	accurate	in	facial	recognition	and	25%	in	voice
recognition.

Limitations	of	deep	learning

Data	labeling

Most	current	AI	models	are	trained	through	"supervised	learning."	It	means	that
humans	must	label	and	categorize	the	underlying	data,	which	can	be	a	sizable
and	error-prone	chore.	For	example,	companies	developing	self-driving-car
technologies	are	hiring	hundreds	of	people	to	manually	annotate	hours	of	video
feeds	from	prototype	vehicles	to	help	train	these	systems.

Obtain	huge	training	datasets

It	has	been	shown	that	simple	deep	learning	techniques	like	CNN	can,	in	some
cases,	imitate	the	knowledge	of	experts	in	medicine	and	other	fields.	The	current
wave	of	machine	learning,	however,	requires	training	data	sets	that	are	not	only
labeled	but	also	sufficiently	broad	and	universal.

Deep-learning	methods	required	thousands	of	observation	for	models	to	become
relatively	good	at	classification	tasks	and,	in	some	cases,	millions	for	them	to
perform	at	the	level	of	humans.	Without	surprise,	deep	learning	is	famous	in
giant	tech	companies;	they	are	using	big	data	to	accumulate	petabytes	of	data.	It
allows	them	to	create	an	impressive	and	highly	accurate	deep	learning	model.

Explain	a	problem

Large	and	complex	models	can	be	hard	to	explain,	in	human	terms.	For	instance,
why	a	particular	decision	was	obtained.	It	is	one	reason	that	acceptance	of	some
AI	tools	are	slow	in	application	areas	where	interpretability	is	useful	or	indeed
required.

Furthermore,	as	the	application	of	AI	expands,	regulatory	requirements	could
also	drive	the	need	for	more	explainable	AI	models.

Summary

Deep	learning	is	the	new	state-of-the-art	for	artificial	intelligence.	Deep	learning
architecture	is	composed	of	an	input	layer,	hidden	layers,	and	an	output	layer.
The	word	deep	means	there	are	more	than	two	fully	connected	layers.

There	is	a	vast	amount	of	neural	network,	where	each	architecture	is	designed	to
perform	a	given	task.	For	instance,	CNN	works	very	well	with	pictures,	RNN
provides	impressive	results	with	time	series	and	text	analysis.

Deep	learning	is	now	active	in	different	fields,	from	finance	to	marketing,	supply
chain,	and	marketing.	Big	firms	are	the	first	one	to	use	deep	learning	because
they	have	already	a	large	pool	of	data.	Deep	learning	requires	to	have	an
extensive	training	dataset.

Chapter	2:	Machine	Learning	vs
Deep	Learning

What	is	AI?

Artificial	intelligence	is	imparting	a	cognitive	ability	to	a	machine.	The
benchmark	for	AI	is	the	human	intelligence	regarding	reasoning,	speech,	and
vision.	This	benchmark	is	far	off	in	the	future.

AI	has	three	different	levels:

1.	 Narrow	AI:	A	artificial	intelligence	is	said	to	be	narrow	when	the	machine
can	perform	a	specific	task	better	than	a	human.	The	current	research	of	AI
is	here	now

2.	 General	AI:	An	artificial	intelligence	reaches	the	general	state	when	it	can
perform	any	intellectual	task	with	the	same	accuracy	level	as	a	human

would
3.	 Active	AI:	An	AI	is	active	when	it	can	beat	humans	in	many	tasks

Early	AI	systems	used	pattern	matching	and	expert	systems.

What	is	ML?

Machine	learning	is	the	best	tool	so	far	to	analyze,	understand	and	identify	a
pattern	in	the	data.	One	of	the	main	ideas	behind	machine	learning	is	that	the
computer	can	be	trained	to	automate	tasks	that	would	be	exhaustive	or
impossible	for	a	human	being.	The	clear	breach	from	the	traditional	analysis	is
that	machine	learning	can	take	decisions	with	minimal	human	intervention.

Machine	learning	uses	data	to	feed	an	algorithm	that	can	understand	the
relationship	between	the	input	and	the	output.	When	the	machine	finished
learning,	it	can	predict	the	value	or	the	class	of	new	data	point.

What	is	Deep	Learning?

Deep	learning	is	a	computer	software	that	mimics	the	network	of	neurons	in	a
brain.	It	is	a	subset	of	machine	learning	and	is	called	deep	learning	because	it
makes	use	of	deep	neural	networks.	The	machine	uses	different	layers	to	learn
from	the	data.	The	depth	of	the	model	is	represented	by	the	number	of	layers	in
the	model.	Deep	learning	is	the	new	state	of	the	art	in	term	of	AI.	In	deep
learning,	the	learning	phase	is	done	through	a	neural	network.	A	neural	network
is	an	architecture	where	the	layers	are	stacked	on	top	of	each	other

Machine	Learning	Process

Imagine	you	are	meant	to	build	a	program	that	recognizes	objects.	To	train	the
model,	you	will	use	a	classifier.	A	classifier	uses	the	features	of	an	object	to	try
identifying	the	class	it	belongs	to.

In	the	example,	the	classifier	will	be	trained	to	detect	if	the	image	is	a:

Bicycle
Boat
Car
Plane

The	four	objects	above	are	the	class	the	classifier	has	to	recognize.	To	construct
a	classifier,	you	need	to	have	some	data	as	input	and	assigns	a	label	to	it.	The
algorithm	will	take	these	data,	find	a	pattern	and	then	classify	it	in	the
corresponding	class.

This	task	is	called	supervised	learning.	In	supervised	learning,	the	training	data
you	feed	to	the	algorithm	includes	a	label.

Training	an	algorithm	requires	to	follow	a	few	standard	steps:

Collect	the	data
Train	the	classifier
Make	predictions

The	first	step	is	necessary,	choosing	the	right	data	will	make	the	algorithm
success	or	a	failure.	The	data	you	choose	to	train	the	model	is	called	a	feature.
In	the	object	example,	the	features	are	the	pixels	of	the	images.

Each	image	is	a	row	in	the	data	while	each	pixel	is	a	column.	If	your	image	is	a
28x28	size,	the	dataset	contains	784	columns	(28x28).	In	the	picture	below,	each

picture	has	been	transformed	into	a	feature	vector.	The	label	tells	the	computer
what	object	is	in	the	image.

The	objective	is	to	use	these	training	data	to	classify	the	type	of	object.	The	first
step	consists	of	creating	the	feature	columns.	Then,	the	second	step	involves
choosing	an	algorithm	to	train	the	model.	When	the	training	is	done,	the	model
will	predict	what	picture	corresponds	to	what	object.

After	that,	it	is	easy	to	use	the	model	to	predict	new	images.	For	each	new	image
feeds	into	the	model,	the	machine	will	predict	the	class	it	belongs	to.	For
example,	an	entirely	new	image	without	a	label	is	going	through	the	model.	For
a	human	being,	it	is	trivial	to	visualize	the	image	as	a	car.	The	machine	uses	its
previous	knowledge	to	predict	as	well	the	image	is	a	car.

Deep	Learning	Process

In	deep	learning,	the	learning	phase	is	done	through	a	neural	network.	A	neural
network	is	an	architecture	where	the	layers	are	stacked	on	top	of	each	other.

Consider	the	same	image	example	above.	The	training	set	would	be	fed	to	a
neural	network

Each	input	goes	into	a	neuron	and	is	multiplied	by	a	weight.	The	result	of	the
multiplication	flows	to	the	next	layer	and	become	the	input.	This	process	is
repeated	for	each	layer	of	the	network.	The	final	layer	is	named	the	output	layer;
it	provides	an	actual	value	for	the	regression	task	and	a	probability	of	each	class
for	the	classification	task.	The	neural	network	uses	a	mathematical	algorithm	to
update	the	weights	of	all	the	neurons.	The	neural	network	is	fully	trained	when
the	value	of	the	weights	gives	an	output	close	to	the	reality.	For	instance,	a	well-
trained	neural	network	can	recognize	the	object	on	a	picture	with	higher
accuracy	than	the	traditional	neural	net.

Automate	Feature	Extraction	using	DL

A	dataset	can	contain	a	dozen	to	hundreds	of	features.	The	system	will	learn
from	the	relevance	of	these	features.	However,	not	all	features	are	meaningful
for	the	algorithm.	A	crucial	part	of	machine	learning	is	to	find	a	relevant	set	of
features	to	make	the	system	learns	something.

One	way	to	perform	this	part	in	machine	learning	is	to	use	feature	extraction.
Feature	extraction	combines	existing	features	to	create	a	more	relevant	set	of
features.	It	can	be	done	with	PCA,	T-SNE	or	any	other	dimensionality	reduction
algorithms.

For	example,	an	image	processing,	the	practitioner	needs	to	extract	the	feature
manually	in	the	image	like	the	eyes,	the	nose,	lips	and	so	on.	Those	extracted
features	are	feed	to	the	classification	model.

Deep	learning	solves	this	issue,	especially	for	a	convolutional	neural	network.
The	first	layer	of	a	neural	network	will	learn	small	details	from	the	picture;	the
next	layers	will	combine	the	previous	knowledge	to	make	more	complex
information.	In	the	convolutional	neural	network,	the	feature	extraction	is	done
with	the	use	of	the	filter.	The	network	applies	a	filter	to	the	picture	to	see	if	there
is	a	match,	i.e.,	the	shape	of	the	feature	is	identical	to	a	part	of	the	image.	If	there
is	a	match,	the	network	will	use	this	filter.	The	process	of	feature	extraction	is
therefore	done	automatically.

Difference	between	Machine	Learning	and
Deep	Learning

Machine	Learning Deep	Learning

Data
Dependencies

Excellent	performances	on	a	small/medium
dataset Excellent	performance	on	a	big	dataset

Hardware
dependencies Work	on	a	low-end	machine.

Requires	powerful	machine,	preferably	with
GPU:	DL	performs	a	significant	amount	of
matrix	multiplication

Feature
engineering

Need	to	understand	the	features	that
represent	the	data

No	need	to	understand	the	best	feature	that
represents	the	data

Execution	time From	few	minutes	to	hours Up	to	weeks.	Neural	Network	needs	to
compute	a	significant	number	of	weights

Interpretability
Some	algorithms	are	easy	to	interpret
(logistic,	decision	tree),	some	are	almost
impossible	(SVM,	XGBoost)

Difficult	to	impossible

When	to	use	ML	or	DL?

In	the	table	below,	we	summarize	the	difference	between	machine	learning	and
deep	learning.

Machine	learning Deep	learning
Training	dataset Small Large
Choose	features Yes No
Number	of	algorithms Many Few
Training	time Short Long

With	machine	learning,	you	need	fewer	data	to	train	the	algorithm	than	deep
learning.	Deep	learning	requires	an	extensive	and	diverse	set	of	data	to	identify
the	underlying	structure.	Besides,	machine	learning	provides	a	faster-trained
model.	Most	advanced	deep	learning	architecture	can	take	days	to	a	week	to
train.	The	advantage	of	deep	learning	over	machine	learning	is	it	is	highly
accurate.	You	do	not	need	to	understand	what	features	are	the	best	representation
of	the	data;	the	neural	network	learned	how	to	select	critical	features.	In	machine
learning,	you	need	to	choose	for	yourself	what	features	to	include	in	the	model.

Summary

Artificial	intelligence	is	imparting	a	cognitive	ability	to	a	machine.	Early	AI
systems	used	pattern	matching	and	expert	systems.

The	idea	behind	machine	learning	is	that	the	machine	can	learn	without	human
intervention.	The	machine	needs	to	find	a	way	to	learn	how	to	solve	a	task	given
the	data.

Deep	learning	is	the	breakthrough	in	the	field	of	artificial	intelligence.	When
there	is	enough	data	to	train	on,	deep	learning	achieves	impressive	results,
especially	for	image	recognition	and	text	translation.	The	main	reason	is	the
feature	extraction	is	done	automatically	in	the	different	layers	of	the	network.

Chapter	3:	What	is	TensorFlow?

What	is	TensorFlow?

Currently,	the	most	famous	deep	learning	library	in	the	world	is	Google's
TensorFlow.	Google	product	uses	machine	learning	in	all	of	its	products	to
improve	the	search	engine,	translation,	image	captioning	or	recommendations.

To	give	a	concrete	example,	Google	users	can	experience	a	faster	and	more
refined	the	search	with	AI.	If	the	user	types	a	keyword	a	the	search	bar,	Google
provides	a	recommendation	about	what	could	be	the	next	word.

Google	wants	to	use	machine	learning	to	take	advantage	of	their	massive
datasets	to	give	users	the	best	experience.	Three	different	groups	use	machine
learning:

Researchers
Data	scientists
Programmers.

They	can	all	use	the	same	toolset	to	collaborate	with	each	other	and	improve
their	efficiency.

Google	does	not	just	have	any	data;	they	have	the	world's	most	massive
computer,	so	TensorFlow	was	built	to	scale.	TensorFlow	is	a	library	developed
by	the	Google	Brain	Team	to	accelerate	machine	learning	and	deep	neural
network	research.

It	was	built	to	run	on	multiple	CPUs	or	GPUs	and	even	mobile	operating
systems,	and	it	has	several	wrappers	in	several	languages	like	Python,	C++	or
Java.

History	of	TensorFlow

A	couple	of	years	ago,	deep	learning	started	to	outperform	all	other	machine
learning	algorithms	when	giving	a	massive	amount	of	data.	Google	saw	it	could
use	these	deep	neural	networks	to	improve	its	services:

Gmail
Photo
Google	search	engine

They	build	a	framework	called	Tensorflow	to	let	researchers	and	developers
work	together	on	an	AI	model.	Once	developed	and	scaled,	it	allows	lots	of
people	to	use	it.

It	was	first	made	public	in	late	2015,	while	the	first	stable	version	appeared	in
2017.	It	is	open	source	under	Apache	Open	Source	license.	You	can	use	it,
modify	it	and	redistribute	the	modified	version	for	a	fee	without	paying	anything
to	Google.

TensorFlow	Architecture

Tensorflow	architecture	works	in	three	parts:

Preprocessing	the	data
Build	the	model
Train	and	estimate	the	model

It	is	called	Tensorflow	because	it	takes	input	as	a	multi-dimensional	array,	also
known	as	tensors.	You	can	construct	a	sort	of	flowchart	of	operations	(called	a
Graph)	that	you	want	to	perform	on	that	input.	The	input	goes	in	at	one	end,	and
then	it	flows	through	this	system	of	multiple	operations	and	comes	out	the	other
end	as	output.

This	is	why	it	is	called	TensorFlow	because	the	tensor	goes	in	it	flows	through	a
list	of	operations,	and	then	it	comes	out	the	other	side.

Where	can	Tensorflow	run?

TensorFlow	can	hardware,	and	software	requirements	can	be	classified	into

Development	Phase:	This	is	when	you	train	the	mode.	Training	is	usually	done
on	your	Desktop	or	laptop.

Run	Phase	or	Inference	Phase:	Once	training	is	done	Tensorflow	can	be	run	on
many	different	platforms.	You	can	run	it	on

Desktop	running	Windows,	macOS	or	Linux
Cloud	as	a	web	service
Mobile	devices	like	iOS	and	Android

You	can	train	it	on	multiple	machines	then	you	can	run	it	on	a	different	machine,
once	you	have	the	trained	model.

The	model	can	be	trained	and	used	on	GPUs	as	well	as	CPUs.	GPUs	were
initially	designed	for	video	games.	In	late	2010,	Stanford	researchers	found	that
GPU	was	also	very	good	at	matrix	operations	and	algebra	so	that	it	makes	them
very	fast	for	doing	these	kinds	of	calculations.	Deep	learning	relies	on	a	lot	of
matrix	multiplication.	TensorFlow	is	very	fast	at	computing	the	matrix
multiplication	because	it	is	written	in	C++.	Although	it	is	implemented	in	C++,
TensorFlow	can	be	accessed	and	controlled	by	other	languages	mainly,	Python.

Finally,	a	significant	feature	of	TensorFlow	is	the	TensorBoard.	The
TensorBoard	enables	to	monitor	graphically	and	visually	what	TensorFlow	is
doing.

Introduction	to	Components	of	TensorFlow

Tensor

Tensorflow's	name	is	directly	derived	from	its	core	framework:	Tensor.	In
Tensorflow,	all	the	computations	involve	tensors.	A	tensor	is	a	vector	or	matrix
of	n-dimensions	that	represents	all	types	of	data.	All	values	in	a	tensor	hold
identical	data	type	with	a	known	(or	partially	known)	shape.	The	shape	of	the
data	is	the	dimensionality	of	the	matrix	or	array.

A	tensor	can	be	originated	from	the	input	data	or	the	result	of	a	computation.	In
TensorFlow,	all	the	operations	are	conducted	inside	a	graph.	The	graph	is	a	set
of	computation	that	takes	place	successively.	Each	operation	is	called	an	op
node	and	are	connected	to	each	other.

The	graph	outlines	the	ops	and	connections	between	the	nodes.	However,	it	does
not	display	the	values.	The	edge	of	the	nodes	is	the	tensor,	i.e.,	a	way	to	populate
the	operation	with	data.

Graphs

TensorFlow	makes	use	of	a	graph	framework.	The	graph	gathers	and	describes
all	the	series	computations	done	during	the	training.	The	graph	has	lots	of
advantages:

It	was	done	to	run	on	multiple	CPUs	or	GPUs	and	even	mobile	operating
system
The	portability	of	the	graph	allows	to	preserve	the	computations	for
immediate	or	later	use.	The	graph	can	be	saved	to	be	executed	in	the	future.
All	the	computations	in	the	graph	are	done	by	connecting	tensors	together

A	tensor	has	a	node	and	an	edge.	The	node	carries	the	mathematical
operation	and	produces	an	endpoints	outputs.	The	edges	the	edges

explain	the	input/output	relationships	between	nodes.

Why	is	TensorFlow	popular?

TensorFlow	is	the	best	library	of	all	because	it	is	built	to	be	accessible	for
everyone.	Tensorflow	library	incorporates	different	API	to	built	at	scale	deep
learning	architecture	like	CNN	or	RNN.	TensorFlow	is	based	on	graph
computation;	it	allows	the	developer	to	visualize	the	construction	of	the	neural
network	with	Tensorboad.	This	tool	is	helpful	to	debug	the	program.	Finally,
Tensorflow	is	built	to	be	deployed	at	scale.	It	runs	on	CPU	and	GPU.

Tensorflow	attracts	the	largest	popularity	on	GitHub	compare	to	the	other	deep
learning	framework.

List	of	Prominent	Algorithms	supported	by
TensorFlow

Currently,	TensorFlow	1.10	has	a	built-in	API	for:

Linear	regression:	tf.estimator.LinearRegressor
Classification:tf.estimator.LinearClassifier
Deep	learning	classification:	tf.estimator.DNNClassifier
Deep	learning	wipe	and	deep:	tf.estimator.DNNLinearCombinedClassifier
Booster	tree	regression:	tf.estimator.BoostedTreesRegressor
Boosted	tree	classification:	tf.estimator.BoostedTreesClassifier

Simple	TensorFlow	Example
import	numpy	as	np

import	tensorflow	as	tf

In	the	first	two	line	of	code,	we	have	imported	tensorflow	as	tf.	With	Python,	it
is	a	common	practice	to	use	a	short	name	for	a	library.	The	advantage	is	to	avoid
to	type	the	full	name	of	the	library	when	we	need	to	use	it.	For	instance,	we	can
import	tensorflow	as	tf,	and	call	tf	when	we	want	to	use	a	tensorflow	function

Let	's	practice	the	elementary	workflow	of	Tensorflow	with	a	simple	example.
Let	's	create	a	computational	graph	that	multiplies	two	numbers	together.

During	the	example,	we	will	multiply	X_1	and	X_2	together.	Tensorflow	will
create	a	node	to	connect	the	operation.	In	our	example,	it	is	called	multiply.
When	the	graph	is	determined,	Tensorflow	computational	engines	will	multiply
together	X_1	and	X_2.

Finally,	we	will	run	a	TensorFlow	session	that	will	run	the	computational	graph
with	the	values	of	X_1	and	X_2	and	print	the	result	of	the	multiplication.

Let	's	define	the	X_1	and	X_2	input	nodes.	When	we	create	a	node	in
Tensorflow,	we	have	to	choose	what	kind	of	node	to	create.	The	X1	and	X2
nodes	will	be	a	placeholder	node.	The	placeholder	assigns	a	new	value	each	time
we	make	a	calculation.	We	will	create	them	as	a	TF	dot	placeholder	node.

Step	1:	Define	the	variable

X_1	=	tf.placeholder(tf.float32,	name	=	"X_1")

X_2	=	tf.placeholder(tf.float32,	name	=	"X_2")

When	we	create	a	placeholder	node,	we	have	to	pass	in	the	data	type	will	be
adding	numbers	here	so	we	can	use	a	floating-point	data	type,	let's	use	tf.float32.
We	also	need	to	give	this	node	a	name.	This	name	will	show	up	when	we	look	at
the	graphical	visualizations	of	our	model.	Let's	name	this	node	X_1	by	passing
in	a	parameter	called	name	with	a	value	of	X_1	and	now	let's	define	X_2	the
same	way.	X_2.

Step	2:	Define	the	computation

multiply	=	tf.multiply(X_1,	X_2,	name	=	"multiply")

Now	we	can	define	the	node	that	does	the	multiplication	operation.	In
Tensorflow	we	can	do	that	by	creating	a	tf.multiply	node.

We	will	pass	in	the	X_1	and	X_2	nodes	to	the	multiplication	node.	It	tells
tensorflow	to	link	those	nodes	in	the	computational	graph,	so	we	are	asking	it	to
pull	the	values	from	x	and	y	and	multiply	the	result.	Let's	also	give	the
multiplication	node	the	name	multiply.	It	is	the	entire	definition	for	our	simple
computational	graph.

Step	3:	Execute	the	operation

To	execute	operations	in	the	graph,	we	have	to	create	a	session.	In	Tensorflow,	it
is	done	by	tf.Session().	Now	that	we	have	a	session	we	can	ask	the	session	to	run
operations	on	our	computational	graph	by	calling	session.	To	run	the

computation,	we	need	to	use	run.

When	the	addition	operation	runs,	it	is	going	to	see	that	it	needs	to	grab	the
values	of	the	X_1	and	X_2	nodes,	so	we	also	need	to	feed	in	values	for	X_1	and
X_2.	We	can	do	that	by	supplying	a	parameter	called	feed_dict.	We	pass	the
value	1,2,3	for	X_1	and	4,5,6	for	X_2.

We	print	the	results	with	print(result).	We	should	see	4,	10	and	18	for	1x4,	2x5
and	3x6

X_1	=	tf.placeholder(tf.float32,	name	=	"X_1")

X_2	=	tf.placeholder(tf.float32,	name	=	"X_2")

multiply	=	tf.multiply(X_1,	X_2,	name	=	"multiply")

with	tf.Session()	as	session:

				result	=	session.run(multiply,	feed_dict={X_1:[1,2,3],	X_2:

[4,5,6]})

				print(result)

[4.	10.	18.]

Options	to	Load	Data	into	TensorFlow

The	first	step	before	training	a	machine	learning	algorithm	is	to	load	the	data.
There	is	two	commons	way	to	load	data:

1.	Load	data	into	memory:	It	is	the	simplest	method.	You	load	all	your	data	into
memory	as	a	single	array.	You	can	write	a	Python	code.	This	lines	of	code	are
unrelated	to	Tensorflow.

2.	Tensorflow	data	pipeline.	Tensorflow	has	built-in	API	that	helps	you	to	load
the	data,	perform	the	operation	and	feed	the	machine	learning	algorithm	easily.
This	method	works	very	well	especially	when	you	have	a	large	dataset.	For
instance,	image	records	are	known	to	be	enormous	and	do	not	fit	into	memory.
The	data	pipeline	manages	the	memory	by	itself

What	solution	to	use?

Load	data	in	memory

If	your	dataset	is	not	too	big,	i.e.,	less	than	10	gigabytes,	you	can	use	the	first
method.	The	data	can	fit	into	the	memory.	You	can	use	a	famous	library	called
Pandas	to	import	CSV	files.	You	will	learn	more	about	pandas	in	the	next
tutorial.

Load	data	with	Tensorflow	pipeline

The	second	method	works	best	if	you	have	a	large	dataset.	For	instance,	if	you
have	a	dataset	of	50	gigabytes,	and	your	computer	has	only	16	gigabytes	of
memory	then	the	machine	will	crash.

In	this	situation,	you	need	to	build	a	Tensorflow	pipeline.	The	pipeline	will	load
the	data	in	batch,	or	small	chunk.	Each	batch	will	be	pushed	to	the	pipeline	and
be	ready	for	the	training.	Building	a	pipeline	is	an	excellent	solution	because	it

allows	you	to	use	parallel	computing.	It	means	Tensorflow	will	train	the	model
across	multiple	CPUs.	It	fosters	the	computation	and	permits	for	training
powerful	neural	network.

You	will	see	in	the	next	tutorials	on	how	to	build	a	significant	pipeline	to	feed
your	neural	network.

In	a	nutshell,	if	you	have	a	small	dataset,	you	can	load	the	data	in	memory	with
Pandas	library.

If	you	have	a	large	dataset	and	you	want	to	make	use	of	multiple	CPUs,	then	you
will	be	more	comfortable	to	work	with	Tensorflow	pipeline.

Create	Tensorflow	pipeline

In	the	example	before,	we	manually	add	three	values	for	X_1	and	X_2.	Now	we
will	see	how	to	load	data	to	Tensorflow.

Step	1)	Create	the	data

First	of	all,	let's	use	numpy	library	to	generate	two	random	values.

import	numpy	as	np

x_input	=	np.random.sample((1,2))

print(x_input)

[[0.8835775	0.23766977]]

Step	2:	Create	the	placeholder

Like	in	the	previous	example,	we	create	a	placeholder	with	the	name	X.	We	need
to	specify	the	shape	of	the	tensor	explicitly.	In	case,	we	will	load	an	array	with
only	two	values.	We	can	write	the	shape	as	shape=[1,2]

#	using	a	placeholder

x	=	tf.placeholder(tf.float32,	shape=[1,2],	name	=	'X')

Step	3:	Define	the	dataset	method

next,	we	need	to	define	the	Dataset	where	we	can	populate	the	value	of	the
placeholder	x.	We	need	to	use	the	method	tf.data.Dataset.from_tensor_slices

dataset	=	tf.data.Dataset.from_tensor_slices(x)

Step	4:	Create	the	pipeline

In	step	four,	we	need	to	initialize	the	pipeline	where	the	data	will	flow.	We	need
to	create	an	iterator	with	make_initializable_iterator.	We	name	it	iterator.	Then

we	need	to	call	this	iterator	to	feed	the	next	batch	of	data,	get_next.	We	name
this	step	get_next.	Note	that	in	our	example,	there	is	only	one	batch	of	data	with
only	two	values.

iterator	=	dataset.make_initializable_iterator()	

get_next	=	iteraror.get_next()

Step	5:	Execute	the	operation

The	last	step	is	similar	to	the	previous	example.	We	initiate	a	session,	and	we	run
the	operation	iterator.	We	feed	the	feed_dict	with	the	value	generated	by	numpy.
These	two	value	will	populate	the	placeholder	x.	Then	we	run	get_next	to	print
the	result.

with	tf.Session()	as	sess:

				#	feed	the	placeholder	with	data

				sess.run(iterator.initializer,	feed_dict={	x:	x_input	})	

				print(sess.run(get_next))	#	output	[0.52374458		0.71968478]

[0.8835775		0.23766978]

Summary

TensorFlow	is	the	most	famous	deep	learning	library	these	recent	years.	A
practitioner	using	TensorFlow	can	build	any	deep	learning	structure,	like	CNN,
RNN	or	simple	artificial	neural	network.

TensorFlow	is	mostly	used	by	academics,	startups,	and	large	companies.	Google
uses	TensorFlow	in	almost	all	Google	daily	products	including	Gmail,	Photo	and
Google	Search	Engine.

Google	Brain	team's	developed	TensorFlow	to	fill	the	gap	between	researchers
and	products	developers.	In	2015,	they	made	TensorFlow	public;	it	is	rapidly
growing	in	popularity.	Nowadays,	TensorFlow	is	the	deep	learning	library	with
the	most	repositories	on	GitHub.

Practitioners	use	Tensorflow	because	it	is	easy	to	deploy	at	scale.	It	is	built	to
work	in	the	cloud	or	on	mobile	devices	like	iOs	and	Android.

Tensorflow	works	in	a	session.	Each	session	is	defined	by	a	graph	with	different
computations.	A	simple	example	can	be	to	multiply	to	number.	In	Tensorflow,
three	steps	are	required:

1.	 Define	the	variable

X_1	=	tf.placeholder(tf.float32,	name	=	"X_1")

X_2	=	tf.placeholder(tf.float32,	name	=	"X_2")

2.	 Define	the	computation

multiply	=	tf.multiply(X_1,	X_2,	name	=	"multiply")

3.	 Execute	the	operation

with	tf.Session()	as	session:

result	=	session.run(multiply,	feed_dict={X_1:[1,2,3],	X_2:

[4,5,6]})

print(result)

One	common	practice	in	Tensorflow	is	to	create	a	pipeline	to	load	the	data.	If
you	follow	these	five	steps,	you'll	be	able	to	load	data	to	TensorFLow

1.	 Create	the	data

import	numpy	as	np

x_input	=	np.random.sample((1,2))

print(x_input)

2.	 Create	the	placeholder

x	=	tf.placeholder(tf.float32,	shape=[1,2],	name	=	'X')

3.	 Define	the	dataset	method

dataset	=	tf.data.Dataset.from_tensor_slices(x)

4.	 Create	the	pipeline

iterator	=	dataset.make_initializable_iterator()	get_next	=	

iteraror.get_next()

5.	 Execute	the	program

with	tf.Session()	as	sess:		

sess.run(iterator.initializer,	feed_dict={	x:	x_input	})		

print(sess.run(get_next))	

Chapter	4:	Comparison	of	Deep
Learning	Libraries

Artificial	intelligence	is	growing	in	popularity	since	2016	with,	20%	of	the	big
companies	using	AI	in	their	businesses	(McKinsey	report,	2018).	As	per	the
same	report	AI	can	create	substantial	value	across	industries.	In	banking,	for
instance,	the	potential	of	AI	is	estimated	at	$	300	billion,	in	retail	the	number
skyrocket	to	$	600	billion.

To	unlock	the	potential	value	of	AI,	companies	must	choose	the	right	deep
learning	framework.	In	this	tutorial,	you	will	learn	about	the	different	libraries
available	to	carry	out	deep	learning	tasks.	Some	libraries	have	been	around	for
years	while	new	library	like	TensorFlow	has	come	to	light	in	recent	years.

8	Best	Deep	learning	Libraries	/Framework

In	this	list,	we	will	compare	the	top	Deep	learning	frameworks.	All	of	them	are
open	source	and	popular	in	the	data	scientist	community.	We	will	also	compare
popular	ML	as	a	service	providers

Torch

Torch	is	an	old	open	source	machine	learning	library.	It	is	first	released	was	15
years	ago.	It	is	primary	programming	languages	is	LUA,	but	has	an
implementation	in	C.	Torch	supports	a	vast	library	for	machine	learning
algorithms,	including	deep	learning.	It	supports	CUDA	implementation	for
parallel	computation.

Torch	is	used	by	most	of	the	leading	labs	such	as	Facebook,	Google,	Twitter,
Nvidia,	and	so	on.	Torch	has	a	library	in	Python	names	Pytorch.

Infer.net

Infer.net	is	developed	and	maintained	by	Microsoft.	Infer.net	is	a	library	with	a
primary	focus	on	the	Bayesian	statistic.	Infer.net	is	designed	to	offer
practitioners	state-of-the-art	algorithms	for	probabilistic	modeling.	The	library
contains	analytical	tools	such	as	Bayesian	analysis,	hidden	Markov	chain,
clustering.

Keras

Keras	is	a	Python	framework	for	deep	learning.	It	is	a	convenient	library	to
construct	any	deep	learning	algorithm.	The	advantage	of	Keras	is	that	it	uses	the
same	Python	code	to	run	on	CPU	or	GPU.	Besides,	the	coding	environment	is
pure	and	allows	for	training	state-of-the-art	algorithm	for	computer	vision,	text
recognition	among	other.

Keras	has	been	developed	by	François	Chollet,	a	researcher	at	Google.	Keras	is
used	in	prominent	organizations	like	CERN,	Yelp,	Square	or	Google,	Netflix,
and	Uber.

Theano

Theano	is	deep	learning	library	developed	by	the	Université	de	Montréal	in
2007.	It	offers	fast	computation	and	can	be	run	on	both	CPU	and	GPU.	Theano
has	been	developed	to	train	deep	neural	network	algorithms.

MICROSOFT	COGNITIVE
TOOLKIT(CNTK)

Microsoft	toolkit,	previously	know	as	CNTK,	is	a	deep	learning	library
developed	by	Microsoft.	According	to	Microsoft,	the	library	is	among	the	fastest
on	the	market.	Microsoft	toolkit	is	an	open-source	library,	although	Microsoft	is
using	it	extensively	for	its	product	like	Skype,	Cortana,	Bing,	and	Xbox.	The
toolkit	is	available	both	in	Python	and	C++.

MXNet

MXnet	is	a	recent	deep	learning	library.	It	is	accessible	with	multiple
programming	languages	including	C++,	Julia,	Python	and	R.	MXNet	can	be
configured	to	work	on	both	CPU	and	GPU.	MXNet	includes	state-of-the-art
deep	learning	architecture	such	as	Convolutional	Neural	Network	and	Long
Short-Term	Memory.	MXNet	is	build	to	work	in	harmony	with	dynamic	cloud
infrastructure.	The	main	user	of	MXNet	is	Amazon

Caffe

Caffe	is	a	library	built	by	Yangqing	Jia	when	he	was	a	PhD	student	at	Berkeley.
Caffe	is	written	in	C++	and	can	perform	computation	on	both	CPU	and	GPU.
The	primary	uses	of	Caffe	is	Convolutional	Neural	Network.	Although,	In	2017,
Facebook	extended	Caffe	with	more	deep	learning	architecture,	including
Recurrent	Neural	Network.	caffe	is	used	by	academics	and	startups	but	also
some	large	companies	like	Yahoo!.

TensorFlow

TensorFlow	is	Google	open	source	project.	TensorFlow	is	the	most	famous	deep
learning	library	these	days.	It	was	released	to	the	public	in	late	2015

TensorFlow	is	developed	in	C++	and	has	convenient	Python	API,	although	C++
APIs	are	also	available.	Prominent	companies	like	Airbus,	Google,	IBM	and	so
on	are	using	TensorFlow	to	produce	deep	learning	algorithms.

TenserFlow	Vs	Theano	Vs	Torch	Vs	Keras	Vs
infer.net	Vs	CNTK	Vs	MXNet	Vs	Caffe:	Key
Differences

Library Platform Written	in Cuda
support

Parallel
Execution

Has
trained
models

RNN CNN

Torch Linux,	MacOS,
Windows Lua Yes Yes Yes Yes Yes

Infer.Net Linux,	MacOS,
Windows

Visual
Studio No No No No No

Keras Linux,	MacOS,
Windows Python Yes Yes Yes Yes Yes

Theano Cross-platform Python Yes Yes Yes Yes Yes

TensorFlow Linux,	MacOS,
Windows,	Android

C++,
Python,
CUDA

Yes Yes Yes Yes Yes

MICROSOFT
COGNITIVE
TOOLKIT

Linux,	Windows,	Mac
with	Docker C++ Yes Yes Yes Yes Yes

Caffe Linux,	MacOS,
Windows C++ Yes Yes Yes Yes Yes

MXNet
Linux,	Windows,
MacOs,	Android,	iOS,
Javascript

C++ Yes Yes Yes Yes Yes

Verdict:

TensorFlow	is	the	best	library	of	all	because	it	is	built	to	be	accessible	for
everyone.	Tensorflow	library	incorporates	different	API	to	built	at	scale	deep
learning	architecture	like	CNN	or	RNN.	TensorFlow	is	based	on	graph
computation,	it	allows	the	developer	to	visualize	the	construction	of	the	neural
network	with	Tensorboad.	This	tool	is	helpful	to	debug	the	program.	Finally,
Tensorflow	is	built	to	be	deployed	at	scale.	It	runs	on	CPU	and	GPU.

Tensorflow	attracts	the	largest	popularity	on	GitHub	compare	to	the	other	deep

learning	framework.

Comparing	Machine	Learning	as	a	Service

Following	are	4	popular	DL	as	a	service	providers

Google	Cloud	ML

Google	provides	for	developer	pre-trained	model	available	in	Cloud	AutoML.
This	solution	exists	for	a	developer	without	a	strong	background	in	machine
learning.	Developers	can	use	state-of-the-art	Google's	pre-trained	model	on	their
data.	It	allows	any	developers	to	train	and	evaluate	any	model	in	just	a	few
minutes.

Google	currently	provides	a	REST	API	for	computer	vision,	speech	recognition,
translation,	and	NLP.

Using	Google	Cloud,	you	can	train	a	machine	learning	framework	build	on

TensorFlow,	Scikit-learn,	XGBoost	or	Keras.	Google	Cloud	machine	learning
will	train	the	models	across	its	cloud.

The	advantage	to	use	Google	cloud	computing	is	the	simplicity	to	deploy
machine	learning	into	production.	There	is	no	need	to	set	up	Docker	container.
Besides,	the	cloud	takes	care	of	the	infrastructure.	It	knows	how	to	allocate
resources	with	CPUs,	GPUs,	and	TPUs.	It	makes	the	training	faster	with
paralleled	computation.

AWS	SageMaker

A	major	competitor	to	Google	Cloud	is	Amazon	cloud,	AWS.	Amazon	has
developed	Amazon	SageMaker	to	allow	data	scientists	and	developers	to	build,
train	and	bring	into	production	any	machine	learning	models.

SageMaker	is	available	in	a	Jupyter	Notebook	and	includes	the	most	used
machine	learning	library,	TensorFlow,	MXNet,	Scikit-learn	amongst	others.
Programs	written	with	SageMaker	are	automatically	run	in	the	Docker
containers.	Amazon	handles	the	resource	allocation	to	optimize	the	training	and
deployment.

Amazon	provides	API	to	the	developers	in	order	to	add	intelligence	to	their
applications.	In	some	occasion,	there	is	no	need	to	reinventing-the-wheel	by
building	from	scratch	new	models	while	there	are	powerful	pre-trained	models
in	the	cloud.	Amazon	provides	API	services	for	computer	vision,	conversational

chatbots	and	language	services:

The	three	major	available	API	are:

Amazon	Rekognition:	provides	image	and	video	recognition	to	an	app
Amazon	Comprehend:	Perform	text	mining	and	neural	language	processing
to,	for	instance,	automatize	the	process	of	checking	the	legality	of	financial
document
Amazon	Lex:	Add	chatbot	to	an	app

Azure	Machine	Learning	Studio

Probably	one	of	the	friendliest	approaches	to	machine	learning	is	Azure	Machine
Learning	Studio.	The	significant	advantage	of	this	solution	is	that	no	prior
programming	knowledge	is	required.

Microsoft	Azure	Machine	Learning	Studio	is	a	drag-and-drop	collaborative	tool
to	create,	train,	evaluate	and	deploy	machine	learning	solution.	The	model	can
be	efficiently	deployed	as	web	services	and	used	in	several	apps	like	Excel.

Azure	Machine	learning	interface	is	interactive,	allowing	the	user	to	build	a
model	just	by	dragging	and	dropping	elements	quickly.

When	the	model	is	ready,	the	developer	can	save	it	and	push	it	to	Azure	Gallery
or	Azure	Marketplace.

Azure	Machine	learning	can	be	integrated	into	R	or	Python	their	custom	built-in
package.

IBM	Watson	ML

Watson	studio	can	simplify	the	data	projects	with	a	streamlined	process	that
allows	extracting	value	and	insights	from	the	data	to	help	the	business	to	get
smarter	and	faster.	Watson	studio	delivers	an	easy-to-use	collaborative	data
science	and	machine	learning	environment	for	building	and	training	models,
preparing	and	analyzing	data,	and	sharing	insights	all	in	one	place.	Watson
Studio	is	easy	to	use	with	a	drag-and-drop	code.

Watson	studio	supports	some	of	the	most	popular	frameworks	like	Tensorflow,
Keras,	Pytorch,	Caffe	and	can	deploy	a	deep	learning	algorithm	on	to	the	latest
GPUs	from	Nvidia	to	help	accelerate	modeling.

Verdict:

In	our	point	of	view,	Google	cloud	solution	is	the	one	that	is	the	most
recommended.	Google	cloud	solution	provides	lower	prices	the	AWS	by	at	least
30%	for	data	storage	and	machine	learning	solution.	Google	is	doing	an
excellent	job	to	democratize	AI.	It	has	developed	an	open	source	language,
TensorFlow,	optimized	data	warehouse	connection,	provides	tremendous	tools
from	data	visualization,	data	analysis	to	machine	learning.	Besides,	Google
Console	is	ergonomic	and	much	more	comprehensive	than	AWS	or	Windows.

Chapter	5:	How	to	Download	and
Install	TensorFlow	Windows	and	Mac
In	this	tutorial,	we	will	explain	how	to	install	TensorFlow	with	Anaconda.	You
will	learn	how	to	use	TensorFlow	with	Jupyter.	Jupyter	is	a	notebook	viewer.

TensorFlow	Versions

TensorFlow	supports	computations	across	multiple	CPUs	and	GPUs.	It	means
that	the	computations	can	be	distributed	across	devices	to	improve	the	speed	of
the	training.	With	parallelization,	you	don't	need	to	wait	for	weeks	to	obtain	the
results	of	training	algorithms.

For	Windows	user,	TensorFlow	provides	two	versions:

TensorFlow	with	CPU	support	only:	If	your	Machine	does	not	run	on
NVIDIA	GPU,	you	can	only	install	this	version
TensorFlow	with	GPU	support:	For	faster	computation,	you	can	use	this
version	of	TensorFlow.	This	version	makes	sense	only	if	you	need	strong
computational	capacity.

During	this	tutorial,	the	basic	version	of	TensorFlow	is	sufficient.

Note:	TensorFlow	does	not	provides	GPU	support	on	MacOS.

Here	is	how	to	proceed

MacOS	User:

Install	Anaconda
Create	a	.yml	file	to	install	Tensorflow	and	dependencies
Launch	Jupyter	Notebook

For	Windows

Install	Anaconda
Create	a	.yml	file	to	install	dependencies
Use	pip	to	add	TensorFlow
Launch	Jupyter	Notebook

To	run	Tensorflow	with	Jupyter,	you	need	to	create	an	environment	within
Anaconda.	It	means	you	will	install	Ipython,	Jupyter,	and	TensorFlow	in	an
appropriate	folder	inside	our	machine.	On	top	of	this,	you	will	add	one	essential
library	for	data	science:	"Pandas".	The	Pandas	library	helps	to	manipulate	a	data
frame.

Install	Anaconda

Download	Anaconda	version	4.3.1	(for	Python	3.6)	for	the	appropriate	system.

Anaconda	will	help	you	to	manage	all	the	libraries	required	either	for	Python	or
R.	Refer	this	tutorial	to	install	Anaconda

Create	.yml	file	to	install	Tensorflow	and
dependencies

It	includes

Locate	the	path	of	Anaconda
Set	the	working	directory	to	Anaconda
Create	the	yml	file	(For	MacOS	user,	TensorFlow	is	installed	here)
Edit	the	yml	file
Compile	the	yml	file
Activate	Anaconda
Install	TensorFlow	(Windows	user	only)

Step	1)	Locate	Anaconda

The	first	step	you	need	to	do	is	to	locate	the	path	of	Anaconda.	You	will	create	a
new	conda	environment	that	includes	the	necessaries	libraries	you	will	use
during	the	tutorials	about	TensorFlow.

Windows

If	you	are	a	Windows	user,	you	can	use	Anaconda	Prompt	and	type:

C:\>where	anaconda

We	are	interested	to	know	the	name	of	the	folder	where	Anaconda	is	installed
because	we	want	to	create	our	new	environment	inside	this	path.	For	instance,	in

the	picture	above,	Anaconda	is	installed	in	the	Admin	folder.	For	you,	it	can	the
same,	i.e.	Admin	or	the	user's	name.

In	the	next,	we	will	set	the	working	directory	from	c:\	to	Anaconda3.

MacOS

for	MacOS	user,	you	can	use	the	Terminal	and	type:

which	anaconda

You	will	need	to	create	a	new	folder	inside	Anaconda	which	will	contains
Ipython,	Jupyter	and	TensorFlow.	A	quick	way	to	install	libraries	and	software
is	to	write	a	yml	file.

Step	2)	Set	working	directory

You	need	to	specify	the	working	directory	where	you	want	to	create	the	yml	file.
As	said	before,	it	will	be	located	inside	Anaconda.

For	MacOS	user:

The	Terminal	sets	the	default	working	directory	to	Users/USERNAME.	As	you
can	see	in	the	figure	below,	the	path	of	anaconda3	and	the	working	directory	are
identical.	In	MacOS,	the	latest	folder	is	shown	before	the	$.	The	Terminal	will
install	all	the	libraries	in	this	working	directory.

If	the	path	on	the	text	editor	does	not	match	the	working	directory,	you	can
change	it	by	writing	cd	PATH	in	the	Terminal.	PATH	is	the	path	you	pasted	in
the	text	editor.	Don't	forget	to	wrap	the	PATH	with	'PATH'.	This	action	will
change	the	working	directory	to	PATH.

Open	your	Terminal,	and	type:

cd	anaconda3

For	Windows	user	(make	sure	of	the	folder	before	Anaconda3):

cd	C:\Users\Admin\Anaconda3

or	the	path	"where	anaconda"	command	gives	you

Step	3)	Create	the	yml	file

You	can	create	the	yml	file	inside	the	new	working	directory.	The	file	will	install
the	dependencies	you	need	to	run	TensorFlow.	Copy	and	paste	this	code	into	the
Terminal.

For	MacOS	user:

touch	hello-tf.yml

A	new	file	named	hello-tf.yml	should	appear	inside	anaconda3

For	Windows	user:

echo.>hello-tf.yml

A	new	file	named	hello-tf.yml	should	appear

Step	4)	Edit	the	yml	file

For	MacOS	user:

You	are	ready	to	edit	the	yml	file.	You	can	paste	the	following	code	in	the
Terminal	to	edit	the	file.	MacOS	user	can	use	vim	to	edit	the	yml	file.

vi	hello-tf.yml

So	far,	your	Terminal	looks	like	this

You	enter	an	edit	mode.	Inside	this	mode,	you	can,	after	pressing	esc:

Press	i	to	edit
Press	w	to	save
Press	q!	to	quit

Write	the	following	code	in	the	edit	mode	and	press	esc	followed	by	:w

Note:	The	file	is	case	and	intend	sensitive.	2	spaces	are	required	after	each
intend.

For	MacOS

name:	hello-tfdependencies:		

		-	python=3.6		

		-	jupyter		

		-	ipython		

		-	pandas		

		-	pip:						

		-	https://storage.googleapis.com/tensorflow/MacOS/cpu/tensorflow-

1.5.0-py3-none-any.whl

Code	Explanation

name:	hello-tf:	Name	of	the	yml	file
dependencies:
python=3.6
jupyter
ipython
pandas:	Install	Python	version	3.6,	Jupyter,	Ipython,and	pandas	libraries
pip:	Install	a	Python	library

https://storage.googleapis.com/tensorflow/MacOS/cpu/tensorflow-
1.5.0-py3-none-any.whl:	Install	TensorFlow	from	Google	apis.

Press	esc	followed	by	:q!	to	quite	the	edit	mode.

For	Windows	User:

Windows	does	not	have	vim	program,	so	the	Notepad	is	enough	to	complete	this
step.

notepad	hello-tf.yml

Enter	following	into	the	file

name:	hello-tfdependencies:		

-	python=3.6		

-	jupyter		

-	ipython		

-	pandas

Code	Explanation

name:	hello-tf:	Name	of	the	yml	file
dependencies:

python=3.6
jupyter
ipython
pandas:	Install	Python	version	3.6,	Jupyter,	Ipython,and	pandas	libraries

It	will	open	the	notepad,	you	can	edit	the	file	from	here.

Note:	Windows	users	will	install	TensorFlow	in	the	next	step.	In	this	step,	you
only	prepare	the	conda	environment

Step	5)	Compile	the	yml	file

You	can	compile	the	.yml	file	with	the	following	code	:

conda	env	create	-f	hello-tf.yml

Note:	For	Windows	users,	the	new	environment	is	created	inside	the	current	user
directory.

It	takes	times.	It	will	take	around	1.1gb	of	space	in	your	hard	disk.

In	Windows

Step	6)	Activate	conda	environment

We	are	almost	done.	You	have	now	2	conda	environments.	You	created	an
isolated	conda	environment	with	the	libraries	you	will	use	during	the	tutorials.
This	is	a	recommended	practice	because	each	machine	learning	project	requires
different	libraries.	When	the	project	is	over,	you	can	remove	or	not	this
environment.

conda	env	list

The	asterix	indicates	the	default	one.	You	need	to	switch	to	hello-tf	to	activate
the	environment

For	MacOS	user:

source	activate	hello-tf

For	Windows	user:

activate	hello-tf

You	can	check	all	dependencies	are	in	the	same	environment.	This	is	important
because	it	allows	Python	to	use	Jupyter	and	TensorFlow	from	the	same
environment.	If	you	don't	see	the	three	of	them	located	in	the	same	folder,	you
need	to	start	all	over	again.

For	MacOS	user:

which	python

which	jupyter

which	ipython

Optional:	You	can	check	for	update.

pip	install	--upgrade	tensorflow

Step	7)	For	Windows	user	only:	Install	TensorFlow

For	windows	user:

where	python

where	jupyter

where	ipython

As	you	can	see,	you	now	have	two	Python	environments.	The	main	one	and	the
newly	created	on	i.e.	hello-tf.	The	main	conda	environment	does	not	have
tensorFlow	installed	only	hello-tf.	From	the	picture,	python,	jupyter	and	ipython

are	installed	in	the	same	environment.	It	means,	you	can	use	TensorFlow	with	a
Jupyter	Notebook.

You	need	to	install	Tensorflow	with	the	following	command.	Only	for	Windows
user

pip	install	tensorflow

Launch	Jupyter	Notebook

This	part	is	the	same	for	both	OS.

You	can	open	TensorFlow	with	Jupyter.

Note:	Each	time	you	want	to	open	TensorFlow,	you	need	to	initialize	the
environment

You	will	proceed	as	follow:

Activate	hello-tf	conda	environment
Open	Jupyter
Import	tensorflow
Delete	Notebook
Close	Jupyter

Step	1)	Activate	conda

For	MacOS	user:

source	activate	hello-tf

For	Windows	user:

conda	activate	hello-tf

Step	2)	Open	Jupyter

After	that,	you	can	open	Jupyter	from	the	Terminal

jupyter	notebook

Your	browser	should	open	automatically,	otherwise	copy	and	paste	the	url
provided	by	the	Terminal.	It	starts	by	http://localhost:8888

Inside	the	Jupyter	Notebook,	you	can	see	all	the	files	inside	the	working
directory.	To	create	a	new	Notebook,	you	simply	click	on	new	and	Python	3

Note:	The	new	notebook	is	automatically	saved	inside	the	working	directory.

Step	3)	Import	Tensorflow

Inside	the	notebook,	you	can	import	TensorFlow	with	the	tf	alias.	Click	to	run.	A
new	cell	is	created	below.

import	tensorflow	as	tf

Let's	write	your	first	code	with	TensorFlow.

hello	=	tf.constant('Hello,	Guru99!')

hello

A	new	tensor	is	created.	Congratulation.	You	successfully	install	TensorFlow
with	Jupyter	on	your	Machine.

Step	4)	Delete	file

You	can	delete	the	file	named	Untitled.ipynb	inside	Jupyer.

Step	5)	Close	Jupyter

There	are	two	ways	of	closing	Jupyter.	The	first	way	is	directly	from	the
notebook.	The	second	way	is	by	using	the	terminal	(or	Anaconda	Prompt)

From	Jupyter

In	the	main	panel	of	Jupyter	Notebook,	simply	click	on	Logout

You	are	redirected	to	the	log	out	page.

From	the	terminal

Select	the	terminal	or	Anaconda	prompt	and	run	twice	ctr+c.

The	first	time	you	do	ctr+c,	you	are	asked	to	confirm	you	want	to	shut	down	the
notebook.	Repeat	ctr+c	to	confirm

You	have	successfully	logged	out.

Jupyter	with	the	main	conda	environment

If	you	want	to	launch	TensorFlow	with	jupyter	for	future	use,	you	need	to	open	a
new	session	with

source	activate	hello-tf

If	you	don't,	Jupyter	will	not	find	TensorFlow

Chapter	6:	Jupyter	Notebook
Tutorial

What	is	Jupyter	Notebook?

A	Jupyter	notebook	is	a	web	application	that	allows	the	user	to	write	codes	and
rich	text	elements.	Inside	the	Notebooks,	you	can	write	paragraph,	equations,
title,	add	links,	figures	and	so	on.	A	notebook	is	useful	to	share	interactive
algorithms	with	your	audience	by	focusing	on	teaching	or	demonstrating	a
technique.	Jupyter	Notebook	is	also	a	convenient	way	to	run	data	analysis.

Jupyter	Notebook	App

The	Jupyter	Notebook	App	is	the	interface	where	you	can	write	your	scripts	and
codes	through	your	web	browser.	The	app	can	be	used	locally,	meaning	you
don't	need	internet	access,	or	a	remote	server.

Each	computation	is	done	via	a	kernel.	A	new	kernel	is	created	each	time	you
launch	a	Jupyter	Notebook.

How	to	use	Jupyter

In	the	session	below,	you	will	learn	how	to	use	Jupyter	Notebook.	You	will	write
a	simple	line	of	code	to	get	familiar	with	the	environment	of	Jupyter.

Step	1)	You	add	a	folder	inside	the	working	directory	that	will	contains	all	the
notebooks	you	will	create	during	the	tutorials	about	TensorFlow.

Open	the	Terminal	and	write

mkdir	jupyter_tf

jupyter	notebook

Code	Explanation

mkdir	jupyter_tf:	Create	a	folder	names	jupyter_tf
jupyter	notebook:	Open	Jupyter	web-app

Step	2)	You	can	see	the	new	folder	inside	the	environment.	Click	on	the	folder
jupyter_tf.

Step	3)	Inside	this	folder,	you	will	create	your	first	notebook.	Click	on	the	button
New	and	Python	3.

Step	4)	You	are	inside	the	Jupyter	environment.	So	far,	your	notebook	is	called
Untiltled.ipynb.	This	is	the	default	name	given	by	Jupyter.	Let's	rename	it	by
clicking	on	File	and	Rename

You	can	rename	it	Introduction_jupyter

In	Jupyter	Notebook,	you	write	codes,	annotation	or	text	inside	the	cells.

Inside	a	cell,	you	can	write	a	single	line	of	code.

or	multiple	lines.	Jupyter	reads	the	code	one	line	after	another.

For	instance,	if	you	write	following	code	inside	a	cell.

It	will	produce	this	output.

Step	5)	You	are	ready	to	write	your	first	line	of	code.	You	can	notice	the	cell
have	two	colors.	The	green	color	mean	you	are	in	the	editing	mode.

The	blue	color,	however,	indicates	you	are	in	executing	mode.

You	first	line	of	code	will	be	to	print	Guru99!.	Inside	the	cell,	you	can	write

print("Guru99!")

There	are	two	ways	to	run	a	code	in	Jupyter:

Click	and	Run
Keyboard	Shortcuts

To	run	the	code,	you	can	click	on	Cell	and	then	Run	Cells	and	Select	Below

You	can	see	the	code	is	printed	below	the	cell	and	a	new	cell	has	appeared	right
after	the	output.

A	faster	way	to	run	a	code	is	to	use	the	Keyboard	Shortcuts.	To	access	the
Keyboard	Shortcuts,	go	to	Help	and	Keyboard	Shortcuts

Below	the	list	of	shortcuts	for	a	MacOS	keyboard.	You	can	edit	the	shortcuts	in
the	editor.

Following	are	shortcuts	for	Windows

Write	this	line

print("Hello	world!")

and	try	to	use	the	Keyboard	Shortcuts	to	run	the	code.	Use	alt+enter.	it	will
execute	the	cell	and	insert	a	new	empty	cell	below,	like	you	did	before.

Step	6)	It	is	time	to	close	the	Notebook.	Go	to	File	and	click	on	Close	and	Halt

Note:	Jupyter	automatically	saves	the	notebook	with	checkpoint.	If	you	have	the
following	message:

It	means	Jupyter	didn't	save	the	file	since	the	last	checkpoint.	You	can	manually
save	the	notebook

You	will	be	redirected	to	the	main	panel.	You	can	see	your	notebook	has	been
saved	a	minute	ago.	You	can	safely	logout.

Summary

Jupyter	notebook	is	a	web	application	where	you	can	run	your	Python	and
R	codes.	It	is	easy	to	share	and	deliver	rich	data	analysis	with	Jupyter.
To	launch	jupyter,	write	in	the	terminal:	jupyter	notebook
You	can	save	you	notebook	whereever	you	want
A	cell	contains	your	Python	code.	The	kernel	will	read	the	code	one	by	one.
You	can	use	the	shortcut	to	run	a	cell.	By	default:	Ctrl+Enter

Chapter	7:	Tensorflow	on	AWS
This	is	a	step	by	step	tutorial,	to	used	Jupyter	Notebook	on	AWS

If	you	do	not	have	an	account	at	AWS,	create	a	free	account	here.

PART	1:	Set	up	a	key	pair

Step	1)	Go	to	Services	and	find	EC2

Step	2)	In	the	panel	and	click	on	Key	Pairs

Step	3)	Click	Create	Key	Pair

1.	 You	can	call	it	Docker	key
2.	 Click	Create

A	file	name	Docker_key.pem	downloads.

Step	4)	Copy	and	paste	it	into	the	folder	key.	We	will	need	it	soon.

For	Mac	OS	user	only

This	step	concerns	only	Mac	OS	user.	For	Windows	or	Linux	users,	please
proceed	to	PART	2

You	need	to	set	a	working	directory	that	will	contain	the	file	key

First	of	all,	create	a	folder	named	key.	For	us,	it	is	located	inside	the	main	folder
Docker.	Then,	you	set	this	path	as	your	working	directory

mkdir	Docker/key

cd	Docker/key											

PART	2:	Set	up	a	security	group

Step	1)	You	need	to	configure	a	security	group.	You	can	access	it	with	the	panel

Step	2)	Click	on	Create	Security	Group

Step	3)	In	the	next	Screen

1.	 Enter	Security	group	name	"jupyter_docker"	and	Description	Security
Group	for	Docker

2.	 You	need	to	add	4	rules	on	top	of

ssh:	port	range	22,	source	Anywhere
http:	port	range	80,	source	Anywhere
https:	port	range	443,	source	Anywhere
Custom	TCP:	port	range	8888,	source	Anywhere

3.	 Click	Create

Step	4)	The	newly	created	Security	Group	will	be	listed

Part	3:	Launch	instance

You	are	finally	ready	to	create	the	instance

Step	1)	Click	on	Launch	Instance

The	default	server	is	enough	for	your	need.	You	can	choose	Amazon	Linux
AMI.	The	current	instance	is	2018.03.0.

AMI	stands	for	Amazon	Machine	Image.	It	contains	the	information	required	to
successfully	starts	an	instance	that	run	on	a	virtual	server	stored	in	the	cloud.

Note	that	AWS	has	a	server	dedicated	to	deep	learning	such	as:

Deep	Learning	AMI	(Ubuntu)
Deep	Learning	AMI
Deep	Learning	Base	AMI	(Ubuntu)

All	of	them	Comes	with	latest	binaries	of	deep	learning	frameworks	pre-installed
in	separate	virtual	environments:

TensorFlow,
Caffe
PyTorch,
Keras,
Theano
CNTK.

Fully-configured	with	NVidia	CUDA,	cuDNN	and	NCCL	as	well	as	Intel	MKL-
DNN

Step	2)	Choose	t2.micro.	It	is	a	free	tier	server.	AWS	offers	for	free	this	virtual
machine	equipped	with	1	vCPU	and	1	GB	of	memory.	This	server	provides	a
good	tradeoff	between	computation,	memory	and	network	performance.	It	fits
for	small	and	medium	database

Step	3)	Keep	settings	default	in	next	screen	and	click	Next:	Add	Storage

Step	4)	Increase	storage	to	10GB	and	click	Next

Step	5)	Keep	settings	default	and	click	Next:	Configure	Security	Group

Step	6)	Choose	the	security	group	you	created	before,	which	is	jupyter_docker

Step	7)	Review	your	settings	and	Click	the	launch	button

Step	8)	The	last	step	is	to	link	the	key	pair	to	the	instance.

Step	8)	Instance	will	launch

Step	9)	Below	a	summary	of	the	instances	currently	in	use.	Note	the	public	IP

Step	9)	Click	on	Connect

You	will	find	the	connection	detials

Launch	your	instance	(Mac	OS	users)

At	first	make	sure	that	inside	the	terminal,	your	working	directory	points	to	the
folder	with	the	key	pair	file	docker

run	the	code

chmod	400	docker.pem													

Open	the	connection	with	this	code.

There	are	two	codes.	in	some	case,	the	first	code	avoids	Jupyter	to	open	the
notebook.

In	this	case,	use	the	second	one	to	force	the	connection.

#	If	able	to	launch	Jupyter

ssh	-i	"docker.pem"	ec2-user@ec2-18-219-192-34.us-east-

2.compute.amazonaws.com

#	If	not	able	to	launch	Jupyter

ssh	-i	"docker.pem"	ec2-user@ec2-18-219-192-34.us-east-

2.compute.amazonaws.com	-L	8888:127.0.0.1:8888											

The	first	time,	you	are	prompted	to	accept	the	connection

Launch	your	instance	(Windows	users)

Step	1)	Go	to	this	website	to	download	PuTTY	and	PuTTYgen	PuTTY

You	need	to	download

PuTTY:	launch	the	instance
PuTTYgen:	convert	the	pem	file	to	ppk

Now	that	both	software	are	installed,	you	need	to	convert	the	.pem	file	to	.ppk.
PuTTY	can	only	read	.ppk.	The	pem	file	contains	the	unique	key	created	by
AWS.

Step	2)	Open	PuTTYgen	and	click	on	Load.	Browse	the	folder	where	the	.pem
file	is	located.

Step	3)After	you	loaded	the	file,	you	should	get	a	notice	informing	you	that	the
key	has	been	successfully	imported.	Click	on	OK

Step	4)	Then	click	on	Save	private	key.	You	are	asked	if	you	want	to	save	this
key	without	a	passphrase.	Click	on	yes.

Step	5)	Save	the	Key

Step	6)	Go	to	AWS	and	copy	the	public	DNS

Open	PuTTY	and	paste	the	Public	DNS	in	the	Host	Name

Step	7)

1.	 On	the	left	panel,	unfold	SSH	and	open	Auth
2.	 Browse	the	Private	Key.	You	should	select	the	.ppk
3.	 Click	on	Open.

Step	8)

When	this	step	is	done,	a	new	window	will	be	opened.	Click	Yes	if	you	see	this
pop-up

Step	9)

You	need	to	login	as:	ec2-user

Step	10)

You	are	connected	to	the	Amazon	Linux	AMI.

Part	4:	Install	Docker

While	you	are	connected	with	the	server	via	Putty/Terminal,	you	can	install
Docker	container.

Execute	the	following	codes

sudo	yum	update	-y

sudo	yum	install	-y	docker

sudo	service	docker	start

sudo	user-mod	-a	-G	docker	ec2-user

exit												

Launch	again	the	connection

ssh	-i	"docker.pem"	ec2-user@ec2-18-219-192-34.us-east-

2.compute.amazonaws.com	-L	8888:127.0.0.1:8888

Windows	users	use	SSH	as	mentioned	above

Part	5:	Install	Jupyter

Step	1)	Create	Jupyter	with	a	pre-built	image

##	Tensorflow

docker	run	-v	~/work:/home/jovyan/work	-d	-p	8888:8888	

jupyter/tensorflow-notebook	

##	Sparkdocker

run	-v	~/work:/home/jovyan/work	-d	-p	8888:8888	jupyter/pyspark-

notebook																

Code	Explanation

docker	run:	Run	the	image
v:	attach	a	volume
~/work:/home/jovyan/work:	Volume
8888:8888:	port
jupyter/datascience-notebook:	Image

For	other	pre-build	images,	go	here

Allow	preserving	Jupyter	notebook

sudo	chown	1000	~/work											

Step	2)	Install	tree	to	see	our	working	directory	next

sudo	yum	install	-y	tree									

Step	3)

1.	 Check	the	container	and	its	name	(changes	with	every	installation)	Use
command

docker	ps

2.	 Get	the	name	and	use	the	log	to	open	Jupyter.	In	the	tutorial,	the	container's
name	is	vigilant_easley.	Use	command

docker	logs	vigilant_easley

3.	 Get	the	URL

Step	4)

In	the	URL

http://(90a3c09282d6	or	127.0.0.1):8888/?
token=f460f1e79ab74c382b19f90fe3fd55f9f99c5222365eceed

Replace	(90a3c09282d6	or	127.0.0.1)	with	Public	DNS	of	your	instance

Step	5)

The	new	URL	becomes

http://ec2-174-129-135-16.compute-1.amazonaws.com:8888/?
token=f460f1e79ab74c382b19f90fe3fd55f9f99c5222365eceed

Step	6)	Copy	and	paste	the	URL	into	your	browser.	Jupyter	Opens

Step	7)

You	can	write	a	new	Notebook	in	the	work	folder

Part	6:	Close	connection

Close	the	connection	in	the	terminal

exit													

Go	back	to	AWS	and	stop	the	server.

Troubleshooting

If	ever	docker	doesnot	work,	try	to	rebuilt	image	using

docker	run	-v	~/work:/home/jovyan/work	-d	-p	8888:8888	

jupyter/tensorflow-notebook

Chapter	8:	TensorFlow	Basics:
Tensor,	Shape,	Type,	Graph,	Sessions

&	Operators

What	is	a	Tensor?

Tensorflow's	name	is	directly	derived	from	its	core	framework:	Tensor.	In
Tensorflow,	all	the	computations	involve	tensors.	A	tensor	is	a	vector	or	matrix
of	n-dimensions	that	represents	all	types	of	data.	All	values	in	a	tensor	hold
identical	data	type	with	a	known	(or	partially	known)	shape.	The	shape	of	the
data	is	the	dimensionality	of	the	matrix	or	array.

A	tensor	can	be	originated	from	the	input	data	or	the	result	of	a	computation.	In
TensorFlow,	all	the	operations	are	conducted	inside	a	graph.	The	graph	is	a	set
of	computation	that	takes	place	successively.	Each	operation	is	called	an	op
node	and	are	connected	to	each	other.

The	graph	outlines	the	ops	and	connections	between	the	nodes.	However,	it	does
not	display	the	values.	The	edge	of	the	nodes	is	the	tensor,	i.e.,	a	way	to	populate
the	operation	with	data.

In	Machine	Learning,	models	are	feed	with	a	list	of	objects	called	feature
vectors.	A	feature	vector	can	be	of	any	data	type.	The	feature	vector	will	usually
be	the	primary	input	to	populate	a	tensor.	These	values	will	flow	into	an	op	node
through	the	tensor	and	the	result	of	this	operation/computation	will	create	a	new
tensor	which	in	turn	will	be	used	in	a	new	operation.	All	these	operations	can	be
viewed	in	the	graph.

Representation	of	a	Tensor

In	TensorFlow,	a	tensor	is	a	collection	of	feature	vectors	(i.e.,	array)	of	n-
dimensions.	For	instance,	if	we	have	a	2x3	matrix	with	values	from	1	to	6,	we
write:

TensorFlow	represents	this	matrix	as:

[[1,	2,	3],	

			[4,	5,	6]]																			

If	we	create	a	three-dimensional	matrix	with	values	from	1	to	8,	we	have:

TensorFlow	represents	this	matrix	as:

[[[1,	2],		

							[[3,	4],		

							[[5,	6],		

							[[7,8]]																	

Note:	A	tensor	can	be	represented	with	a	scalar	or	can	have	a	shape	of	more	than
three	dimensions.	It	is	just	more	complicated	to	visualize	higher	dimension	level.

Types	of	Tensor

In	TensorFlow,	all	the	computations	pass	through	one	or	more	tensors.	A	tensor
is	an	object	with	three	properties:

A	unique	label	(name)
A	dimension	(shape)
A	data	type	(dtype)

Each	operation	you	will	do	with	TensorFlow	involves	the	manipulation	of	a
tensor.	There	are	four	main	tensors	you	can	create:

tf.Variable
tf.constant
tf.placeholder
tf.SparseTensor

In	this	tutorial,	you	will	learn	how	to	create	a	tf.constant	and	a	tf.Variable.

Before	we	go	through	the	tutorial,	make	sure	you	activate	the	conda	environment
with	TensorFlow.	We	named	this	environment	hello-tf.

For	MacOS	user:

source	activate	hello-tf																	

For	Windows	user:

activate	hello-tf																								

After	you	have	done	that,	you	are	ready	to	import	tensorflow

#	Import	tf

import	tensorflow	as	tf																	

Create	a	tensor	of	n-dimension

You	begin	with	the	creation	of	a	tensor	with	one	dimension,	namely	a	scalar.

To	create	a	tensor,	you	can	use	tf.constant()

tf.constant(value,	dtype,	name	=	"")

arguments

-	`value`:	Value	of	n	dimension	to	define	the	tensor.	Optional

-	`dtype`:	Define	the	type	of	data:				

				-	`tf.string`:	String	variable				

				-	`tf.float32`:	Flot	variable				

				-	`tf.int16`:	Integer	variable

-	"name":	Name	of	the	tensor.	Optional.	By	default,	`Const_1:0`																										

To	create	a	tensor	of	dimension	0,	run	the	following	code

##	rank	0

#	Default	name

r1	=	tf.constant(1,	tf.int16)	

print(r1)																							

Output

Tensor("Const:0",	shape=(),	dtype=int16)																	

#	Named	my_scalar

r2	=	tf.constant(1,	tf.int16,	name	=	"my_scalar")	

print(r2)																							

Output

Tensor("my_scalar:0",	shape=(),	dtype=int16)																					

Each	tensor	is	displayed	by	the	tensor	name.	Each	tensor	object	is	defined	with	a
unique	label	(name),	a	dimension	(shape)	and	a	data	type	(dtype).

You	can	define	a	tensor	with	decimal	values	or	with	a	string	by	changing	the
type	of	data.

#	Decimal

r1_decimal	=	tf.constant(1.12345,	tf.float32)

print(r1_decimal)

#	String

r1_string	=	tf.constant("Guru99",	tf.string)

print(r1_string)																								

Output

Tensor("Const_1:0",	shape=(),	dtype=float32)

Tensor("Const_2:0",	shape=(),	dtype=string)																					

A	tensor	of	dimension	1	can	be	created	as	follow:

##	Rank	1r1_vector	=	tf.constant([1,3,5],	tf.int16)

print(r1_vector)

r2_boolean	=	tf.constant([True,	True,	False],	tf.bool)

print(r2_boolean)																							

Output

Tensor("Const_3:0",	shape=(3,),	dtype=int16)

Tensor("Const_4:0",	shape=(3,),	dtype=bool)																					

You	can	notice	the	shape	is	only	composed	of	1	column.

To	create	an	array	of	2	dimensions,	you	need	to	close	the	brackets	after	each	row.
Check	the	examples	below

##	Rank	2

r2_matrix	=	tf.constant([[1,	2],

																										[3,	4]],tf.int16)

print(r2_matrix)																								

Output

Tensor("Const_5:0",	shape=(2,	2),	dtype=int16)																			

The	matrix	has	2	rows	and	2	columns	filled	with	values	1,	2,	3,	4.

A	matrix	with	3	dimensions	is	constructed	by	adding	another	level	with	the
brackets.

##	Rank	3

r3_matrix	=	tf.constant([[[1,	2],

																											[3,	4],	

																											[5,	6]]],	tf.int16)

print(r3_matrix)																								

Output

Tensor("Const_6:0",	shape=(1,	3,	2),	dtype=int16)																									

The	matrix	looks	like	the	picture	two.

Shape	of	tensor

When	you	print	the	tensor,	TensorFlow	guesses	the	shape.	However,	you	can	get
the	shape	of	the	tensor	with	the	shape	property.

Below,	you	construct	a	matrix	filled	with	a	number	from	10	to	15	and	you	check
the	shape	of	m_shape

#	Shape	of	tensor

m_shape	=	tf.constant([[10,	11],

																								[12,	13],

																								[14,	15]]																						

)	

m_shape.shape																			

Output

TensorShape([Dimension(3),	Dimension(2)])																								

The	matrix	has	3	rows	and	2	columns.

TensorFlow	has	useful	commands	to	create	a	vector	or	a	matrix	filled	with	0	or
1.	For	instance,	if	you	want	to	create	a	1-D	tensor	with	a	specific	shape	of	10,
filled	with	0,	you	can	run	the	code	below:

#	Create	a	vector	of	0

print(tf.zeros(10))																					

Output

Tensor("zeros:0",	shape=(10,),	dtype=float32)																				

The	property	works	for	matrix	as	well.	Here,	you	create	a	10x10	matrix	filled
with	1

#	Create	a	vector	of	1

print(tf.ones([10,	10]))																								

Output

Tensor("ones:0",	shape=(10,	10),	dtype=float32)																		

You	can	use	the	shape	of	a	given	matrix	to	make	a	vector	of	ones.	The	matrix
m_shape	is	a	3x2	dimensions.	You	can	create	a	tensor	with	3	rows	filled	by	one's
with	the	following	code:

#	Create	a	vector	of	ones	with	the	same	number	of	rows	as	m_shape

print(tf.ones(m_shape.shape[0]))																								

Output

Tensor("ones_1:0",	shape=(3,),	dtype=float32)																				

If	you	pass	the	value	1	into	the	bracket,	you	can	construct	a	vector	of	ones	equals
to	the	number	of	columns	in	the	matrix	m_shape.

#	Create	a	vector	of	ones	with	the	same	number	of	column	as	m_shape

print(tf.ones(m_shape.shape[1]))																								

Output

Tensor("ones_2:0",	shape=(2,),	dtype=float32)																				

Finally,	you	can	create	a	matrix	3x2	with	only	one's

print(tf.ones(m_shape.shape))																				

Output

Tensor("ones_3:0",	shape=(3,	2),	dtype=float32)																		

Type	of	data

The	second	property	of	a	tensor	is	the	type	of	data.	A	tensor	can	only	have	one
type	of	data	at	a	time.	A	tensor	can	only	have	one	type	of	data.	You	can	return
the	type	with	the	property	dtype.

print(m_shape.dtype)																					

Output

<dtype:	'int32'>																			

In	some	occasions,	you	want	to	change	the	type	of	data.	In	TensorFlow,	it	is
possible	with	tf.cast	method.

Example

Below,	a	float	tensor	is	converted	to	integer	using	you	use	the	method	cast.

#	Change	type	of	data

type_float	=	tf.constant(3.123456789,	tf.float32)

type_int	=	tf.cast(type_float,	dtype=tf.int32)

print(type_float.dtype)

print(type_int.dtype)																			

Output

<dtype:	'float32'>

<dtype:	'int32'>																		

TensorFlow	chooses	the	type	of	data	automatically	when	the	argument	is	not
specified	during	the	creation	of	the	tensor.	TensorFlow	will	guess	what	is	the
most	likely	types	of	data.	For	instance,	if	you	pass	a	text,	it	will	guess	it	is	a
string	and	convert	it	to	string.

Creating	operator

Some	Useful	TensorFlow	operators

You	know	how	to	create	a	tensor	with	TensorFlow.	It	is	time	to	learn	how	to
perform	mathematical	operations.

TensorFlow	contains	all	the	basic	operations.	You	can	begin	with	a	simple	one.
You	will	use	TensorFlow	method	to	compute	the	square	of	a	number.	This
operation	is	straightforward	because	only	one	argument	is	required	to	construct
the	tensor.

The	square	of	a	number	is	constructed	with	tf.sqrt(x)	with	x	as	a	floating	number.

x	=	tf.constant([2.0],	dtype	=	tf.float32)

print(tf.sqrt(x))																							

Output

Tensor("Sqrt:0",	shape=(1,),	dtype=float32)																						

Note:	The	output	returned	a	tensor	object	and	not	the	result	of	the	square	of	2.	In
the	example,	you	print	the	definition	of	the	tensor	and	not	the	actual	evaluation
of	the	operation.	In	the	next	section,	you	will	learn	how	TensorFlow	works	to
execute	the	operations.

Following	is	a	list	of	commonly	used	operations.	The	idea	is	the	same.	Each
operation	requires	one	or	more	arguments.

tf.add(a,	b)
tf.substract(a,	b)
tf.multiply(a,	b)
tf.div(a,	b)

tf.pow(a,	b)
tf.exp(a)
tf.sqrt(a)

Example

#	Add

tensor_a	=	tf.constant([[1,2]],	dtype	=	tf.int32)

tensor_b	=	tf.constant([[3,	4]],	dtype	=	tf.int32)

tensor_add	=	tf.add(tensor_a,	tensor_b)print(tensor_add)																									

Output

Tensor("Add:0",	shape=(1,	2),	dtype=int32)																							

Code	Explanation

Create	two	tensors:

one	tensor	with	1	and	2
one	tensor	with	3	and	4

You	add	up	both	tensors.

Notice:	that	both	tensors	need	to	have	the	same	shape.	You	can	execute	a
multiplication	over	the	two	tensors.

#	Multiply

tensor_multiply	=	tf.multiply(tensor_a,	tensor_b)

print(tensor_multiply)																		

Output

Tensor("Mul:0",	shape=(1,	2),	dtype=int32)																							

Variables

So	far,	you	have	only	created	constant	tensors.	It	is	not	of	great	use.	Data	always
arrive	with	different	values,	to	capture	this,	you	can	use	the	Variable	class.	It	will
represent	a	node	where	the	values	always	change.

To	create	a	variable,	you	can	use	tf.get_variable()	method

tf.get_variable(name	=	"",	values,	dtype,	initializer)

argument

-	`name	=	""`:	Name	of	the	variable

-	`values`:	Dimension	of	the	tensor

-	`dtype`:	Type	of	data.	Optional

-	`initializer`:	How	to	initialize	the	tensor.	Optional

If	initializer	is	specified,	there	is	no	need	to	include	the	

`values`	as	the	shape	of	`initializer`	is	used.																				

For	instance,	the	code	below	creates	a	two-dimensional	variable	with	two
random	values.	By	default,	TensorFlow	returns	a	random	value.	You	name	the
variable	var

#	Create	a	Variable

##	Create	2	Randomized	values

var	=	tf.get_variable("var",	[1,	2])

print(var.shape)																								

Output

(1,	2)																			

In	the	second	example,	you	create	a	variable	with	one	row	and	two	columns.	You
need	to	use	[1,2]	to	create	the	dimension	of	the	variable

The	initials	values	of	this	tensor	are	zero.	For	instance,	when	you	train	a	model,
you	need	to	have	initial	values	to	compute	the	weight	of	the	features.	Below,	you
set	these	initial	value	to	zero.

var_init_1	=	tf.get_variable("var_init_1",	[1,	2],	dtype=tf.int32,		

initializer=tf.zeros_initializer)

print(var_init_1.shape)																	

Output

(1,	2)																			

You	can	pass	the	values	of	a	constant	tensor	in	a	variable.	You	create	a	constant
tensor	with	the	method	tf.constant().	You	use	this	tensor	to	initialize	the	variable.

The	first	values	of	the	variable	are	10,	20,	30	and	40.	The	new	tensor	will	have	a
shape	of	2x2.

#	Create	a	2x2	matrixtensor_const	=	tf.constant([[10,	20],

[30,	40]])

#	Initialize	the	first	value	of	the	tensor	equals	to	tensor_const

var_init_2	=	tf.get_variable("var_init_2",	dtype=tf.int32,		

initializer=tensor_const)

print(var_init_2.shape)																	

Output

(2,	2)																			

Placeholder

A	placeholder	has	the	purpose	of	feeding	the	tensor.	Placeholder	is	used	to
initialize	the	data	to	flow	inside	the	tensors.	To	supply	a	placeholder,	you	need	to
use	the	method	feed_dict.	The	placeholder	will	be	fed	only	within	a	session.

In	the	next	example,	you	will	see	how	to	create	a	placeholder	with	the	method
tf.placeholder.	In	the	next	session,	you	will	learn	to	fed	a	placeholder	with	actual
value.

The	syntax	is:

tf.placeholder(dtype,shape=None,name=None)

arguments:

-	`dtype`:	Type	of	data

-	`shape`:	dimension	of	the	placeholder.	Optional.	By	default,	

shape	of	the	data

-	`name`:	Name	of	the	placeholder.	Optional																					

data_placeholder_a	=	tf.placeholder(tf.float32,	name	=	

"data_placeholder_a")

print(data_placeholder_a)																							

Output

Tensor("data_placeholder_a:0",	dtype=float32)																				

Session

TensorFlow	works	around	3	main	components:

Graph
Tensor
Session

Components Descritption

Graph

The	graph	is	fundamental	in	TensorFlow.	All	of	the
mathematical	operations	(ops)	are	performed	inside
a	graph.	You	can	imagine	a	graph	as	a	project	where
every	operations	are	done.	The	nodes	represent
these	ops,	they	can	absorb	or	create	new	tensors.

Tensor

A	tensor	represents	the	data	that	progress	between
operations.	You	saw	previously	how	to	initialize	a
tensor.	The	difference	between	a	constant	and
variable	is	the	initial	values	of	a	variable	will	change
over	time.

Session

A	session	will	execute	the	operation	from	the	graph.
To	feed	the	graph	with	the	values	of	a	tensor,	you
need	to	open	a	session.	Inside	a	session,	you	must
run	an	operator	to	create	an	output.

Graphs	and	sessions	are	independent.	You	can	run	a	session	and	get	the	values	to
use	later	for	further	computations.

In	the	example	below,	you	will:

Create	two	tensors
Create	an	operation
Open	a	session

Print	the	result

Step	1)	You	create	two	tensors	x	and	y

##	Create,	run		and	evaluate	a	session

x	=	tf.constant([2])

y	=	tf.constant([4])																				

Step	2)	You	create	the	operator	by	multiplying	x	and	y

##	Create	operator

multiply	=	tf.multiply(x,	y)																				

Step	3)	You	open	a	session.	All	the	computations	will	happen	within	the	session.
When	you	are	done,	you	need	to	close	the	session.

##	Create	a	session	to	run	the	code

sess	=	tf.Session()result_1	=	sess.run(multiply)

print(result_1)

sess.close()																				

Output

[8]																						

Code	explanation

tf.Session():	Open	a	session.	All	the	operations	will	flow	within	the	sessions
run(multiply):	execute	the	operation	created	in	step	2.
print(result_1):	Finally,	you	can	print	the	result
close():	Close	the	session

The	result	shows	8,	which	is	the	multiplication	of	x	and	y.

Another	way	to	create	a	session	is	inside	a	block.	The	advantage	is	it
automatically	closes	the	session.

with	tf.Session()	as	sess:				

result_2	=	multiply.eval()

print(result_2)																									

Output

[8]																						

In	a	context	of	the	session,	you	can	use	the	eval()	method	to	execute	the
operation.	It	is	equivalent	to	run().	It	makes	the	code	more	readable.

You	can	create	a	session	and	see	the	values	inside	the	tensors	you	created	so	far.

##	Check	the	tensors	created	before

sess	=	tf.Session()

print(sess.run(r1))

print(sess.run(r2_matrix))

print(sess.run(r3_matrix))																						

Output

1

[[1	2]	

	[3	4]]

[[[1	2]		

		[3	4]		

		[5	6]]]																							

Variables	are	empty	by	default,	even	after	you	create	a	tensor.	You	need	to
initialize	the	variable	if	you	want	to	use	the	variable.	The	object
tf.global_variables_initializer()	needs	to	be	called	to	initialize	the	values	of	a
variable.	This	object	will	explicitly	initialize	all	the	variables.	This	is	helpful
before	you	train	a	model.

You	can	check	the	values	of	the	variables	you	created	before.	Note	that	you	need
to	use	run	to	evaluate	the	tensor

sess.run(tf.global_variables_initializer())

print(sess.run(var))

print(sess.run(var_init_1))

print(sess.run(var_init_2))																					

Output

[[-0.05356491		0.75867283]]

[[0	0]]

[[10	20]	

	[30	40]]																							

You	can	use	the	placeholder	you	created	before	and	feed	it	with	actual	value.
You	need	to	pass	the	data	into	the	method	feed_dict.

For	example,	you	will	take	the	power	of	2	of	the	placeholder
data_placeholder_a.

import	numpy	as	np

power_a	=	tf.pow(data_placeholder_a,	2)

with	tf.Session()	as	sess:		

data	=	np.random.rand(1,	10)		

print(sess.run(power_a,	feed_dict={data_placeholder_a:	data}))		#	

Will	succeed.																	

Code	Explanation

import	numpy	as	np:	Import	numpy	library	to	create	the	data
tf.pow(data_placeholder_a,	2):	Create	the	ops
np.random.rand(1,	10):	Create	a	random	array	of	data
feed_dict={data_placeholder_a:	data}:	Feed	the	placeholder	with	data

Output

[[0.05478134	0.27213147	0.8803037		0.0398424		0.21172127	0.01444725		

0.02584014	0.3763949		0.66022706	0.7565559]]																								

Graph

TensorFlow	depends	on	a	genius	approach	to	render	the	operation.	All	the
computations	are	represented	with	a	dataflow	scheme.	The	dataflow	graph	has
been	developed	to	see	to	data	dependencies	between	individual	operation.
Mathematical	formula	or	algorithm	are	made	of	a	number	of	successive
operations.	A	graph	is	a	convenient	way	to	visualize	how	the	computations	are
coordinated.

The	graph	shows	a	node	and	an	edge.	The	node	is	the	representation	of	a
operation,	i.e.	the	unit	of	computation.	The	edge	is	the	tensor,	it	can	produce	a
new	tensor	or	consume	the	input	data.	It	depends	on	the	dependencies	between
individual	operation.

The	structure	of	the	graph	connects	together	the	operations	(i.e.	the	nodes)	and
how	those	are	operation	are	feed.	Note	that	the	graph	does	not	display	the	output
of	the	operations,	it	only	helps	to	visualize	the	connection	between	individual
operations.

Let's	see	an	example.

Imagine	you	want	to	evaluate	the	following	function:

TensorFlow	will	create	a	graph	to	execute	the	function.	The	graph	looks	like
this:

You	can	easily	see	the	path	that	the	tensors	will	take	to	reach	the	final
destination.

For	instance,	you	can	see	the	operation	add	cannot	be	done	before	and	.	The
graph	explains	that	it	will:

1.	 compute	and	:
2.	 add	1)	together
3.	 add	to	2)
4.	 add	3)	to

x	=	tf.get_variable("x",	dtype=tf.int32,		

initializer=tf.constant([5]))

z	=	tf.get_variable("z",	dtype=tf.int32,		

initializer=tf.constant([6]))

c	=	tf.constant([5],	name	=					"constant")square	=	

tf.constant([2],	name	=					"square")

f	=	tf.multiply(x,	z)	+	tf.pow(x,	square)	+	z	+	c																								

Code	Explanation

x:	Initialize	a	variable	called	x	with	a	constant	value	of	5

z:	Initialize	a	variable	called	z	with	a	constant	value	of	6
c:	Initialize	a	constant	tensor	called	c	with	a	constant	value	of	5
square:	Initialize	a	constant	tensor	called	square	with	a	constant	value	of	2
f:	Construct	the	operator

In	this	example,	we	choose	to	keep	the	values	of	the	variables	fixed.	We	also
created	a	constant	tensor	called	c	which	is	the	constant	parameter	in	the	function
f.	It	takes	a	fixed	value	of	5.	In	the	graph,	you	can	see	this	parameter	in	the
tensor	called	constant.

We	also	constructed	a	constant	tensor	for	the	power	in	the	operator	tf.pow().	It	is
not	necessary.	We	did	it	so	that	you	can	see	the	name	of	the	tensor	in	the	graph.
It	is	the	circle	called	square.

From	the	graph,	you	can	understand	what	will	happen	of	the	tensors	and	how	it
can	return	an	output	of	66.

The	code	below	evaluate	the	function	in	a	session.

init	=	tf.global_variables_initializer()	#	prepare	to	initialize	

all	variables

with	tf.Session()	as	sess:				

								init.run()	#	Initialize	x	and	y				

				function_result	=	f.eval()

print(function_result)																										

Output

[66]																					

Summary

TensorFlow	works	around:

Graph:	Computational	environment	containing	the	operations	and	tensors
Tensors:	Represents	the	data	(or	value)	that	will	flow	in	the	graph.	It	is	the
edge	in	the	graph
Sessions:	Allow	the	execution	of	the	operations

Create	a	constant	tensor

constant object

D0 tf.constant(1,	tf.int16)

D1 tf.constant([1,3,5],	tf.int16)

D2 tf.constant([[1,	2],	[3,	4]],tf.int16)

D3 tf.constant([[[1,	2],[3,	4],	[5,	6]]],	tf.int16)

Create	an	operator

Create	an	operator Object

a+b tf.add(a,	b)

a*b tf.multiply(a,	b)

Create	a	variable	tensor

Create	a	variable object

randomized	value tf.get_variable("var",	[1,	2])

initialized	first	value tf.get_variable("var_init_2",	dtype=tf.int32,
initializer=[[1,	2],	[3,	4]])

Open	a	session

Session object

Create	a	session tf.Session()

Run	a	session tf.Session.run()

Evaluate	a	tensor variable_name.eval()

Close	a	session sess.close()

Session	by	block with	tf.Session()	as	sess:

Chapter	9:	Tensorboard:	Graph
Visualization	with	Example

What	is	TensorBoard

Tensorboard	is	the	interface	used	to	visualize	the	graph	and	other	tools	to
understand,	debug,	and	optimize	the	model.

Example

The	image	below	comes	from	the	graph	you	will	generate	in	this	tutorial.	It	is	the
main	panel:

From	the	picture	below,	you	can	see	the	panel	of	Tensorboard.	The	panel
contains	different	tabs,	which	are	linked	to	the	level	of	information	you	add
when	you	run	the	model.

Scalars:	Show	different	useful	information	during	the	model	training
Graphs:	Show	the	model
Histogram:	Display	weights	with	a	histogram
Distribution:	Display	the	distribution	of	the	weight
Projector:	Show	Principal	component	analysis	and	T-SNE	algorithm.	The
technique	uses	for	dimensionality	reduction

During	this	tutorial,	you	will	train	a	simple	deep	learning	model.	You	will	learn
how	it	works	in	a	future	tutorial.

If	you	look	at	the	graph,	you	can	understand	how	the	model	work.

1.	 Enqueue	the	data	to	the	model:	Push	an	amount	of	data	equal	to	the	batch
size	to	the	model,	i.e.,	Number	of	data	feed	after	each	iteration

2.	 Feed	the	data	to	the	Tensors
3.	 Train	the	model
4.	 Display	the	number	of	batches	during	the	training.	Save	the	model	on	the

disk.

The	basic	idea	behind	tensorboard	is	that	neural	network	can	be	something
known	as	a	black	box	and	we	need	a	tool	to	inspect	what's	inside	this	box.	You
can	imagine	tensorboard	as	a	flashlight	to	start	dive	into	the	neural	network.

It	helps	to	understand	the	dependencies	between	operations,	how	the	weights	are
computed,	displays	the	loss	function	and	much	other	useful	information.	When
you	bring	all	these	pieces	of	information	together,	you	have	a	great	tool	to	debug
and	find	how	to	improve	the	model.

To	give	you	an	idea	of	how	useful	the	graph	can	be,	look	at	the	picture	below:

A	neural	network	decides	how	to	connect	the	different	"neurons"	and	how	many
layers	before	the	model	can	predict	an	outcome.	Once	you	have	defined	the
architecture,	you	not	only	need	to	train	the	model	but	also	a	metrics	to	compute
the	accuracy	of	the	prediction.	This	metric	is	referred	to	as	a	loss	function.	The
objective	is	to	minimize	the	loss	function.	In	different	words,	it	means	the	model
is	making	fewer	errors.	All	machine	learning	algorithms	will	repeat	many	times
the	computations	until	the	loss	reach	a	flatter	line.	To	minimize	this	loss
function,	you	need	to	define	a	learning	rate.	It	is	the	speed	you	want	the	model
to	learn.	If	you	set	a	learning	rate	too	high,	the	model	does	not	have	time	to	learn
anything.	This	is	the	case	in	the	left	picture.	The	line	is	moving	up	and	down,
meaning	the	model	predicts	with	pure	guess	the	outcome.	The	picture	on	the
right	shows	that	the	loss	is	decreasing	over	iteration	until	the	curve	got	flatten,
meaning	the	model	found	a	solution.

TensorBoard	is	a	great	tool	to	visualize	such	metrics	and	highlight	potential
issues.	The	neural	network	can	take	hours	to	weeks	before	they	find	a	solution.
TensorBoard	updates	the	metrics	very	often.	In	this	case,	you	don't	need	to	wait
until	the	end	to	see	if	the	model	trains	correctly.	You	can	open	TensorBoard
check	how	the	training	is	going	and	make	the	appropriate	change	if	necessary.

In	this	tutorial,	you	will	learn	how	to	open	TensorBoard	from	the	terminal	for
MacOS	and	the	Command	line	for	Windows.

The	code	will	be	explained	in	a	future	tutorial,	the	focus	here	is	on	TensorBoard.

First,	you	need	to	import	the	libraries	you	will	use	during	the	training

##	Import	the	library

import	tensorflow	as	tf

import	numpy	as	np

You	create	the	data.	It	is	an	array	of	10000	rows	and	5	columns

X_train	=	(np.random.sample((10000,5)))

y_train	=		(np.random.sample((10000,1)))

X_train.shape

Output

(10000,	5)

The	codes	below	transform	the	data	and	create	the	model.

Note	that	the	learning	rate	is	equal	to	0.1.	If	you	change	this	rate	to	a	higher
value,	the	model	will	not	find	a	solution.	This	is	what	happened	on	the	left	side
of	the	above	picture.

During	most	of	the	TensorFlow	tutorials,	you	will	use	TensorFlow	estimator.
This	is	TensorFlow	API	that	contains	all	the	mathematical	computations.

To	create	the	log	files,	you	need	to	specify	the	path.	This	is	done	with	the
argument	model_dir.

In	the	example	below,	you	store	the	model	inside	the	working	directory,	i.e.,
where	you	store	the	notebook	or	python	file.	Inside	this	path,	TensorFlow	will
create	a	folder	called	train	with	a	child	folder	name	linreg.

feature_columns	=	[

						tf.feature_column.numeric_column('x',	

shape=X_train.shape[1:])]

DNN_reg	=	

tf.estimator.DNNRegressor(feature_columns=feature_columns,

#	Indicate	where	to	store	the	log	file				

					model_dir='train/linreg',				

					hidden_units=[500,	300],				

					optimizer=tf.train.ProximalAdagradOptimizer(

										learning_rate=0.1,						

										l1_regularization_strength=0.001				

)

)

Output

INFO:tensorflow:Using	default	config.

INFO:tensorflow:Using	config:	{'_model_dir':	'train/linreg',	

'_tf_random_seed':	None,	'_save_summary_steps':	100,	

'_save_checkpoints_steps':	None,	'_save_checkpoints_secs':	600,	

'_session_config':	None,	'_keep_checkpoint_max':	5,	

'_keep_checkpoint_every_n_hours':	10000,	'_log_step_count_steps':	

100,	'_train_distribute':	None,	'_service':	None,	'_cluster_spec':	

<tensorflow.python.training.server_lib.ClusterSpec	object	at	

0x1818e63828>,	'_task_type':	'worker',	'_task_id':	0,	

'_global_id_in_cluster':	0,	'_master':	'',	'_evaluation_master':	

'',	'_is_chief':	True,	'_num_ps_replicas':	0,	

'_num_worker_replicas':	1}

The	last	step	consists	to	train	the	model.	During	the	training,	TensorFlow	writes
information	in	the	model	directory.

#	Train	the	estimator

train_input	=	tf.estimator.inputs.numpy_input_fn(

					x={"x":	X_train},				

					y=y_train,	shuffle=False,num_epochs=None)

DNN_reg.train(train_input,steps=3000)	

Output

INFO:tensorflow:Calling	model_fn.

INFO:tensorflow:Done	calling	model_fn.

INFO:tensorflow:Create	CheckpointSaverHook.

INFO:tensorflow:Graph	was	finalized.

INFO:tensorflow:Running	local_init_op.

INFO:tensorflow:Done	running	local_init_op.

INFO:tensorflow:Saving	checkpoints	for	1	into	

train/linreg/model.ckpt.

INFO:tensorflow:loss	=	40.060104,	step	=	1

INFO:tensorflow:global_step/sec:	197.061

INFO:tensorflow:loss	=	10.62989,	step	=	101	(0.508	sec)

INFO:tensorflow:global_step/sec:	172.487

INFO:tensorflow:loss	=	11.255318,	step	=	201	(0.584	sec)

INFO:tensorflow:global_step/sec:	193.295

INFO:tensorflow:loss	=	10.604872,	step	=	301	(0.513	sec)

INFO:tensorflow:global_step/sec:	175.378

INFO:tensorflow:loss	=	10.090343,	step	=	401	(0.572	sec)

INFO:tensorflow:global_step/sec:	209.737

INFO:tensorflow:loss	=	10.057928,	step	=	501	(0.476	sec)

INFO:tensorflow:global_step/sec:	171.646

INFO:tensorflow:loss	=	10.460144,	step	=	601	(0.583	sec)

INFO:tensorflow:global_step/sec:	192.269

INFO:tensorflow:loss	=	10.529617,	step	=	701	(0.519	sec)

INFO:tensorflow:global_step/sec:	198.264

INFO:tensorflow:loss	=	9.100082,	step	=	801	(0.504	sec)

INFO:tensorflow:global_step/sec:	226.842

INFO:tensorflow:loss	=	10.485607,	step	=	901	(0.441	sec)

INFO:tensorflow:global_step/sec:	152.929

INFO:tensorflow:loss	=	10.052481,	step	=	1001	(0.655	sec)

INFO:tensorflow:global_step/sec:	166.745

INFO:tensorflow:loss	=	11.320213,	step	=	1101	(0.600	sec)

INFO:tensorflow:global_step/sec:	161.854

INFO:tensorflow:loss	=	9.603306,	step	=	1201	(0.619	sec)

INFO:tensorflow:global_step/sec:	179.074

INFO:tensorflow:loss	=	11.110269,	step	=	1301	(0.556	sec)

INFO:tensorflow:global_step/sec:	202.776

INFO:tensorflow:loss	=	11.929443,	step	=	1401	(0.494	sec)

INFO:tensorflow:global_step/sec:	144.161

INFO:tensorflow:loss	=	11.951693,	step	=	1501	(0.694	sec)

INFO:tensorflow:global_step/sec:	154.144

INFO:tensorflow:loss	=	8.620987,	step	=	1601	(0.649	sec)

INFO:tensorflow:global_step/sec:	151.094

INFO:tensorflow:loss	=	10.666125,	step	=	1701	(0.663	sec)

INFO:tensorflow:global_step/sec:	193.644

INFO:tensorflow:loss	=	11.0349865,	step	=	1801	(0.516	sec)

INFO:tensorflow:global_step/sec:	189.707

INFO:tensorflow:loss	=	9.860596,	step	=	1901	(0.526	sec)

INFO:tensorflow:global_step/sec:	176.423

INFO:tensorflow:loss	=	10.695,	step	=	2001	(0.567	sec)

INFO:tensorflow:global_step/sec:	213.066

INFO:tensorflow:loss	=	10.426752,	step	=	2101	(0.471	sec)

INFO:tensorflow:global_step/sec:	220.975

INFO:tensorflow:loss	=	10.594796,	step	=	2201	(0.452	sec)

INFO:tensorflow:global_step/sec:	219.289

INFO:tensorflow:loss	=	10.4212265,	step	=	2301	(0.456	sec)

INFO:tensorflow:global_step/sec:	215.123

INFO:tensorflow:loss	=	9.668612,	step	=	2401	(0.465	sec)

INFO:tensorflow:global_step/sec:	175.65

INFO:tensorflow:loss	=	10.009649,	step	=	2501	(0.569	sec)

INFO:tensorflow:global_step/sec:	206.962

INFO:tensorflow:loss	=	10.477722,	step	=	2601	(0.483	sec)

INFO:tensorflow:global_step/sec:	229.627

INFO:tensorflow:loss	=	9.877638,	step	=	2701	(0.435	sec)

INFO:tensorflow:global_step/sec:	195.792

INFO:tensorflow:loss	=	10.274586,	step	=	2801	(0.512	sec)

INFO:tensorflow:global_step/sec:	176.803

INFO:tensorflow:loss	=	10.061047,	step	=	2901	(0.566	sec)

INFO:tensorflow:Saving	checkpoints	for	3000	into	

train/linreg/model.ckpt.

INFO:tensorflow:Loss	for	final	step:	10.73032.

<tensorflow.python.estimator.canned.dnn.DNNRegressor	at	

0x1818e63630>

For	MacOS	user

For	Windows	user

You	can	see	this	information	in	the	TensorBoard.

Now	that	you	have	the	log	events	written,	you	can	open	Tensorboard.
Tensorboad	runs	on	port	6006	(Jupyter	runs	on	port	8888).	You	can	use	the
Terminal	for	MacOs	user	or	Anaconda	prompt	for	Windows	user.

For	MacOS	user

#	Different	for	you

cd	/Users/Guru99/tuto_TF

source	activate	hello-tf!

The	notebook	is	stored	in	the	path	/Users/Guru99/tuto_TF

For	Windows	users

cd	C:\Users\Admin\Anaconda3

activate	hello-tf

The	notebook	is	stored	in	the	path	C:\Users\Admin\Anaconda3

To	launch	Tensorboard,	you	can	use	this	code

For	MacOS	user

tensorboard	--logdir=./train/linreg

For	Windows	users

tensorboard	--logdir=.\train\linreg

Tensorboard	is	located	in	this	URL:	http://localhost:6006

It	could	also	be	located	at	the	following	location.

Copy	and	paste	the	URL	into	your	favorite	browser.	You	should	see	this:

Note	that,	we	will	learn	how	to	read	the	graph	in	the	tutorial	dedicated	to	the
deep	learning.

If	you	see	something	like	this:

It	means	Tensorboard	cannot	find	the	log	file.	Make	sure	you	point	the	cd	to	the
right	path	or	double	check	if	the	log	event	has	been	creating.	If	not,	re-run	the
code.

If	you	want	to	close	TensorBoard	Press	CTRL+C

Hat	Tip:	Check	your	anaconda	prompt	for	the	current	working	directory,

The	log	file	should	be	created	at	C:\Users\Admin

Summary:

TensorBoard	is	a	great	tool	to	visualize	your	model.	Besides,	many	metrics	are
displayed	during	the	training,	such	as	the	loss,	accuracy	or	weights.

To	activate	Tensorboard,	you	need	to	set	the	path	of	your	file:

cd	/Users/Guru99/tuto_TF																	

Activate	Tensorflow's	environment

activate	hello-tf																								

Launch	Tensorboard

tensorboard	--logdir=.+	PATH																					

Chapter	10:	NumPy

What	is	NumPy?

NumPy	is	an	open	source	library	available	in	Python	that	aids	in	mathematical,
scientific,	engineering,	and	data	science	programming.	NumPy	is	an	incredible
library	to	perform	mathematical	and	statistical	operations.	It	works	perfectly
well	for	multi-dimensional	arrays	and	matrices	multiplication

For	any	scientific	project,	NumPy	is	the	tool	to	know.	It	has	been	built	to	work
with	the	N-dimensional	array,	linear	algebra,	random	number,	Fourier	transform,
etc.	It	can	be	integrated	to	C/C++	and	Fortran.

NumPy	is	a	programming	language	that	deals	with	multi-dimensional	arrays	and
matrices.	On	top	of	the	arrays	and	matrices,	NumPy	supports	a	large	number	of
mathematical	operations.	In	this	part,	we	will	review	the	essential	functions	that
you	need	to	know	for	the	tutorial	on	'TensorFlow.'

Why	use	NumPy?

NumPy	is	memory	efficiency,	meaning	it	can	handle	the	vast	amount	of	data
more	accessible	than	any	other	library.	Besides,	NumPy	is	very	convenient	to
work	with,	especially	for	matrix	multiplication	and	reshaping.	On	top	of	that,
NumPy	is	fast.	In	fact,	TensorFlow	and	Scikit	learn	to	use	NumPy	array	to
compute	the	matrix	multiplication	in	the	back	end.

How	to	install	NumPy?

To	install	Pandas	library,	please	refer	our	tutorial	How	to	install	TensorFlow.
NumPy	is	installed	by	default.	In	remote	case,	NumPy	not	installed-

You	can	install	NumPy	using:

Anaconda:	conda	conda	install	-c	anaconda	numpy
In	Jupyter	Notebook	:

import	sys

!conda	install	--yes	--prefix	{sys.prefix}	numpy

Import	NumPy	and	Check	Version

The	command	to	import	numpy	is

import	numpy	as	np																							

Above	code	renames	the	Numpy	namespace	to	np.	This	permits	us	to	prefix
Numpy	function,	methods,	and	attributes	with	"	np	"	instead	of	typing	"	numpy."
It	is	the	standard	shortcut	you	will	find	in	the	numpy	literature

To	check	your	installed	version	of	Numpy	use	the	command

print	(np.__version__)

Output

1.14.0

Create	a	NumPy	Array

Simplest	way	to	create	an	array	in	Numpy	is	to	use	Python	List

myPythonList	=	[1,9,8,3]

To	convert	python	list	to	a	numpy	array	by	using	the	object	np.array.

numpy_array_from_list	=	np.array(myPythonList)

To	display	the	contents	of	the	list

numpy_array_from_list

Output

array([1,	9,	8,	3])

In	practice,	there	is	no	need	to	declare	a	Python	List.	The	operation	can	be
combined.

a		=	np.array([1,9,8,3])																									

NOTE:	Numpy	documentation	states	use	of	np.ndarray	to	create	an	array.
However,	this	the	recommended	method

You	can	also	create	a	numpy	array	from	a	Tuple

Mathematical	Operations	on	an	Array

You	could	perform	mathematical	operations	like	additions,	subtraction,	division
and	multiplication	on	an	array.	The	syntax	is	the	array	name	followed	by	the
operation	(+.-,*,/)	followed	by	the	operand

Example:

numpy_array_from_list	+	10

Output:

array([11,	19,	18,	13])

This	operation	adds	10	to	each	element	of	the	numpy	array.

Shape	of	Array

You	can	check	the	shape	of	the	array	with	the	object	shape	preceded	by	the	name
of	the	array.	In	the	same	way,	you	can	check	the	type	with	dtypes.

import	numpy	as	np

a		=	np.array([1,2,3])

print(a.shape)

print(a.dtype)

(3,)

int64

An	integer	is	a	value	without	decimal.	If	you	create	an	array	with	decimal,	then
the	type	will	change	to	float.

####	Different	type

b		=	np.array([1.1,2.0,3.2])

print(b.dtype)

float64

2	Dimension	Array

You	can	add	a	dimension	with	a	","coma

Note	that	it	has	to	be	within	the	bracket	[]

###	2	dimension

c	=	np.array([(1,2,3),

														(4,5,6)])

print(c.shape)

(2,	3)

3	Dimension	Array

Higher	dimension	can	be	constructed	as	follow:

###	3	dimension

d	=	np.array([

				[[1,	2,3],

								[4,	5,	6]],

				[[7,	8,9],

								[10,	11,	12]]

])

print(d.shape)

(2,	2,	3)

np.zeros	and	np.ones

You	can	create	matrix	full	of	zeroes	or	ones.	It	can	be	used	when	you	initialized
the	weights	during	the	first	iteration	in	TensorFlow.

The	syntax	is

numpy.zeros(shape,	dtype=float,	order='C')

numpy.ones(shape,	dtype=float,	order='C')

Here,

Shape:	is	the	shape	of	the	array

Dtype:	is	the	datatype.	It	is	optional.	The	default	value	is	float64

Order:	Default	is	C	which	is	an	essential	row	style.

Example:

np.zeros((2,2))

Output:

array([[0.,	0.],

										[0.,	0.]])

np.zeros((2,2),	dtype=np.int16)

Output:

array([[0,	0],

									[0,	0]],	dtype=int16)

##	Create	1

np.ones((1,2,3),	dtype=np.int16)																								

array([[[1,	1,	1],								

							[1,	1,	1]]],	dtype=int16)																								

Reshape	and	Flatten	Data

In	some	occasion,	you	need	to	reshape	the	data	from	wide	to	long.

e		=	np.array([(1,2,3),	(4,5,6)])

print(e)

e.reshape(3,2)

Output:

[[1	2	3]	

	[4	5	6]]																							

array([[1,	2],							

								[3,	4],							

								[5,	6]])																								

When	you	deal	with	some	neural	network	like	convnet,	you	need	to	flatten	the
array.	You	can	use	flatten()

e.flatten()																						

array([1,	2,	3,	4,	5,	6])																								

hstack	and	vstack

Numpy	library	has	also	two	convenient	function	to	horizontally	or	vertically
append	the	data.	Lets	study	them	with	an	example:

##	Stack

f	=	np.array([1,2,3])

g	=	np.array([4,5,6])

print('Horizontal	Append:',	np.hstack((f,	g)))

print('Vertical	Append:',	np.vstack((f,	g)))

Horizontal	Append:	[1	2	3	4	5	6]

Vertical	Append:	[[1	2	3]

	[4	5	6]]

Generate	Random	Numbers

To	generate	random	numbers	for	Gaussian	distribution	use

numpy	.random.normal(loc,	scale,	size)

Here

Loc:	the	mean.	The	center	of	distribution
scale:	standard	deviation.
Size:	number	of	returns

##	Generate	random	nmber	from	normal	distribution

normal_array	=	np.random.normal(5,	0.5,	10)

print(normal_array)																					

[5.56171852	4.84233558	4.65392767	4.946659			4.85165567	5.61211317	

4.46704244	5.22675736	4.49888936	4.68731125]																	

If	plotted	the	distribution	will	be	similar	to	following	plot

Asarray

Consider	the	following	2-D	matrix	with	four	rows	and	four	columns	filled	by	1

A	=	np.matrix(np.ones((4,4)))																				

If	you	want	to	change	the	value	of	the	matrix,	you	cannot.	The	reason	is,	it	is	not
possible	to	change	a	copy.

np.array(A)[2]=2

print(A)																								

[[1.	1.	1.	1.]

	[1.	1.	1.	1.]	

	[1.	1.	1.	1.]	

	[1.	1.	1.	1.]]

Matrix	is	immutable.	You	can	use	asarray	if	you	want	to	add	modification	in	the
original	array.	let's	see	if	any	change	occurs	when	you	want	to	change	the	value
of	the	third	rows	with	the	value	2

np.asarray(A)[2]=2

print(A)

Code	Explanation:

np.asarray(A):	converts	the	matrix	A	to	an	array

[2]:	select	the	third	rows

[[1.	1.	1.	1.]	

						[1.	1.	1.	1.]	

						[2.	2.	2.	2.]	#	new	value	

						[1.	1.	1.	1.]]

Arrange

In	some	occasion,	you	want	to	create	value	evenly	spaced	within	a	given
interval.	For	instance,	you	want	to	create	values	from	1	to	10;	you	can	use
arrange

Syntax:

numpy.arange(start,	stop,step)	

Start:	Start	of	interval
Stop:	End	of	interval
Step:	Spacing	between	values.	Default	step	is	1

Example:

np.arange(1,	11)																	

array([1,		2,		3,		4,		5,		6,		7,		8,		9,	10])																		

If	you	want	to	change	the	step,	you	can	add	a	third	number	in	the	parenthesis.	It
will	change	the	step.

np.arange(1,	14,	4)																						

array([1,		5,		9,	13])																		

Linspace

Linspace	gives	evenly	spaced	samples.

Syntax:

numpy.linspace(start,	stop,	num,	endpoint)

Here,

Start:	Starting	value	of	the	sequence
Stop:	End	value	of	the	sequence
Num:	Number	of	samples	to	generate.	Default	is	50
Endpoint:	If	True	(default),	stop	is	the	last	value.	If	False,	stop	value	is	not
included.

For	instance,	it	can	be	used	to	create	10	values	from	1	to	5	evenly	spaced.

np.linspace(1.0,	5.0,	num=10)																				

array([1.								,	1.44444444,	1.88888889,	2.33333333,	2.77777778,							

3.22222222,	3.66666667,	4.11111111,	4.55555556,	5.])																				

If	you	do	not	want	to	include	the	last	digit	in	the	interval,	you	can	set	endpoint	to
false

np.linspace(1.0,	5.0,	num=5,	endpoint=False)																					

array([1.	,	1.8,	2.6,	3.4,	4.2])

LogSpace

LogSpace	returns	even	spaced	numbers	on	a	log	scale.	Logspace	has	the	same
parameters	as	np.linspace.

np.logspace(3.0,	4.0,	num=4)																					

array([1000.	,		2154.43469003,		4641.58883361,	10000.])																									

Finaly,	if	you	want	to	check	the	size	of	an	array,	you	can	use	itemsize

x	=	np.array([1,2,3],	dtype=np.complex128)

x.itemsize																						

16

The	x	element	has	16	bytes.

Indexing	and	slicing

Slicing	data	is	trivial	with	numpy.	We	will	slice	the	matrice	e.	Note	that,	in
Python,	you	need	to	use	the	brackets	to	return	the	rows	or	columns

##	Slice

e		=	np.array([(1,2,3),	(4,5,6)])

print(e)

[[1	2	3]

	[4	5	6]]

Remember	with	numpy	the	first	array/column	starts	at	0.

##	First	column

print('First	row:',	e[0])

##	Second	col

print('Second	row:',	e[1])

First	row:	[1	2	3]

Second	row:	[4	5	6]

In	Python,	like	many	other	languages,

The	values	before	the	comma	stand	for	the	rows
The	value	on	the	rights	stands	for	the	columns.
If	you	want	to	select	a	column,	you	need	to	add	:	before	the	column	index.

:	means	you	want	all	the	rows	from	the	selected	column.

print('Second	column:',	e[:,1])																		

Second	column:	[2	5]																					

To	return	the	first	two	values	of	the	second	row.	You	use	:	to	select	all	columns
up	to	the	second

##	

		print(e[1,	:2])																							

		[4	5]																	

Statistical	function

Numpy	is	equipped	with	the	robust	statistical	function	as	listed	below

Function Numpy

Min np.min()

Max np.max()

Mean np.mean()

Median np.median()

Standard	deviation np.stdt()

##	Statistical	function

###	Min	

print(np.min(normal_array))

###	Max	

print(np.max(normal_array))

###	Mean	

print(np.mean(normal_array))

###	Median

print(np.median(normal_array))

###	Sd

print(np.std(normal_array))

4.467042435266913

5.612113171990201

4.934841002270593

4.846995625786663

0.3875019367395316

Dot	Product

Numpy	is	powerful	library	for	matrices	computation.	For	instance,	you	can
compute	the	dot	product	with	np.dot

##	Linear	algebra

###	Dot	product:	product	of	two	arrays

f	=	np.array([1,2])

g	=	np.array([4,5])

###	1*4+2*5

np.dot(f,	g)

14

Matrix	Multiplication

In	the	same	way,	you	can	compute	matrices	multiplication	with	np.matmul

###	Matmul:	matruc	product	of	two	arrays

h	=	[[1,2],[3,4]]	

i	=	[[5,6],[7,8]]	

###	1*5+2*7	=	19

np.matmul(h,	i)

array([[19,	22],							

												[43,	50]])																		

Determinant

Last	but	not	least,	if	you	need	to	compute	the	determinant,	you	can	use
np.linalg.det().	Note	that	numpy	takes	care	of	the	dimension.

##	Determinant	2*2	matrix

###	5*8-7*6np.linalg.det(i)																					

-2.000000000000005																							

Summary

Below,	a	summary	of	the	essential	functions	used	with	NumPy

Objective Code

Create	array array([1,2,3])

print	the	shape array([.]).shape

reshape reshape

flat	an	array flatten

append	vertically vstack

append	horizontally hstack

create	a	matrix matrix

create	space arrange

Create	a	linear	space linspace

Create	a	log	space logspace

Below	is	a	summary	of	basic	statistical	and	arithmetical	function

Objective Code

min min()

max max()

mean mean()

median median()

standard	deviation std()

Here	is	the	complete	code:

import	numpy	as	np	

##Create	array

###	list

myPythonList	=	[1,9,8,3]

numpy_array_from_list	=	np.array(myPythonList)

###	Directly	in	numpy

np.array([1,9,8,3])

###	Shape

a		=	np.array([1,2,3])

print(a.shape)

###	Type

print(a.dtype)

###	2D	array

c	=	np.array([(1,2,3),

(4,5,6)])

print("2d	Array",c)

###	3D	array

d	=	np.array([

[[1,	2,3],

[4,	5,	6]],

[[7,	8,9],

[10,	11,	12]]

])

print("3d	Array",d)

###	Reshape

e		=	np.array([(1,2,3),	(4,5,6)])

print(e)

e.reshape(3,2)

print("After	Reshape",e)

###	Flatten

e.flatten()

print("After	Flatten",e)

###	hstack	&	vstack

f	=	np.array([1,2,3])

g	=	np.array([4,5,6])

print('Horizontal	Append:',	np.hstack((f,	g)))

print('Vertical	Append:',	np.vstack((f,	g)))

###	random	number

normal_array	=	np.random.normal(5,	0.5,	10)

print("Random	Number",normal_array)

###	asarray

A	=	np.matrix(np.ones((4,4)))

np.asarray(A)

print("Asrray",A)

###	Arrange

print("Arrange",np.arange(1,	11))

###	linspace

lin	=	np.linspace(1.0,	5.0,	num=10)

print("Linspace",lin)

###	logspace

log1	=	np.logspace(3.0,	4.0,	num=4)

print("Logspace",log1)

###	Slicing

####	rows

e		=	np.array([(1,2,3),	(4,5,6)])

print(e[0])

####	columns

print(e[:,1])

####	rows	and	columns

print(e[1,	:2])

Chapter	11:	Pandas

What	is	Pandas?

Pandas	is	an	opensource	library	that	allows	to	you	perform	data	manipulation	in
Python.	Pandas	library	is	built	on	top	of	Numpy,	meaning	Pandas	needs	Numpy
to	operate.	Pandas	provide	an	easy	way	to	create,	manipulate	and	wrangle	the
data.	Pandas	is	also	an	elegant	solution	for	time	series	data.

Why	use	Pandas?

Data	scientists	use	Pandas	for	its	following	advantages:

Easily	handles	missing	data
It	uses	Series	for	one-dimensional	data	structure	and	DataFrame	for
multi-dimensional	data	structure
It	provides	an	efficient	way	to	slice	the	data
It	provides	a	flexible	way	to	merge,	concatenate	or	reshape	the	data
It	includes	a	powerful	time	series	tool	to	work	with

In	a	nutshell,	Pandas	is	a	useful	library	in	data	analysis.	It	can	be	used	to	perform
data	manipulation	and	analysis.	Pandas	provide	powerful	and	easy-to-use	data
structures,	as	well	as	the	means	to	quickly	perform	operations	on	these
structures.

How	to	install	Pandas?

To	install	Pandas	library,	please	refer	our	tutorial	How	to	install	TensorFlow.
Pandas	is	installed	by	default.	In	remote	case,	pandas	not	installed-

You	can	install	Pandas	using:

Anaconda:	conda	install	-c	anaconda	pandas
In	Jupyter	Notebook	:

import	sys

!conda	install	--yes	--prefix	{sys.prefix}	pandas																								

What	is	a	data	frame?

A	data	frame	is	a	two-dimensional	array,	with	labeled	axes	(rows	and	columns).
A	data	frame	is	a	standard	way	to	store	data.

Data	frame	is	well-known	by	statistician	and	other	data	practitioners.	A	data
frame	is	a	tabular	data,	with	rows	to	store	the	information	and	columns	to	name
the	information.	For	instance,	the	price	can	be	the	name	of	a	column	and	2,3,4
the	price	values.

Below	a	picture	of	a	Pandas	data	frame:

What	is	a	Series?

A	series	is	a	one-dimensional	data	structure.	It	can	have	any	data	structure	like
integer,	float,	and	string.	It	is	useful	when	you	want	to	perform	computation	or
return	a	one-dimensional	array.	A	series,	by	definition,	cannot	have	multiple
columns.	For	the	latter	case,	please	use	the	data	frame	structure.

Series	has	one	parameters:

Data:	can	be	a	list,	dictionary	or	scalar	value

pd.Series([1.,	2.,	3.])																		

0				1.0

1				2.0

2				3.0

dtype:	float64																		

You	can	add	the	index	with	index.	It	helps	to	name	the	rows.	The	length	should
be	equal	to	the	size	of	the	column

pd.Series([1.,	2.,	3.],	index=['a',	'b',	'c'])

Below,	you	create	a	Pandas	series	with	a	missing	value	for	the	third	rows.	Note,
missing	values	in	Python	are	noted	"NaN."	You	can	use	numpy	to	create	missing
value:	np.nan	artificially

pd.Series([1,2,np.nan])

Output

0				1.0

1				2.0

2				NaN

dtype:	float64

Create	Data	frame

You	can	convert	a	numpy	array	to	a	pandas	data	frame	with	pd.Data	frame().	The
opposite	is	also	possible.	To	convert	a	pandas	Data	Frame	to	an	array,	you	can
use	np.array()

##	Numpy	to	pandas

import	numpy	as	np

h	=	[[1,2],[3,4]]	

df_h	=	pd.DataFrame(h)

print('Data	Frame:',	df_h)

##	Pandas	to	numpy

df_h_n	=	np.array(df_h)

print('Numpy	array:',	df_h_n)

Data	Frame:				0		1

0		1		2

1		3		4

Numpy	array:	[[1	2]

	[3	4]]

You	can	also	use	a	dictionary	to	create	a	Pandas	dataframe.

dic	=	{'Name':	["John",	"Smith"],	'Age':	[30,	40]}

pd.DataFrame(data=dic)																										

Age Name
0 30 John
1 40 Smith

Range	Data

Pandas	have	a	convenient	API	to	create	a	range	of	date

pd.data_range(date,period,frequency):

The	first	parameter	is	the	starting	date

The	second	parameter	is	the	number	of	periods	(optional	if	the	end	date	is
specified)
The	last	parameter	is	the	frequency:	day:	'D,'	month:	'M'	and	year:	'Y.'

##	Create	date

#	Days

dates_d	=	pd.date_range('20300101',	periods=6,	freq='D')

print('Day:',	dates_d)

Output

Day:	DatetimeIndex(['2030-01-01',	'2030-01-02',	'2030-01-03',	

'2030-01-04',	'2030-01-05',	'2030-01-06'],	dtype='datetime64[ns]',	

freq='D')

#	Months

dates_m	=	pd.date_range('20300101',	periods=6,	freq='M')

print('Month:',	dates_m)

Output

Month:	DatetimeIndex(['2030-01-31',	'2030-02-28',	'2030-03-31',	

'2030-04-30','2030-05-31',	'2030-06-30'],	dtype='datetime64[ns]',	

freq='M')

Inspecting	data

You	can	check	the	head	or	tail	of	the	dataset	with	head(),	or	tail()	preceded	by
the	name	of	the	panda's	data	frame

Step	1)	Create	a	random	sequence	with	numpy.	The	sequence	has	4	columns	and
6	rows

random	=	np.random.randn(6,4)				

Step	2)	Then	you	create	a	data	frame	using	pandas.

Use	dates_m	as	an	index	for	the	data	frame.	It	means	each	row	will	be	given	a

"name"	or	an	index,	corresponding	to	a	date.

Finally,	you	give	a	name	to	the	4	columns	with	the	argument	columns

#	Create	data	with	date

df	=	pd.DataFrame(random,

																		index=dates_m,

																		columns=list('ABCD'))

Step	3)	Using	head	function

df.head(3)

A B C D
2030-01-31 1.139433 1.318510 -0.181334 1.615822
2030-02-28 -0.081995 -0.063582 0.857751 -0.527374
2030-03-31 -0.519179 0.080984 -1.454334 1.314947

Step	4)	Using	tail	function

df.tail(3)

A B C D
2030-04-30 -0.685448 -0.011736 0.622172 0.104993
2030-05-31 -0.935888 -0.731787 -0.558729 0.768774
2030-06-30 1.096981 0.949180 -0.196901 -0.471556

Step	5)	An	excellent	practice	to	get	a	clue	about	the	data	is	to	use	describe().	It
provides	the	counts,	mean,	std,	min,	max	and	percentile	of	the	dataset.

df.describe()

A B C D
count 6.000000 6.000000 6.000000 6.000000
mean 0.002317 0.256928 -0.151896 0.467601
std 0.908145 0.746939 0.834664 0.908910
min -0.935888 -0.731787 -1.454334 -0.527374
25% -0.643880 -0.050621 -0.468272 -0.327419
50% -0.300587 0.034624 -0.189118 0.436883

75% 0.802237 0.732131 0.421296 1.178404
max 1.139433 1.318510 0.857751 1.615822

Slice	data

The	last	point	of	this	tutorial	is	about	how	to	slice	a	pandas	data	frame.

You	can	use	the	column	name	to	extract	data	in	a	particular	column.

##	Slice

###	Using	name

df['A']

2030-01-31			-0.168655

2030-02-28				0.689585

2030-03-31				0.767534

2030-04-30				0.557299

2030-05-31			-1.547836

2030-06-30				0.511551

Freq:	M,	Name:	A,	dtype:	float64

To	select	multiple	columns,	you	need	to	use	two	times	the	bracket,	[[..,..]]

The	first	pair	of	bracket	means	you	want	to	select	columns,	the	second	pairs	of
bracket	tells	what	columns	you	want	to	return.

df[['A',	'B']].																										

A B
2030-01-31 -0.168655 0.587590
2030-02-28 0.689585 0.998266
2030-03-31 0.767534 -0.940617
2030-04-30 0.557299 0.507350
2030-05-31 -1.547836 1.276558
2030-06-30 0.511551 1.572085

You	can	slice	the	rows	with	:

The	code	below	returns	the	first	three	rows

###	using	a	slice	for	row

df[0:3]	

A B C D
2030-01-31 -0.168655 0.587590 0.572301 -0.031827
2030-02-28 0.689585 0.998266 1.164690 0.475975
2030-03-31 0.767534 -0.940617 0.227255 -0.341532

The	loc	function	is	used	to	select	columns	by	names.	As	usual,	the	values	before
the	coma	stand	for	the	rows	and	after	refer	to	the	column.	You	need	to	use	the
brackets	to	select	more	than	one	column.

##	Multi	col

df.loc[:,['A','B']]					

A B
2030-01-31 -0.168655 0.587590
2030-02-28 0.689585 0.998266
2030-03-31 0.767534 -0.940617
2030-04-30 0.557299 0.507350
2030-05-31 -1.547836 1.276558
2030-06-30 0.511551 1.572085

There	is	another	method	to	select	multiple	rows	and	columns	in	Pandas.	You	can
use	iloc[].	This	method	uses	the	index	instead	of	the	columns	name.	The	code
below	returns	the	same	data	frame	as	above

df.iloc[:,	:2]

A B
2030-01-31 -0.168655 0.587590
2030-02-28 0.689585 0.998266
2030-03-31 0.767534 -0.940617
2030-04-30 0.557299 0.507350
2030-05-31 -1.547836 1.276558
2030-06-30 0.511551 1.572085

Drop	a	column

You	can	drop	columns	using	pd.drop()

df.drop(columns=['A',	'C'])																																																															

B D
2030-01-31 0.587590 -0.031827
2030-02-28 0.998266 0.475975
2030-03-31 -0.940617 -0.341532
2030-04-30 0.507350 -0.296035
2030-05-31 1.276558 0.523017
2030-06-30 1.572085 -0.594772

Concatenation

You	can	concatenate	two	DataFrame	in	Pandas.	You	can	use	pd.concat()

First	of	all,	you	need	to	create	two	DataFrames.	So	far	so	good,	you	are	already
familiar	with	dataframe	creation

import	numpy	as	np

df1	=	pd.DataFrame({'name':	['John',	'Smith','Paul'],

																					'Age':	['25',	'30',	'50']},

																				index=[0,	1,	2])

df2	=	pd.DataFrame({'name':	['Adam',	'Smith'],

																					'Age':	['26',	'11']},

																				index=[3,	4])		

Finally,	you	concatenate	the	two	DataFrame

df_concat	=	pd.concat([df1,df2])	

df_concat

Age name
0 25 John
1 30 Smith
2 50 Paul
3 26 Adam
4 11 Smith

Drop_duplicates

If	a	dataset	can	contain	duplicates	information	use,	`drop_duplicates`	is	an	easy
to	exclude	duplicate	rows.	You	can	see	that	`df_concat`	has	a	duplicate
observation,	`Smith`	appears	twice	in	the	column	`name.`

df_concat.drop_duplicates('name')

Age name

0 25 John
1 30 Smith
2 50 Paul
3 26 Adam

Sort	values

You	can	sort	value	with	sort_values

df_concat.sort_values('Age')

Age name
4 11 Smith
0 25 John
3 26 Adam
1 30 Smith
2 50 Paul

Rename:	change	of	index

You	can	use	rename	to	rename	a	column	in	Pandas.	The	first	value	is	the	current
column	name	and	the	second	value	is	the	new	column	name.

df_concat.rename(columns={"name":	"Surname",	"Age":	"Age_ppl"})

Age_ppl Surname
0 25 John
1 30 Smith
2 50 Paul
3 26 Adam
4 11 Smith

Import	CSV

During	the	TensorFlow	tutorial,	you	will	use	the	adult	dataset.	It	is	often	used

with	classification	task.	It	is	available	in	this	URL
https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data	The
data	is	stored	in	a	CSV	format.	This	dataset	includes	eights	categorical	variables:

This	dataset	includes	eights	categorical	variables:

workclass
education
marital
occupation
relationship
race
sex
native_country

moreover,	six	continuous	variables:

age
fnlwgt
education_num
capital_gain
capital_loss

hours_week

To	import	a	CSV	dataset,	you	can	use	the	object	pd.read_csv().	The	basic
argument	inside	is:

Syntax:

pandas.read_csv(filepath_or_buffer,sep=',	

',`names=None`,`index_col=None`,`skipinitialspace=False`)

filepath_or_buffer:	Path	or	URL	with	the	data
sep=',	':	Define	the	delimiter	to	use

`names=None`:	Name	the	columns.	If	the	dataset	has	ten	columns,	you	need
to	pass	ten	names
`index_col=None`:	If	yes,	the	first	column	is	used	as	a	row	index
`skipinitialspace=False`:	Skip	spaces	after	delimiter.

For	more	information	about	readcsv(),	please	check	the	official	documentation

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html.

Consider	the	following	Example

##	Import	csv

import	pandas	as	pd

##	Define	path	data

COLUMNS	=	['age','workclass',	'fnlwgt',	'education',	

'education_num',	'marital',

											'occupation',	'relationship',	'race',	'sex',	

'capital_gain',	'capital_loss',

											'hours_week',	'native_country',	'label']

PATH	=	"https://archive.ics.uci.edu/ml/machine-learning-

databases/adult/adult.data"

df_train	=	pd.read_csv(PATH,

																							skipinitialspace=True,

																							names	=	COLUMNS,

																							index_col=False)

df_train.shape

Output:

(32561,	15)

Groupby

An	easy	way	to	see	the	data	is	to	use	the	groupby	method.	This	method	can	help
you	to	summarize	the	data	by	group.	Below	is	a	list	of	methods	available	with
groupby:

count:	count

min:	min
max:	max
mean:	mean
median:	median
standard	deviation:	sdt
etc

Inside	groupby(),	you	can	use	the	column	you	want	to	apply	the	method.

Let's	have	a	look	at	a	single	grouping	with	the	adult	dataset.	You	will	get	the
mean	of	all	the	continuous	variables	by	type	of	revenue,	i.e.,	above	50k	or	below
50k

df_train.groupby(['label']).mean()																							

age fnlwgt education_num capital_gain capital_loss hours_week
label
<=50K 36.783738 190340.86517 9.595065 148.752468 53.142921 38.840210
>50K 44.249841 188005.00000 11.611657 4006.142456 195.001530 45.473026

You	can	get	the	minimum	of	age	by	type	of	household

df_train.groupby(['label'])['age'].min()

label

<=50K				17

>50K					19

Name:	age,	dtype:	int64																									

You	can	also	group	by	multiple	columns.	For	instance,	you	can	get	the	maximum
capital	gain	according	to	the	household	type	and	marital	status.

df_train.groupby(['label',	'marital'])['capital_gain'].max()																														

label		marital														

<=50K		Divorced																	34095

							Married-AF-spouse									2653

							Married-civ-spouse							41310

							Married-spouse-absent					6849

							Never-married												34095

							Separated																	7443

							Widowed																			6849

>50K			Divorced																	99999

							Married-AF-spouse									7298

							Married-civ-spouse							99999

							Married-spouse-absent				99999

							Never-married												99999

							Separated																99999

							Widowed																		99999

Name:	capital_gain,	dtype:	int64

You	can	create	a	plot	following	groupby.	One	way	to	do	it	is	to	use	a	plot	after
the	grouping.

To	create	a	more	excellent	plot,	you	will	use	unstack()	after	mean()	so	that	you
have	the	same	multilevel	index,	or	you	join	the	values	by	revenue	lower	than
50k	and	above	50k.	In	this	case,	the	plot	will	have	two	groups	instead	of	14
(2*7).

If	you	use	Jupyter	Notebook,	make	sure	to	add	%	matplotlib	inline,	otherwise,
no	plot	will	be	displayed

%	matplotlib	inline

df_plot	=	df_train.groupby(['label',	'marital'])

['capital_gain'].mean().unstack()

df_plot

Summary

Below	is	a	summary	of	the	most	useful	method	for	data	science	with	Pandas

import	data read_csv
create	series Series
Create	Dataframe DataFrame
Create	date	range date_range
return	head head
return	tail tail
Describe describe
slice	using	name dataname['columnname']
Slice	using	rows data_name[0:5]

Chapter	12:	Scikit-Learn

What	is	Scikit-learn?

Scikit-learn	is	an	open	source	Python	library	for	machine	learning.	The	library
supports	state-of-the-art	algorithms	such	as	KNN,	XGBoost,	random	forest,
SVM	among	others.	It	is	built	on	top	of	Numpy.	Scikit-learn	is	widely	used	in
kaggle	competition	as	well	as	prominent	tech	companies.	Scikit-learn	helps	in
preprocessing,	dimensionality	reduction(parameter	selection),	classification,
regression,	clustering,	and	model	selection.

Scikit-learn	has	the	best	documentation	of	all	opensource	libraries.	It	provides
you	an	interactive	chart	at	http://scikit-
learn.org/stable/tutorial/machine_learning_map/index.html.

Scikit-learn	is	not	very	difficult	to	use	and	provides	excellent	results.	However,
scikit	learn	does	not	support	parallel	computations.	It	is	possible	to	run	a	deep
learning	algorithm	with	it	but	is	not	an	optimal	solution,	especially	if	you	know
how	to	use	TensorFlow.

Download	and	Install	scikit-learn

Option	1:	AWS

scikit-learn	can	be	used	over	AWS.	Please	refer	The	docker	image	has	scikit-
learn	preinstalled.

To	use	developer	version	use	the	command	in	Jupyter

import	sys

!{sys.executable}	-m	pip	install	git+git://github.com/scikit-

learn/scikit-learn.git

Option	2:	Mac	or	Windows	using	Anaconda

To	learn	about	Anaconda	installation	refer	https://www.guru99.com/download-
install-tensorflow.html

Recently,	the	developers	of	scikit	have	released	a	development	version	that
tackles	common	problem	faced	with	the	current	version.	We	found	it	more
convenient	to	use	the	developer	version	instead	of	the	current	version.

If	you	installed	scikit-learn	with	the	conda	environment,	please	follow	the	step	to
update	to	version	0.20

Step	1)	Activate	tensorflow	environment

source	activate	hello-tf

Step	2)	Remove	scikit	lean	using	the	conda	command

conda	remove	scikit-learn

Step	3)	Install	scikit	learn	developer	version	along	with	necessary	libraries.

conda	install	-c	anaconda	git

pip	install	Cython

pip	install	h5py

pip	install	git+git://github.com/scikit-learn/scikit-learn.git

NOTE:	Windows	used	will	need	to	install	Microsoft	Visual	C++	14.	You	can	get
it	from	here

Machine	learning	with	scikit-learn

This	tutorial	is	divided	into	two	parts:

1.	 Machine	learning	with	scikit-learn
2.	 How	to	trust	your	model	with	LIME

The	first	part	details	how	to	build	a	pipeline,	create	a	model	and	tune	the
hyperparameters	while	the	second	part	provides	state-of-the-art	in	term	of	model
selection.

Step	1)	Import	the	data

During	this	tutorial,	you	will	be	using	the	adult	dataset.	For	a	background	in	this
dataset	refer	If	you	are	interested	to	know	more	about	the	descriptive	statistics,
please	use	Dive	and	Overview	tools.	Refer	this	tutorial	learn	more	about	Dive
and	Overview

You	import	the	dataset	with	Pandas.	Note	that	you	need	to	convert	the	type	of	the
continuous	variables	in	float	format.

This	dataset	includes	eights	categorical	variables:

The	categorical	variables	are	listed	in	CATE_FEATURES

workclass
education
marital
occupation
relationship
race
sex
native_country

moreover,	six	continuous	variables:

The	continuous	variables	are	listed	in	CONTI_FEATURES

age
fnlwgt
education_num
capital_gain
capital_loss

hours_week

Note	that	we	fill	the	list	by	hand	so	that	you	have	a	better	idea	of	what	columns
we	are	using.	A	faster	way	to	construct	a	list	of	categorical	or	continuous	is	to
use:

##	List	Categorical

CATE_FEATURES	=	

df_train.iloc[:,:-1].select_dtypes('object').columns

print(CATE_FEATURES)

##	List	continuous

CONTI_FEATURES	=		df_train._get_numeric_data()

print(CONTI_FEATURES)

Here	is	the	code	to	import	the	data:

#	Import	dataset

import	pandas	as	pd

##	Define	path	data

COLUMNS	=	['age','workclass',	'fnlwgt',	'education',	

'education_num',	'marital',

											'occupation',	'relationship',	'race',	'sex',	

'capital_gain',	'capital_loss',

											'hours_week',	'native_country',	'label']

###	Define	continuous	list

CONTI_FEATURES		=	['age',	'fnlwgt','capital_gain',	'education_num',	

'capital_loss',	'hours_week']

###	Define	categorical	list

CATE_FEATURES	=	['workclass',	'education',	'marital',	'occupation',	

'relationship',	'race',	'sex',	'native_country']

##	Prepare	the	data

features	=	['age','workclass',	'fnlwgt',	'education',	

'education_num',	'marital',

											'occupation',	'relationship',	'race',	'sex',	

'capital_gain',	'capital_loss',

											'hours_week',	'native_country']

PATH	=	"https://archive.ics.uci.edu/ml/machine-learning-

databases/adult/adult.data"

df_train	=	pd.read_csv(PATH,	skipinitialspace=True,	names	=	

COLUMNS,	index_col=False)

df_train[CONTI_FEATURES]	

=df_train[CONTI_FEATURES].astype('float64')

df_train.describe()

age fnlwgt education_num capital_gain capital_loss hours_week
count 32561.000000 3.256100e+04 32561.000000 32561.000000 32561.000000 32561.000000
mean 38.581647 1.897784e+05 10.080679 1077.648844 87.303830 40.437456
std 13.640433 1.055500e+05 2.572720 7385.292085 402.960219 12.347429
min 17.000000 1.228500e+04 1.000000 0.000000 0.000000 1.000000
25% 28.000000 1.178270e+05 9.000000 0.000000 0.000000 40.000000
50% 37.000000 1.783560e+05 10.000000 0.000000 0.000000 40.000000
75% 48.000000 2.370510e+05 12.000000 0.000000 0.000000 45.000000
max 90.000000 1.484705e+06 16.000000 99999.000000 4356.000000 99.000000

You	can	check	the	count	of	unique	values	of	the	native_country	features.	You
can	see	that	only	one	household	comes	from	Holand-Netherlands.	This
household	won't	bring	us	any	information,	but	will	through	an	error	during	the
training.

df_train.native_country.value_counts()																											

United-States																	29170

Mexico																										643

?																															583

Philippines																					198

Germany																									137

Canada																										121

Puerto-Rico																					114

El-Salvador																					106

India																											100

Cuba																													95

England																										90

Jamaica																										81

South																												80

China																												75

Italy																												73

Dominican-Republic															70

Vietnam																										67

Guatemala																								64

Japan																												62

Poland																											60

Columbia																									59

Taiwan																											51

Haiti																												44

Iran																													43

Portugal																									37

Nicaragua																								34

Peru																													31

France																											29

Greece																											29

Ecuador																										28

Ireland																										24

Hong																													20

Cambodia																									19

Trinadad&Tobago																		19

Thailand																									18

Laos																													18

Yugoslavia																							16

Outlying-US(Guam-USVI-etc)							14

Honduras																									13

Hungary																										13

Scotland																									12

Holand-Netherlands																1

Name:	native_country,	dtype:	int64

You	can	exclude	this	uninformative	row	from	the	dataset

##	Drop	Netherland,	because	only	one	row

df_train	=	df_train[df_train.native_country	!=	"Holand-

Netherlands"]

Next,	you	store	the	position	of	the	continuous	features	in	a	list.	You	will	need	it
in	the	next	step	to	build	the	pipeline.

The	code	below	will	loop	over	all	columns	names	in	CONTI_FEATURES	and
get	its	location	(i.e.,	its	number)	and	then	append	it	to	a	list	called	conti_features

##	Get	the	column	index	of	the	categorical	features

conti_features	=	[]

for	i	in	CONTI_FEATURES:

				position	=	df_train.columns.get_loc(i)

				conti_features.append(position)

print(conti_features)		

[0,	2,	10,	4,	11,	12]																												

The	code	below	does	the	same	job	as	above	but	for	the	categorical	variable.	The
code	below	repeats	what	you	have	done	previously,	except	with	the	categorical
features.

##	Get	the	column	index	of	the	categorical	features

categorical_features	=	[]

for	i	in	CATE_FEATURES:

				position	=	df_train.columns.get_loc(i)

				categorical_features.append(position)

print(categorical_features)		

[1,	3,	5,	6,	7,	8,	9,	13]																																

You	can	have	a	look	at	the	dataset.	Note	that,	each	categorical	feature	is	a	string.
You	cannot	feed	a	model	with	a	string	value.	You	need	to	transform	the	dataset
using	a	dummy	variable.

df_train.head(5)																									

In	fact,	you	need	to	create	one	column	for	each	group	in	the	feature.	First,	you
can	run	the	code	below	to	compute	the	total	amount	of	columns	needed.

print(df_train[CATE_FEATURES].nunique(),

						'There	are',sum(df_train[CATE_FEATURES].nunique()),	'groups	

in	the	whole	dataset')

workclass										9

education									16

marital												7

occupation								15

relationship							6

race															5

sex																2

native_country				41

dtype:	int64	There	are	101	groups	in	the	whole	dataset

The	whole	dataset	contains	101	groups	as	shown	above.	For	instance,	the
features	of	workclass	have	nine	groups.	You	can	visualize	the	name	of	the
groups	with	the	following	codes

unique()	returns	the	unique	values	of	the	categorical	features.

for	i	in	CATE_FEATURES:

				print(df_train[i].unique())

['State-gov'	'Self-emp-not-inc'	'Private'	'Federal-gov'	'Local-gov'	

'?'

	'Self-emp-inc'	'Without-pay'	'Never-worked']

['Bachelors'	'HS-grad'	'11th'	'Masters'	'9th'	'Some-college'	

'Assoc-acdm'

	'Assoc-voc'	'7th-8th'	'Doctorate'	'Prof-school'	'5th-6th'	'10th'

	'1st-4th'	'Preschool'	'12th']

['Never-married'	'Married-civ-spouse'	'Divorced'	'Married-spouse-

absent'

	'Separated'	'Married-AF-spouse'	'Widowed']

['Adm-clerical'	'Exec-managerial'	'Handlers-cleaners'	'Prof-

specialty'

	'Other-service'	'Sales'	'Craft-repair'	'Transport-moving'

	'Farming-fishing'	'Machine-op-inspct'	'Tech-support'	'?'

	'Protective-serv'	'Armed-Forces'	'Priv-house-serv']

['Not-in-family'	'Husband'	'Wife'	'Own-child'	'Unmarried'	'Other-

relative']

['White'	'Black'	'Asian-Pac-Islander'	'Amer-Indian-Eskimo'	'Other']

['Male'	'Female']

['United-States'	'Cuba'	'Jamaica'	'India'	'?'	'Mexico'	'South'

	'Puerto-Rico'	'Honduras'	'England'	'Canada'	'Germany'	'Iran'

	'Philippines'	'Italy'	'Poland'	'Columbia'	'Cambodia'	'Thailand'	

'Ecuador'

	'Laos'	'Taiwan'	'Haiti'	'Portugal'	'Dominican-Republic'	'El-

Salvador'

	'France'	'Guatemala'	'China'	'Japan'	'Yugoslavia'	'Peru'

	'Outlying-US(Guam-USVI-etc)'	'Scotland'	'Trinadad&Tobago'	'Greece'

	'Nicaragua'	'Vietnam'	'Hong'	'Ireland'	'Hungary']

Therefore,	the	training	dataset	will	contain	101	+	7	columns.	The	last	seven
columns	are	the	continuous	features.

Scikit-learn	can	take	care	of	the	conversion.	It	is	done	in	two	steps:

First,	you	need	to	convert	the	string	to	ID.	For	instance,	State-gov	will	have
the	ID	1,	Self-emp-not-inc	ID	2	and	so	on.	The	function	LabelEncoder	does
this	for	you

Transpose	each	ID	into	a	new	column.	As	mentioned	before,	the	dataset	has
101	group's	ID.	Therefore	there	will	be	101	columns	capturing	all
categoricals	features'	groups.	Scikit-learn	has	a	function	called
OneHotEncoder	that	performs	this	operation

Step	2)	Create	the	train/test	set

Now	that	the	dataset	is	ready,	we	can	split	it	80/20.	80	percent	for	the	training	set
and	20	percent	for	the	test	set.

You	can	use	train_test_split.	The	first	argument	is	the	dataframe	is	the	features
and	the	second	argument	is	the	label	dataframe.	You	can	specify	the	size	of	the
test	set	with	test_size.

from	sklearn.model_selection	import	train_test_split

X_train,	X_test,	y_train,	y_test	=	

train_test_split(df_train[features],

																																																				df_train.label,

																																																				test_size	=	

0.2,

																																																				random_state=0)

X_train.head(5)

print(X_train.shape,	X_test.shape)

(26048,	14)	(6512,	14)																			

Step	3)	Build	the	pipeline

The	pipeline	makes	it	easier	to	feed	the	model	with	consistent	data.	The	idea
behind	is	to	put	the	raw	data	into	a	'pipeline'	to	perform	operations.	For	instance,
with	the	current	dataset,	you	need	to	standardize	the	continuous	variables	and
convert	the	categorical	data.	Note	that	you	can	perform	any	operation	inside	the
pipeline.	For	instance,	if	you	have	'NA's'	in	the	dataset,	you	can	replace	them	by
the	mean	or	median.	You	can	also	create	new	variables.

You	have	the	choice;	hard	code	the	two	processes	or	create	a	pipeline.	The	first
choice	can	lead	to	data	leakage	and	create	inconsistencies	over	time.	A	better
option	is	to	use	the	pipeline.

from	sklearn.preprocessing	import	StandardScaler,	OneHotEncoder,	

LabelEncoder

from	sklearn.compose	import	ColumnTransformer,	

make_column_transformer

from	sklearn.pipeline	import	make_pipeline

from	sklearn.linear_model	import	LogisticRegression

The	pipeline	will	perform	two	operations	before	feeding	the	logistic	classifier:

1.	 Standardize	the	variable:	`StandardScaler()``
2.	 Convert	the	categorical	features:	OneHotEncoder(sparse=False)

You	can	perform	the	two	steps	using	the	make_column_transformer.	This
function	is	not	available	in	the	current	version	of	scikit-learn	(0.19).	It	is	not
possible	with	the	current	version	to	perform	the	label	encoder	and	one	hot
encoder	in	the	pipeline.	It	is	one	reason	we	decided	to	use	the	developer	version.

make_column_transformer	is	easy	to	use.	You	need	to	define	which	columns	to
apply	the	transformation	and	what	transformation	to	operate.	For	instance,	to
standardize	the	continuous	feature,	you	can	do:

conti_features,	StandardScaler()	inside	make_column_transformer.
conti_features:	list	with	the	continuous	variable
StandardScaler:	standardize	the	variable

The	object	OneHotEncoder	inside	make_column_transformer	automatically
encodes	the	label.

preprocess	=	make_column_transformer(

				(conti_features,	StandardScaler()),

				###	Need	to	be	numeric	not	string	to	specify	columns	name	

				(categorical_features,	OneHotEncoder(sparse=False))

)

You	can	test	if	the	pipeline	works	with	fit_transform.	The	dataset	should	have
the	following	shape:	26048,	107

preprocess.fit_transform(X_train).shape																		

(26048,	107)																					

The	data	transformer	is	ready	to	use.	You	can	create	the	pipeline	with
make_pipeline.	Once	the	data	are	transformed,	you	can	feed	the	logistic
regression.

model	=	make_pipeline(

				preprocess,

				LogisticRegression())

Training	a	model	with	scikit-learn	is	trivial.	You	need	to	use	the	object	fit
preceded	by	the	pipeline,	i.e.,	model.	You	can	print	the	accuracy	with	the	score
object	from	the	scikit-learn	library

model.fit(X_train,	y_train)

print("logistic	regression	score:	%f"	%	model.score(X_test,	

y_test))

logistic	regression	score:	0.850891																						

Finally,	you	can	predict	the	classes	with	predict_proba.	It	returns	the	probability

for	each	class.	Note	that	it	sums	to	one.

model.predict_proba(X_test)																						

array([[0.83576663,	0.16423337],

							[0.94582765,	0.05417235],

							[0.64760587,	0.35239413],

							...,

							[0.99639252,	0.00360748],

							[0.02072181,	0.97927819],

							[0.56781353,	0.43218647]])

Step	4)	Using	our	pipeline	in	a	grid	search

Tune	the	hyperparameter	(variables	that	determine	network	structure	like	hidden
units)	can	be	tedious	and	exhausting.	One	way	to	evaluate	the	model	could	be	to
change	the	size	of	the	training	set	and	evaluate	the	performances.	You	can	repeat
this	method	ten	times	to	see	the	score	metrics.	However,	it	is	too	much	work.

Instead,	scikit-learn	provides	a	function	to	carry	out	parameter	tuning	and	cross-
validation.

Cross-validation

Cross-Validation	means	during	the	training,	the	training	set	is	slip	n	number	of
times	in	folds	and	then	evaluates	the	model	n	time.	For	instance,	if	cv	is	set	to
10,	the	training	set	is	trained	and	evaluates	ten	times.	At	each	round,	the
classifier	chooses	randomly	nine	fold	to	train	the	model,	and	the	10th	fold	is
meant	for	evaluation.

Grid	search	Each	classifier	has	hyperparameters	to	tune.	You	can	try	different
values,	or	you	can	set	a	parameter	grid.	If	you	go	to	the	scikit-learn	official
website,	you	can	see	the	logistic	classifier	has	different	parameters	to	tune.	To
make	the	training	faster,	you	choose	to	tune	the	C	parameter.	It	controls	for	the
regularization	parameter.	It	should	be	positive.	A	small	value	gives	more	weight
to	the	regularizer.

You	can	use	the	object	GridSearchCV.	You	need	to	create	a	dictionary	containing
the	hyperparameters	to	tune.

You	list	the	hyperparameters	followed	by	the	values	you	want	to	try.	For
instance,	to	tune	the	C	parameter,	you	use:

'logisticregression__C':	[0.1,	1.0,	1.0]:	The	parameter	is	preceded	by	the

name,	in	lower	case,	of	the	classifier	and	two	underscores.

The	model	will	try	four	different	values:	0.001,	0.01,	0.1	and	1.

You	train	the	model	using	10	folds:	cv=10

from	sklearn.model_selection	import	GridSearchCV

#	Construct	the	parameter	grid

param_grid	=	{

				'logisticregression__C':	[0.001,	0.01,0.1,	1.0],

				}

You	can	train	the	model	using	GridSearchCV	with	the	parameter	gri	and	cv.

#	Train	the	model

grid_clf	=	GridSearchCV(model,

																								param_grid,

																								cv=10,

																								iid=False)

grid_clf.fit(X_train,	y_train)

OUTPUT

GridSearchCV(cv=10,	error_score='raise-deprecating',

							estimator=Pipeline(memory=None,

					steps=[('columntransformer',	ColumnTransformer(n_jobs=1,	

remainder='drop',	transformer_weights=None,

									transformers=[('standardscaler',	StandardScaler(copy=True,	

with_mean=True,	with_std=True),	[0,	2,	10,	4,	11,	12]),	

('onehotencoder',	OneHotEncoder(categorical_features=None,	

categories=None,...ty='l2',	random_state=None,	solver='liblinear',	

tol=0.0001,

										verbose=0,	warm_start=False))]),

							fit_params=None,	iid=False,	n_jobs=1,

							param_grid={'logisticregression__C':	[0.001,	0.01,	0.1,	

1.0]},

							pre_dispatch='2*n_jobs',	refit=True,	

return_train_score='warn',

							scoring=None,	verbose=0)

To	access	the	best	parameters,	you	use	best_params_

grid_clf.best_params_																				

OUTPUT

{'logisticregression__C':	1.0}																			

After	trained	the	model	with	four	differents	regularization	values,	the	optimal
parameter	is

print("best	logistic	regression	from	grid	search:	%f"	%	

grid_clf.best_estimator_.score(X_test,	y_test))

best	logistic	regression	from	grid	search:	0.850891

To	access	the	predicted	probabilities:

grid_clf.best_estimator_.predict_proba(X_test)																			

array([[0.83576677,	0.16423323],

							[0.9458291	,	0.0541709],

							[0.64760416,	0.35239584],

							...,

							[0.99639224,	0.00360776],

							[0.02072033,	0.97927967],

							[0.56782222,	0.43217778]])

XGBoost	Model	with	scikit-learn

Let's	try	to	train	one	of	the	best	classifiers	on	the	market.	XGBoost	is	an
improvement	over	the	random	forest.	The	theoretical	background	of	the
classifier	out	of	the	scope	of	this	tutorial.	Keep	in	mind	that,	XGBoost	has	won
lots	of	kaggle	competitions.	With	an	average	dataset	size,	it	can	perform	as	good
as	a	deep	learning	algorithm	or	even	better.

The	classifier	is	challenging	to	train	because	it	has	a	high	number	of	parameters
to	tune.	You	can,	of	course,	use	GridSearchCV	to	choose	the	parameter	for	you.

Instead,	let's	see	how	to	use	a	better	way	to	find	the	optimal	parameters.
GridSearchCV	can	be	tedious	and	very	long	to	train	if	you	pass	many	values.
The	search	space	grows	along	with	the	number	of	parameters.	A	preferable
solution	is	to	use	RandomizedSearchCV.	This	method	consists	of	choosing	the
values	of	each	hyperparameter	after	each	iteration	randomly.	For	instance,	if	the
classifier	is	trained	over	1000	iterations,	then	1000	combinations	are	evaluated.
It	works	more	or	less	like.	GridSearchCV

You	need	to	import	xgboost.	If	the	library	is	not	installed,	please	use	pip3	install
xgboost	or

use	import	sys

!{sys.executable}	-m	pip	install	xgboost

In	Jupyter	environment

Next,

import	xgboost

from	sklearn.model_selection	import	RandomizedSearchCV

from	sklearn.model_selection	import	StratifiedKFold

The	next	step	includes	specifying	the	parameters	to	tune.	You	can	refer	to	the

official	documentation	to	see	all	the	parameters	to	tune.	For	the	sake	of	the
tutorial,	you	only	choose	two	hyperparameters	with	two	values	each.	XGBoost
takes	lots	of	time	to	train,	the	more	hyperparameters	in	the	grid,	the	longer	time
you	need	to	wait.

params	=	{

								'xgbclassifier__gamma':	[0.5,	1],

								'xgbclassifier__max_depth':	[3,	4]

								}

You	construct	a	new	pipeline	with	XGBoost	classifier.	You	choose	to	define	600
estimators.	Note	that	n_estimators	are	a	parameter	that	you	can	tune.	A	high
value	can	lead	to	overfitting.	You	can	try	by	yourself	different	values	but	be
aware	it	can	takes	hours.	You	use	the	default	value	for	the	other	parameters

model_xgb	=	make_pipeline(

				preprocess,

				xgboost.XGBClassifier(

																										n_estimators=600,

																										objective='binary:logistic',

																										silent=True,

																										nthread=1)

)

You	can	improve	the	cross-validation	with	the	Stratified	K-Folds	cross-validator.
You	construct	only	three	folds	here	to	faster	the	computation	but	lowering	the
quality.	Increase	this	value	to	5	or	10	at	home	to	improve	the	results.

You	choose	to	train	the	model	over	four	iterations.

skf	=	StratifiedKFold(n_splits=3,

																						shuffle	=	True,

																						random_state	=	1001)

random_search	=	RandomizedSearchCV(model_xgb,

																																			param_distributions=params,

																																			n_iter=4,

																																			scoring='accuracy',

																																			n_jobs=4,

																																			cv=skf.split(X_train,	y_train),

																																			verbose=3,

																																			random_state=1001)

The	randomized	search	is	ready	to	use,	you	can	train	the	model

#grid_xgb	=	GridSearchCV(model_xgb,	params,	cv=10,	iid=False)

random_search.fit(X_train,	y_train)

																								

Fitting	3	folds	for	each	of	4	candidates,	totalling	12	fits

[CV]	xgbclassifier__max_depth=3,	xgbclassifier__gamma=0.5	

............

[CV]	xgbclassifier__max_depth=3,	xgbclassifier__gamma=0.5	

............

[CV]	xgbclassifier__max_depth=3,	xgbclassifier__gamma=0.5	

............

[CV]	xgbclassifier__max_depth=4,	xgbclassifier__gamma=0.5	

............

[CV]		xgbclassifier__max_depth=3,	xgbclassifier__gamma=0.5,	

score=0.8759645283888057,	total=	1.0min

[CV]	xgbclassifier__max_depth=4,	xgbclassifier__gamma=0.5	

............

[CV]		xgbclassifier__max_depth=3,	xgbclassifier__gamma=0.5,	

score=0.8729701715996775,	total=	1.0min

[CV]		xgbclassifier__max_depth=3,	xgbclassifier__gamma=0.5,	

score=0.8706519235199263,	total=	1.0min

[CV]	xgbclassifier__max_depth=4,	xgbclassifier__gamma=0.5	

............

[CV]	xgbclassifier__max_depth=3,	xgbclassifier__gamma=1	

..............

[CV]		xgbclassifier__max_depth=4,	xgbclassifier__gamma=0.5,	

score=0.8735460094437406,	total=	1.3min

[CV]	xgbclassifier__max_depth=3,	xgbclassifier__gamma=1	

..............

[CV]		xgbclassifier__max_depth=3,	xgbclassifier__gamma=1,	

score=0.8722791661868018,	total=		57.7s

[CV]	xgbclassifier__max_depth=3,	xgbclassifier__gamma=1	

..............

[CV]		xgbclassifier__max_depth=3,	xgbclassifier__gamma=1,	

score=0.8753886905447426,	total=	1.0min

[CV]	xgbclassifier__max_depth=4,	xgbclassifier__gamma=1	

..............

[CV]		xgbclassifier__max_depth=4,	xgbclassifier__gamma=0.5,	

score=0.8697304768486523,	total=	1.3min

[CV]	xgbclassifier__max_depth=4,	xgbclassifier__gamma=1	

..............

[CV]		xgbclassifier__max_depth=4,	xgbclassifier__gamma=0.5,	

score=0.8740066797189912,	total=	1.4min

[CV]	xgbclassifier__max_depth=4,	xgbclassifier__gamma=1	

..............

[CV]		xgbclassifier__max_depth=3,	xgbclassifier__gamma=1,	

score=0.8707671043538355,	total=	1.0min

[CV]		xgbclassifier__max_depth=4,	xgbclassifier__gamma=1,	

score=0.8729701715996775,	total=	1.2min

[Parallel(n_jobs=4)]:	Done		10	out	of		12	|	elapsed:		3.6min	

remaining:			43.5s

[CV]		xgbclassifier__max_depth=4,	xgbclassifier__gamma=1,	

score=0.8736611770125533,	total=	1.2min

[CV]		xgbclassifier__max_depth=4,	xgbclassifier__gamma=1,	

score=0.8692697535130154,	total=	1.2min

[Parallel(n_jobs=4)]:	Done		12	out	of		12	|	elapsed:		3.6min	

finished

/Users/Thomas/anaconda3/envs/hello-tf/lib/python3.6/site-

packages/sklearn/model_selection/_search.py:737:	

DeprecationWarning:	The	default	of	the	`iid`	parameter	will	change	

from	True	to	False	in	version	0.22	and	will	be	removed	in	0.24.	

This	will	change	numeric	results	when	test-set	sizes	are	unequal.	

DeprecationWarning)

RandomizedSearchCV(cv=<generator	object	_BaseKFold.split	at	

0x1101eb830>,

										error_score='raise-deprecating',

										estimator=Pipeline(memory=None,

					steps=[('columntransformer',	ColumnTransformer(n_jobs=1,	

remainder='drop',	transformer_weights=None,

									transformers=[('standardscaler',	StandardScaler(copy=True,	

with_mean=True,	with_std=True),	[0,	2,	10,	4,	11,	12]),	

('onehotencoder',	OneHotEncoder(categorical_features=None,	

categories=None,...

							reg_alpha=0,	reg_lambda=1,	scale_pos_weight=1,	seed=None,

							silent=True,	subsample=1))]),

										fit_params=None,	iid='warn',	n_iter=4,	n_jobs=4,

										param_distributions={'xgbclassifier__gamma':	[0.5,	1],	

'xgbclassifier__max_depth':	[3,	4]},

										pre_dispatch='2*n_jobs',	random_state=1001,	refit=True,

										return_train_score='warn',	scoring='accuracy',	verbose=3)

As	you	can	see,	XGBoost	has	a	better	score	than	the	previous	logisitc	regression.

print("Best	parameter",	random_search.best_params_)

print("best	logistic	regression	from	grid	search:	%f"	%	

random_search.best_estimator_.score(X_test,	y_test))

Best	parameter	{'xgbclassifier__max_depth':	3,	

'xgbclassifier__gamma':	0.5}

best	logistic	regression	from	grid	search:	0.873157

random_search.best_estimator_.predict(X_test)																				

array(['<=50K',	'<=50K',	'<=50K',	...,	'<=50K',	'>50K',	'<=50K'],						

dtype=object)																			

Create	DNN	with	MLPClassifier	in	scikit-
learn

Finally,	you	can	train	a	deep	learning	algorithm	with	scikit-learn.	The	method	is
the	same	as	the	other	classifier.	The	classifier	is	available	at	MLPClassifier.

from	sklearn.neural_network	import	MLPClassifier																	

You	define	the	following	deep	learning	algorithm:

Adam	solver
Relu	activation	function
Alpha	=	0.0001
batch	size	of	150
Two	hidden	layers	with	100	and	50	neurons	respectively

model_dnn	=	make_pipeline(

				preprocess,

				MLPClassifier(solver='adam',

																		alpha=0.0001,

																		activation='relu',

																				batch_size=150,

																				hidden_layer_sizes=(200,	100),

																				random_state=1))

You	can	change	the	number	of	layers	to	improve	the	model

model_dnn.fit(X_train,	y_train)

		print("DNN	regression	score:	%f"	%	model_dnn.score(X_test,	

y_test))																			

DNN	regression	score:	0.821253

LIME:	Trust	your	Model

Now	that	you	have	a	good	model,	you	need	a	tool	to	trust	it.	Machine	learning
algorithm,	especially	random	forest	and	neural	network,	are	known	to	be	blax-
box	algorithm.	Say	differently,	it	works	but	no	one	knows	why.

Three	researchers	have	come	up	with	a	great	tool	to	see	how	the	computer	makes
a	prediction.	The	paper	is	called	Why	Should	I	Trust	You?

They	developed	an	algorithm	named	Local	Interpretable	Model-Agnostic
Explanations	(LIME).

Take	an	example:

sometimes	you	do	not	know	if	you	can	trust	a	machine-learning	prediction:

A	doctor,	for	example,	cannot	trust	a	diagnosis	just	because	a	computer	said	so.
You	also	need	to	know	if	you	can	trust	the	model	before	putting	it	into
production.

Imagine	we	can	understand	why	any	classifier	is	making	a	prediction	even
incredibly	complicated	models	such	as	neural	networks,	random	forests	or	svms
with	any	kernel

will	become	more	accessible	to	trust	a	prediction	if	we	can	understand	the
reasons	behind	it.	From	the	example	with	the	doctor,	if	the	model	told	him	which
symptoms	are	essential	you	would	trust	it,	it	is	also	easier	to	figure	out	if	you
should	not	trust	the	model.

Lime	can	tell	you	what	features	affect	the	decisions	of	the	classifier

Data	Preparation

They	are	a	couple	of	things	you	need	to	change	to	run	LIME	with	python.	First
of	all,	you	need	to	install	lime	in	the	terminal.	You	can	use	pip	install	lime

Lime	makes	use	of	LimeTabularExplainer	object	to	approximate	the	model
locally.	This	object	requires:

a	dataset	in	numpy	format
The	name	of	the	features:	feature_names
The	name	of	the	classes:	class_names
The	index	of	the	column	of	the	categorical	features:	categorical_features
The	name	of	the	group	for	each	categorical	features:	categorical_names

Create	numpy	train	set

You	can	copy	and	convert	df_train	from	pandas	to	numpy	very	easily

df_train.head(5)

#	Create	numpy	data

df_lime	=	df_train

df_lime.head(3)

Get	the	class	name	The	label	is	accessible	with	the	object	unique().	You	should
see:

'<=50K'
'>50K'

#	Get	the	class	name

class_names	=	df_lime.label.unique()

class_names

																								

array(['<=50K',	'>50K'],	dtype=object)																					

index	of	the	column	of	the	categorical	features

You	can	use	the	method	you	lean	before	to	get	the	name	of	the	group.	You

encode	the	label	with	LabelEncoder.	You	repeat	the	operation	on	all	the
categorical	features.

##	

import	sklearn.preprocessing	as	preprocessing

categorical_names	=	{}

for	feature	in	CATE_FEATURES:

				le	=	preprocessing.LabelEncoder()

				le.fit(df_lime[feature])

				df_lime[feature]	=	le.transform(df_lime[feature])

				categorical_names[feature]	=	le.classes_

print(categorical_names)				

{'workclass':	array(['?',	'Federal-gov',	'Local-gov',	'Never-

worked',	'Private',

							'Self-emp-inc',	'Self-emp-not-inc',	'State-gov',	'Without-

pay'],

						dtype=object),	'education':	array(['10th',	'11th',	'12th',	

'1st-4th',	'5th-6th',	'7th-8th',	'9th',

							'Assoc-acdm',	'Assoc-voc',	'Bachelors',	'Doctorate',	'HS-

grad',

							'Masters',	'Preschool',	'Prof-school',	'Some-college'],

						dtype=object),	'marital':	array(['Divorced',	'Married-AF-

spouse',	'Married-civ-spouse',

							'Married-spouse-absent',	'Never-married',	'Separated',	

'Widowed'],

						dtype=object),	'occupation':	array(['?',	'Adm-clerical',	

'Armed-Forces',	'Craft-repair',

							'Exec-managerial',	'Farming-fishing',	'Handlers-cleaners',

							'Machine-op-inspct',	'Other-service',	'Priv-house-serv',

							'Prof-specialty',	'Protective-serv',	'Sales',	'Tech-

support',

							'Transport-moving'],	dtype=object),	'relationship':	

array(['Husband',	'Not-in-family',	'Other-relative',	'Own-child',

							'Unmarried',	'Wife'],	dtype=object),	'race':	array(['Amer-

Indian-Eskimo',	'Asian-Pac-Islander',	'Black',	'Other',

							'White'],	dtype=object),	'sex':	array(['Female',	'Male'],	

dtype=object),	'native_country':	array(['?',	'Cambodia',	'Canada',	

'China',	'Columbia',	'Cuba',

							'Dominican-Republic',	'Ecuador',	'El-Salvador',	'England',

							'France',	'Germany',	'Greece',	'Guatemala',	'Haiti',	

'Honduras',

							'Hong',	'Hungary',	'India',	'Iran',	'Ireland',	'Italy',	

'Jamaica',

							'Japan',	'Laos',	'Mexico',	'Nicaragua',

							'Outlying-US(Guam-USVI-etc)',	'Peru',	'Philippines',	

'Poland',

							'Portugal',	'Puerto-Rico',	'Scotland',	'South',	'Taiwan',

							'Thailand',	'Trinadad&Tobago',	'United-States',	'Vietnam',

							'Yugoslavia'],	dtype=object)}

df_lime.dtypes																		

age															float64

workclass											int64

fnlwgt												float64

education											int64

education_num					float64

marital													int64

occupation										int64

relationship								int64

race																int64

sex																	int64

capital_gain						float64

capital_loss						float64

hours_week								float64

native_country						int64

label														object

dtype:	object

Now	that	the	dataset	is	ready,	you	can	construct	the	different	dataset.	You
actually	transform	the	data	outside	of	the	pipeline	in	order	to	avoid	errors	with
LIME.	The	training	set	in	the	LimeTabularExplainer	should	be	a	numpy	array
without	string.	With	the	method	above,	you	have	a	training	dataset	already
converted.

from	sklearn.model_selection	import	train_test_split

X_train_lime,	X_test_lime,	y_train_lime,	y_test_lime	=	

train_test_split(df_lime[features],

																																																				df_lime.label,

																																																				test_size	=	

0.2,

																																																				random_state=0)

X_train_lime.head(5)

You	can	make	the	pipeline	with	the	optimal	parameters	from	XGBoost

model_xgb	=	make_pipeline(

				preprocess,

				xgboost.XGBClassifier(max_depth	=	3,

																										gamma	=	0.5,

																										n_estimators=600,

																										objective='binary:logistic',

																										silent=True,

																										nthread=1))

model_xgb.fit(X_train_lime,	y_train_lime)

/Users/Thomas/anaconda3/envs/hello-tf/lib/python3.6/site-

packages/sklearn/preprocessing/_encoders.py:351:	FutureWarning:	The	

handling	of	integer	data	will	change	in	version	0.22.	Currently,	

the	categories	are	determined	based	on	the	range	[0,	max(values)],	

while	in	the	future	they	will	be	determined	based	on	the	unique	

values.

If	you	want	the	future	behavior	and	silence	this	warning,	you	can	

specify	"categories='auto'."In	case	you	used	a	LabelEncoder	before	

this	OneHotEncoder	to	convert	the	categories	to	integers,	then	you	

can	now	use	the	OneHotEncoder	directly.

		warnings.warn(msg,	FutureWarning)

Pipeline(memory=None,

					steps=[('columntransformer',	ColumnTransformer(n_jobs=1,	

remainder='drop',	transformer_weights=None,

									transformers=[('standardscaler',	StandardScaler(copy=True,	

with_mean=True,	with_std=True),	[0,	2,	10,	4,	11,	12]),	

('onehotencoder',	OneHotEncoder(categorical_features=None,	

categories=None,...

							reg_alpha=0,	reg_lambda=1,	scale_pos_weight=1,	seed=None,

							silent=True,	subsample=1))])

You	get	a	warning.	The	warning	explains	that	you	do	not	need	to	create	a	label
encoder	before	the	pipeline.	If	you	do	not	want	to	use	LIME,	you	are	fine	to	use
the	method	from	the	first	part	of	the	tutorial.	Otherwise,	you	can	keep	with	this
method,	first	create	an	encoded	dataset,	set	get	the	hot	one	encoder	within	the
pipeline.

print("best	logistic	regression	from	grid	search:	%f"	%	

model_xgb.score(X_test_lime,	y_test_lime))																							

best	logistic	regression	from	grid	search:	0.873157																							

model_xgb.predict_proba(X_test_lime)																					

array([[7.9646105e-01,	2.0353897e-01],

							[9.5173013e-01,	4.8269872e-02],

							[7.9344827e-01,	2.0655173e-01],

							...,

							[9.9031430e-01,	9.6856682e-03],

							[6.4581633e-04,	9.9935418e-01],

							[9.7104281e-01,	2.8957171e-02]],	dtype=float32)

Before	to	use	LIME	in	action,	let's	create	a	numpy	array	with	the	features	of	the
wrong	classification.	You	can	use	that	list	later	to	get	an	idea	about	what	mislead
the	classifier.

temp	=	pd.concat([X_test_lime,	y_test_lime],	axis=	1)

temp['predicted']	=	model_xgb.predict(X_test_lime)

temp['wrong']=		temp['label']	!=	temp['predicted']

temp	=	temp.query('wrong==True').drop('wrong',	axis=1)

temp=	temp.sort_values(by=['label'])

temp.shape

(826,	16)

You	create	a	lambda	function	to	retrieve	the	prediction	from	the	model	with	the
new	data.	You	will	need	it	soon.

predict_fn	=	lambda	x:	model_xgb.predict_proba(x).astype(float)

X_test_lime.dtypes

age															float64

workclass											int64

fnlwgt												float64

education											int64

education_num					float64

marital													int64

occupation										int64

relationship								int64

race																int64

sex																	int64

capital_gain						float64

capital_loss						float64

hours_week								float64

native_country						int64

dtype:	object

predict_fn(X_test_lime)																		

array([[7.96461046e-01,	2.03538969e-01],

							[9.51730132e-01,	4.82698716e-02],

							[7.93448269e-01,	2.06551731e-01],

							...,

							[9.90314305e-01,	9.68566816e-03],

							[6.45816326e-04,	9.99354184e-01],

							[9.71042812e-01,	2.89571714e-02]])

You	convert	the	pandas	dataframe	to	numpy	array

X_train_lime	=	X_train_lime.values

X_test_lime	=	X_test_lime.values

X_test_lime

array([[4.00000e+01,	5.00000e+00,	1.93524e+05,	...,	0.00000e+00,

								4.00000e+01,	3.80000e+01],

							[2.70000e+01,	4.00000e+00,	2.16481e+05,	...,	0.00000e+00,

								4.00000e+01,	3.80000e+01],

							[2.50000e+01,	4.00000e+00,	2.56263e+05,	...,	0.00000e+00,

								4.00000e+01,	3.80000e+01],

							...,

							[2.80000e+01,	6.00000e+00,	2.11032e+05,	...,	0.00000e+00,

								4.00000e+01,	2.50000e+01],

							[4.40000e+01,	4.00000e+00,	1.67005e+05,	...,	0.00000e+00,

								6.00000e+01,	3.80000e+01],

							[5.30000e+01,	4.00000e+00,	2.57940e+05,	...,	0.00000e+00,

								4.00000e+01,	3.80000e+01]])

model_xgb.predict_proba(X_test_lime)																					

array([[7.9646105e-01,	2.0353897e-01],

							[9.5173013e-01,	4.8269872e-02],

							[7.9344827e-01,	2.0655173e-01],

							...,

							[9.9031430e-01,	9.6856682e-03],

							[6.4581633e-04,	9.9935418e-01],

							[9.7104281e-01,	2.8957171e-02]],	dtype=float32)

print(features,

						class_names,

						categorical_features,

						categorical_names)

['age',	'workclass',	'fnlwgt',	'education',	'education_num',	

'marital',	'occupation',	'relationship',	'race',	'sex',	

'capital_gain',	'capital_loss',	'hours_week',	'native_country']	

['<=50K'	'>50K']	[1,	3,	5,	6,	7,	8,	9,	13]	{'workclass':	

array(['?',	'Federal-gov',	'Local-gov',	'Never-worked',	'Private',

							'Self-emp-inc',	'Self-emp-not-inc',	'State-gov',	'Without-

pay'],

						dtype=object),	'education':	array(['10th',	'11th',	'12th',	

'1st-4th',	'5th-6th',	'7th-8th',	'9th',

							'Assoc-acdm',	'Assoc-voc',	'Bachelors',	'Doctorate',	'HS-

grad',

							'Masters',	'Preschool',	'Prof-school',	'Some-college'],

						dtype=object),	'marital':	array(['Divorced',	'Married-AF-

spouse',	'Married-civ-spouse',

							'Married-spouse-absent',	'Never-married',	'Separated',	

'Widowed'],

						dtype=object),	'occupation':	array(['?',	'Adm-clerical',	

'Armed-Forces',	'Craft-repair',

							'Exec-managerial',	'Farming-fishing',	'Handlers-cleaners',

							'Machine-op-inspct',	'Other-service',	'Priv-house-serv',

							'Prof-specialty',	'Protective-serv',	'Sales',	'Tech-

support',

							'Transport-moving'],	dtype=object),	'relationship':	

array(['Husband',	'Not-in-family',	'Other-relative',	'Own-child',

							'Unmarried',	'Wife'],	dtype=object),	'race':	array(['Amer-

Indian-Eskimo',	'Asian-Pac-Islander',	'Black',	'Other',

							'White'],	dtype=object),	'sex':	array(['Female',	'Male'],	

dtype=object),	'native_country':	array(['?',	'Cambodia',	'Canada',	

'China',	'Columbia',	'Cuba',

							'Dominican-Republic',	'Ecuador',	'El-Salvador',	'England',

							'France',	'Germany',	'Greece',	'Guatemala',	'Haiti',	

'Honduras',

							'Hong',	'Hungary',	'India',	'Iran',	'Ireland',	'Italy',	

'Jamaica',

							'Japan',	'Laos',	'Mexico',	'Nicaragua',

							'Outlying-US(Guam-USVI-etc)',	'Peru',	'Philippines',	

'Poland',

							'Portugal',	'Puerto-Rico',	'Scotland',	'South',	'Taiwan',

							'Thailand',	'Trinadad&Tobago',	'United-States',	'Vietnam',

							'Yugoslavia'],	dtype=object)}

import	lime

import	lime.lime_tabular

###	Train	should	be	label	encoded	not	one	hot	encoded

explainer	=	lime.lime_tabular.LimeTabularExplainer(X_train_lime	,

																																																			feature_names	=	

features,

																																																			

class_names=class_names,

																																																			

categorical_features=categorical_features,	

																																																			

categorical_names=categorical_names,

																																																			kernel_width=3)

Lets	choose	a	random	household	from	the	test	set	and	see	the	model	prediction
and	how	the	computer	made	his	choice.

import	numpy	as	np

np.random.seed(1)

i	=	100

print(y_test_lime.iloc[i])

>50K

X_test_lime[i]																			

array([4.20000e+01,	4.00000e+00,	1.76286e+05,	7.00000e+00,	

1.20000e+01,

							2.00000e+00,	4.00000e+00,	0.00000e+00,	4.00000e+00,	

1.00000e+00,

							0.00000e+00,	0.00000e+00,	4.00000e+01,	3.80000e+01])

You	can	use	the	explainer	with	explain_instance	to	check	the	explanation	behind
the	model

exp	=	explainer.explain_instance(X_test_lime[i],	predict_fn,	

num_features=6)

exp.show_in_notebook(show_all=False)

We	can	see	that	the	classifier	predicted	the	household	correctly.	The	income	is,
indeed,	above	50k.

The	first	thing	we	can	say	is	the	classifier	is	not	that	sure	about	the	predicted
probabilities.	The	machine	predicts	the	household	has	an	income	over	50k	with	a
probability	of	64%.	This	64%	is	made	up	of	Capital	gain	and	marital.	The	blue
color	contributes	negatively	to	the	positive	class	and	the	orange	line,	positively.

The	classifier	is	confused	because	the	capital	gain	of	this	household	is	null,
while	the	capital	gain	is	usually	a	good	predictor	of	wealth.	Besides,	the
household	works	less	than	40	hours	per	week.	Age,	occupation,	and	sex
contribute	positively	to	the	classifier.

If	the	marital	status	were	single,	the	classifier	would	have	predicted	an	income
below	50k	(0.64-0.18	=	0.46)

We	can	try	with	another	household	which	has	been	wrongly	classified

temp.head(3)

temp.iloc[1,:-2]

age																		58

workclass													4

fnlwgt												68624

education												11

education_num									9

marital															2

occupation												4

relationship										0

race																		4

sex																			1

capital_gain										0

capital_loss										0

hours_week											45

native_country							38

Name:	20931,	dtype:	object

i	=	1

print('This	observation	is',	temp.iloc[i,-2:])

This	observation	is	label								<=50K

predicted					>50K

Name:	20931,	dtype:	object

exp	=	explainer.explain_instance(temp.iloc[1,:-2],	predict_fn,	

num_features=6)

exp.show_in_notebook(show_all=False)

The	classifier	predicted	an	income	below	50k	while	it	is	untrue.	This	household
seems	odd.	It	does	not	have	a	capital	gain,	nor	capital	loss.	He	is	divorced	and	is
60	years	old,	and	it	is	an	educated	people,	i.e.,	education_num	>	12.	According
to	the	overall	pattern,	this	household	should,	like	explain	by	the	classifier,	get	an
income	below	50k.

You	try	to	play	around	with	LIME.	You	will	notice	gross	mistakes	from	the
classifier.

You	can	check	the	GitHub	of	the	owner	of	the	library.	They	provide	extra
documentation	for	image	and	text	classification.

Summary

Below	is	a	list	of	some	useful	command	with	scikit	learn	version	>=0.20

create	train/test	dataset trainees	split

Build	a	pipeline

select	the	column	and	apply	the	transformation makecolumntransformer

type	of	transformation

standardize StandardScaler

min	max MinMaxScaler

Normalize Normalizer

Impute	missing	value Imputer

Convert	categorical OneHotEncoder

Fit	and	transform	the	data fit_transform

Make	the	pipeline make_pipeline

Basic	model

logistic	regression LogisticRegression

XGBoost XGBClassifier

Neural	net MLPClassifier

Grid	search GridSearchCV

Randomized	search RandomizedSearchCV

Chapter	13:	Linear	Regression

Linear	regression

In	this	tutorial,	you	will	learn	basic	principles	of	linear	regression	and	machine
learning	in	general.

TensorFlow	provides	tools	to	have	full	control	of	the	computations.	This	is	done
with	the	low-level	API.	On	top	of	that,	TensorFlow	is	equipped	with	a	vast	array
of	APIs	to	perform	many	machine	learning	algorithms.	This	is	the	high-level
API.	TensorFlow	calls	them	estimators

Low-level	API:	Build	the	architecture,	optimization	of	the	model	from
scratch.	It	is	complicated	for	a	beginner
High-level	API:	Define	the	algorithm.	It	is	easer-friendly.	TensorFlow
provides	a	toolbox	calls	estimator	to	construct,	train,	evaluate	and	make	a
prediction.

In	this	tutorial,	you	will	use	the	estimators	only.	The	computations	are	faster
and	are	easier	to	implement.	The	first	part	of	the	tutorial	explains	how	to	use	the
gradient	descent	optimizer	to	train	a	linear	regression.	In	a	second	part,	you	will
use	the	Boston	dataset	to	predict	the	price	of	a	house	using	TensorFlow
estimator.

How	to	train	a	linear	regression	model

Before	we	begin	to	train	the	model,	let's	have	look	at	what	is	a	linear	regression.

Imagine	you	have	two	variables,	x	and	y	and	your	task	is	to	predict	the	value	of
knowing	the	value	of	.	If	you	plot	the	data,	you	can	see	a	positive	relationship
between	your	independent	variable,	x	and	your	dependent	variable	y.

You	may	observe,	if	x=1,y	will	roughly	be	equal	to	6	and	if	x=2,y	will	be	around
8.5.

This	is	not	a	very	accurate	method	and	prone	to	error,	especially	with	a	dataset
with	hundreds	of	thousands	of	points.

A	linear	regression	is	evaluated	with	an	equation.	The	variable	y	is	explained	by
one	or	many	covariates.	In	your	example,	there	is	only	one	dependent	variable.	If
you	have	to	write	this	equation,	it	will	be:

With:

	is	the	bias.	i.e.	if	x=0,	y=
	is	the	weight	associated	to	x
	is	the	residual	or	the	error	of	the	model.	It	includes	what	the	model

cannot	learn	from	the	data

Imagine	you	fit	the	model	and	you	find	the	following	solution	for:

	=	3.8
	=	2.78

You	can	substitute	those	numbers	in	the	equation	and	it	becomes:

y=	3.8	+	2.78x

You	have	now	a	better	way	to	find	the	values	for	y.	That	is,	you	can	replace	x
with	any	value	you	want	to	predict	y.	In	the	image	below,	we	have	replace	x	in
the	equation	with	all	the	values	in	the	dataset	and	plot	the	result.

The	red	line	represents	the	fitted	value,	that	is	the	values	of	y	for	each	value	of	x.
You	don't	need	to	see	the	value	of	x	to	predict	y,	for	each	x	there	is	any	which
belongs	to	the	red	line.	You	can	also	predict	for	values	of	x	higher	than	2!

If	you	want	to	extend	the	linear	regression	to	more	covariates,	you	can	by	adding
more	variables	to	the	model.	The	difference	between	traditional	analysis	and
linear	regression	is	the	linear	regression	looks	at	how	y	will	react	for	each
variable	x	taken	independently.

Let's	see	an	example.	Imagine	you	want	to	predict	the	sales	of	an	ice	cream	shop.
The	dataset	contains	different	information	such	as	the	weather	(i.e	rainy,	sunny,
cloudy),	customer	informations	(i.e	salary,	gender,	marital	status).

Traditional	analysis	will	try	to	predict	the	sale	by	let's	say	computing	the	average
for	each	variable	and	try	to	estimate	the	sale	for	different	scenarios.	It	will	lead
to	poor	predictions	and	restrict	the	analysis	to	the	chosen	scenario.

If	you	use	linear	regression,	you	can	write	this	equation:

The	algorithm	will	find	the	best	solution	for	the	weights;	it	means	it	will	try	to
minimize	the	cost	(the	difference	between	the	fitted	line	and	the	data	points).

How	the	algorithm	works

The	algorithm	will	choose	a	random	number	for	each	 	and	 	and	replace	the
value	of	x	to	get	the	predicted	value	of	y.	If	the	dataset	has	100	observations,	the
algorithm	computes	100	predicted	values.

We	can	compute	the	error,	noted	 	of	the	model,	which	is	the	difference
between	the	predicted	value	and	the	real	value.	A	positive	error	means	the	model
underestimates	the	prediction	of	y,	and	a	negative	error	means	the	model
overestimates	the	prediction	of	y.

Your	goal	is	to	minimize	the	square	of	the	error.	The	algorithm	computes	the
mean	of	the	square	error.	This	step	is	called	minimization	of	the	error.	For	linear
regression	is	the	Mean	Square	Error,	also	called	MSE.	Mathematically,	it	is:

Where:

	is	the	weights	so	 	refers	to	the	predicted	value
y	is	the	real	values
m	is	the	number	of	observations

Note	that	 	means	it	uses	the	transpose	of	the	matrices.	The	 	is	the
mathematical	notation	of	the	mean.

The	goal	is	to	find	the	best	 	that	minimize	the	MSE

If	the	average	error	is	large,	it	means	the	model	performs	poorly	and	the	weights
are	not	chosen	properly.	To	correct	the	weights,	you	need	to	use	an	optimizer.
The	traditional	optimizer	is	called	Gradient	Descent.

The	gradient	descent	takes	the	derivative	and	decreases	or	increases	the	weight.
If	the	derivative	is	positive,	the	weight	is	decreased.	If	the	derivative	is	negative,

the	weight	increases.	The	model	will	update	the	weights	and	recompute	the	error.
This	process	is	repeated	until	the	error	does	not	change	anymore.	Each	process	is
called	an	iteration.	Besides,	the	gradients	are	multiplied	by	a	learning	rate.	It
indicates	the	speed	of	the	learning.

If	the	learning	rate	is	too	small,	it	will	take	very	long	time	for	the	algorithm	to
converge	(i.e	requires	lots	of	iterations).	If	the	learning	rate	is	too	high,	the
algorithm	might	never	converge.

You	can	see	from	the	picture	above,	the	model	repeats	the	process	about	20
times	before	to	find	a	stable	value	for	the	weights,	therefore	reaching	the	lowest
error.

Note	that,	the	error	is	not	equal	to	zero	but	stabilizes	around	5.	It	means,	the
model	makes	a	typical	error	of	5.	If	you	want	to	reduce	the	error,	you	need	to
add	more	information	to	the	model	such	as	more	variables	or	use	different
estimators.

You	remember	the	first	equation

The	final	weights	are	3.8	and	2.78.	The	video	below	shows	you	how	the	gradient
descent	optimize	the	loss	function	to	find	this	weights

How	to	train	a	Linear	Regression	with
TensorFlow

Now	that	you	have	a	better	understanding	of	what	is	happening	behind	the	hood,
you	are	ready	to	use	the	estimator	API	provided	by	TensorFlow	to	train	your	first
linear	regression.

You	will	use	the	Boston	Dataset,	which	includes	the	following	variables

crim per	capita	crime	rate	by	town
zn proportion	of	residential	land	zoned	for	lots	over	25,000	sq.ft.
indus proportion	of	non-retail	business	acres	per	town.
nox nitric	oxides	concentration
rm average	number	of	rooms	per	dwelling
age proportion	of	owner-occupied	units	built	before	1940
dis weighted	distances	to	five	Boston	employment	centers
tax full-value	property-tax	rate	per	dollars	10,000
ptratio pupil-teacher	ratio	by	town
medv Median	value	of	owner-occupied	homes	in	thousand	dollars

You	will	create	three	different	datasets:

dataset objective shape
Training Train	the	model	and	obtain	the	weights 400,	10
Evaluation Evaluate	the	performance	of	the	model	on	unseen	data 100,	10
Predict Use	the	model	to	predict	house	value	on	new	data 6,	10

The	objectives	is	to	use	the	features	of	the	dataset	to	predict	the	value	of	the
house.

During	the	second	part	of	the	tutorial,	you	will	learn	how	to	use	TensorFlow	with
three	different	way	to	import	the	data:

With	Pandas

With	Numpy
Only	TF

Note	that,	all	options	provide	the	same	results.

You	will	learn	how	to	use	the	high-level	API	to	build,	train	an	evaluate	a	linear
regression	model.	If	you	were	using	the	low-level	API,	you	had	to	define	by
hand	the:

Loss	function
Optimize:	Gradient	descent
Matrices	multiplication
Graph	and	tensor

This	is	tedious	and	more	complicated	for	beginner.

Pandas

You	need	to	import	the	necessary	libraries	to	train	the	model.

import	pandas	as	pd

from	sklearn	import	datasets

import	tensorflow	as	tf

import	itertools																								

Step	1)	Import	the	data	with	panda.

You	define	the	column	names	and	store	it	in	COLUMNS.	You	can	use
pd.read_csv()	to	import	the	data.

COLUMNS	=	["crim",	"zn",	"indus",	"nox",	"rm",	"age",

											"dis",	"tax",	"ptratio",	"medv"]

training_set	=	pd.read_csv("E:/boston_train.csv",
skipinitialspace=True,skiprows=1,	names=COLUMNS)

test_set	=	pd.read_csv("E:/boston_test.csv",	skipinitialspace=True,skiprows=1,
names=COLUMNS)

prediction_set	=	pd.read_csv("E:/boston_predict.csv",
skipinitialspace=True,skiprows=1,	names=COLUMNS)

You	can	print	the	shape	of	the	data.

print(training_set.shape,	test_set.shape,	prediction_set.shape)																			

Output

(400,	10)	(100,	10)	(6,	10)

Note	that	the	label,	i.e.	your	y,	is	included	in	the	dataset.	So	you	need	to	define
two	other	lists.	One	containing	only	the	features	and	one	with	the	name	of	the

label	only.	These	two	lists	will	tell	your	estimator	what	are	the	features	in	the
dataset	and	what	column	name	is	the	label

It	is	done	with	the	code	below.

FEATURES	=	["crim",	"zn",	"indus",	"nox",	"rm",																											

																	"age",	"dis",	"tax",	"ptratio"]

LABEL	=	"medv"																		

Step	2)	Convert	the	data

You	need	to	convert	the	numeric	variables	in	the	proper	format.	Tensorflow
provides	a	method	to	convert	continuous	variable:
tf.feature_column.numeric_column().

In	the	previous	step,	you	define	a	list	a	feature	you	want	to	include	in	the	model.
Now	you	can	use	this	list	to	convert	them	into	numeric	data.	If	you	want	to
exclude	features	in	your	model,	feel	free	to	drop	one	or	more	variables	in	the	list
FEATURES	before	you	construct	the	feature_cols

Note	that	you	will	use	Python	list	comprehension	with	the	list	FEATURES	to
create	a	new	list	named	feature_cols.	It	helps	you	avoid	writing	nine	times
tf.feature_column.numeric_column().	A	list	comprehension	is	a	faster	and
cleaner	way	to	create	new	lists

feature_cols	=	[tf.feature_column.numeric_column(k)	for	k	in	

FEATURES]																			

Step	3)	Define	the	estimator

In	this	step,	you	need	to	define	the	estimator.	Tensorflow	currently	provides	6
pre-built	estimators,	including	3	for	classification	task	and	3	for	regression	task:

Regressor
DNNRegressor
LinearRegressor

DNNLineaCombinedRegressor
Classifier

DNNClassifier
LinearClassifier
DNNLineaCombinedClassifier

In	this	tutorial,	you	will	use	the	Linear	Regressor.	To	access	this	function,	you
need	to	use	tf.estimator.

The	function	needs	two	arguments:

feature_columns:	Contains	the	variables	to	include	in	the	model
model_dir:	path	to	store	the	graph,	save	the	model	parameters,	etc

Tensorflow	will	automatically	create	a	file	named	train	in	your	working
directory.	You	need	to	use	this	path	to	access	the	Tensorboard.

estimator	=	tf.estimator.LinearRegressor(

								feature_columns=feature_cols,			

								model_dir="train")																						

Output

INFO:tensorflow:Using	default	config.

INFO:tensorflow:Using	config:	{'_model_dir':	'train',	

'_tf_random_seed':	None,	'_save_summary_steps':	100,	

'_save_checkpoints_steps':	None,	'_save_checkpoints_secs':	600,	

'_session_config':	None,	'_keep_checkpoint_max':	5,	

'_keep_checkpoint_every_n_hours':	10000,	'_log_step_count_steps':	

100,	'_train_distribute':	None,	'_service':	None,	'_cluster_spec':	

<tensorflow.python.training.server_lib.ClusterSpec	object	at	

0x1a215dc550>,	'_task_type':	'worker',	'_task_id':	0,	

'_global_id_in_cluster':	0,	'_master':	'',	'_evaluation_master':	

'',	'_is_chief':	True,	'_num_ps_replicas':	0,	

'_num_worker_replicas':	1}

The	tricky	part	with	TensorFlow	is	the	way	to	feed	the	model.	Tensorflow	is
designed	to	work	with	parallel	computing	and	very	large	dataset.	Due	to	the

limitation	of	the	machine	resources,	it	is	impossible	to	feed	the	model	with	all
the	data	at	once.	For	that,	you	need	to	feed	a	batch	of	data	each	time.	Note	that,
we	are	talking	about	huge	dataset	with	millions	or	more	records.	If	you	don't	add
batch,	you	will	end	up	with	a	memory	error.

For	instance,	if	your	data	contains	100	observations	and	you	define	a	batch	size
of	10,	it	means	the	model	will	see	10	observations	for	each	iteration	(10*10).

When	the	model	has	seen	all	the	data,	it	finishes	one	epoch.	An	epoch	defines
how	many	times	you	want	the	model	to	see	the	data.	It	is	better	to	set	this	step	to
none	and	let	the	model	performs	iteration	number	of	time.

A	second	information	to	add	is	if	you	want	to	shuffle	the	data	before	each
iteration.	During	the	training,	it	is	important	to	shuffle	the	data	so	that	the	model
does	not	learn	specific	pattern	of	the	dataset.	If	the	model	learns	the	details	of	the
underlying	pattern	of	the	data,	it	will	have	difficulties	to	generalize	the
prediction	for	unseen	data.	This	is	called	overfitting.	The	model	performs	well
on	the	training	data	but	cannot	predict	correctly	for	unseen	data.

TensorFlow	makes	this	two	steps	easy	to	do.	When	the	data	goes	to	the	pipeline,
it	knows	how	many	observations	it	needs	(batch)	and	if	it	has	to	shuffle	the	data.

To	instruct	Tensorflow	how	to	feed	the	model,	you	can	use	pandas_input_fn.
This	object	needs	5	parameters:

x:	feature	data
y:	label	data
batch_size:	batch.	By	default	128
num_epoch:	Number	of	epoch,	by	default	1
shuffle:	Shuffle	or	not	the	data.	By	default,	None

You	need	to	feed	the	model	many	times	so	you	define	a	function	to	repeat	this
process.	all	this	function	get_input_fn.

def	get_input_fn(data_set,	num_epochs=None,	n_batch	=	128,	

shuffle=True):				

									return	tf.estimator.inputs.pandas_input_fn(

									x=pd.DataFrame({k:	data_set[k].values	for	k	in	FEATURES}),								

									y	=	pd.Series(data_set[LABEL].values),							

									batch_size=n_batch,										

									num_epochs=num_epochs,							

									shuffle=shuffle)																							

The	usual	method	to	evaluate	the	performance	of	a	model	is	to:

Train	the	model
Evaluate	the	model	in	a	different	dataset
Make	prediction

Tensorflow	estimator	provides	three	different	functions	to	carry	out	this	three
steps	easily.

Step	4):	Train	the	model

You	can	use	the	estimator	train	to	evaluate	the	model.	The	train	estimator	needs
an	input_fn	and	a	number	of	steps.	You	can	use	the	function	you	created	above
to	feed	the	model.	Then,	you	instruct	the	model	to	iterate	1000	times.	Note	that,
you	don't	specify	the	number	of	epochs,	you	let	the	model	iterates	1000	times.	If
you	set	the	number	of	epoch	to	1,	then	the	model	will	iterate	4	times:	There	are
400	records	in	the	training	set,	and	the	batch	size	is	128

1.	 128	rows
2.	 128	rows
3.	 128	rows
4.	 16	rows

Therefore,	it	is	easier	to	set	the	number	of	epoch	to	none	and	define	the	number
of	iteration.

estimator.train(input_fn=get_input_fn(training_set,																																								

																																											num_epochs=None,																																							

																																											n_batch	=	128,																																							

																																											shuffle=False),																																							

																																											steps=1000)																			

Output

INFO:tensorflow:Calling	model_fn.

INFO:tensorflow:Done	calling	model_fn.

INFO:tensorflow:Create	CheckpointSaverHook.

INFO:tensorflow:Graph	was	finalized.

INFO:tensorflow:Running	local_init_op.

INFO:tensorflow:Done	running	local_init_op.

INFO:tensorflow:Saving	checkpoints	for	1	into	train/model.ckpt.

INFO:tensorflow:loss	=	83729.64,	step	=	1

INFO:tensorflow:global_step/sec:	238.616

INFO:tensorflow:loss	=	13909.657,	step	=	101	(0.420	sec)

INFO:tensorflow:global_step/sec:	314.293

INFO:tensorflow:loss	=	12881.449,	step	=	201	(0.320	sec)

INFO:tensorflow:global_step/sec:	303.863

INFO:tensorflow:loss	=	12391.541,	step	=	301	(0.327	sec)

INFO:tensorflow:global_step/sec:	308.782

INFO:tensorflow:loss	=	12050.5625,	step	=	401	(0.326	sec)

INFO:tensorflow:global_step/sec:	244.969

INFO:tensorflow:loss	=	11766.134,	step	=	501	(0.407	sec)

INFO:tensorflow:global_step/sec:	155.966

INFO:tensorflow:loss	=	11509.922,	step	=	601	(0.641	sec)

INFO:tensorflow:global_step/sec:	263.256

INFO:tensorflow:loss	=	11272.889,	step	=	701	(0.379	sec)

INFO:tensorflow:global_step/sec:	254.112

INFO:tensorflow:loss	=	11051.9795,	step	=	801	(0.396	sec)

INFO:tensorflow:global_step/sec:	292.405

INFO:tensorflow:loss	=	10845.855,	step	=	901	(0.341	sec)

INFO:tensorflow:Saving	checkpoints	for	1000	into	train/model.ckpt.

INFO:tensorflow:Loss	for	final	step:	5925.9873.

You	can	check	the	Tensorboard	will	the	following	command:

activate	hello-tf

#	For	MacOS

tensorboard	--logdir=./train

#	For	Windows

tensorboard	--logdir=train																						

Step	5)	Evaluate	your	model

You	can	evaluate	the	fit	of	your	model	on	the	test	set	with	the	code	below:

ev	=	estimator.evaluate(

										input_fn=get_input_fn(test_set,																										

										num_epochs=1,																										

										n_batch	=	128,																										

										shuffle=False))																							

Output

INFO:tensorflow:Calling	model_fn.

INFO:tensorflow:Done	calling	model_fn.

INFO:tensorflow:Starting	evaluation	at	2018-05-13-01:43:13

INFO:tensorflow:Graph	was	finalized.

INFO:tensorflow:Restoring	parameters	from	train/model.ckpt-1000

INFO:tensorflow:Running	local_init_op.

INFO:tensorflow:Done	running	local_init_op.

INFO:tensorflow:Finished	evaluation	at	2018-05-13-01:43:13

INFO:tensorflow:Saving	dict	for	global	step	1000:	average_loss	=	

32.15896,	global_step	=	1000,	loss	=	3215.896

You	can	print	the	loss	with	the	code	below:

loss_score	=	ev["loss"]

print("Loss:	{0:f}".format(loss_score))																	

Output

Loss:	3215.895996

The	model	has	a	loss	of	3215.	You	can	check	the	summary	statistic	to	get	an	idea
of	how	big	the	error	is.

training_set['medv'].describe()

Output

count				400.000000

mean						22.625500

std								9.572593

min								5.000000

25%							16.600000

50%							21.400000

75%							25.025000

max							50.000000

Name:	medv,	dtype:	float64																						

From	the	summary	statistic	above,	you	know	that	the	average	price	for	a	house	is
22	thousand,	with	a	minimum	price	of	9	thousands	and	maximum	of	50
thousand.	The	model	makes	a	typical	error	of	3k	dollars.

Step	6)	Make	the	prediction

Finally,	you	can	use	the	estimator	predict	to	estimate	the	value	of	6	Boston
houses.

y	=	estimator.predict(

									input_fn=get_input_fn(prediction_set,																											

									num_epochs=1,																										

									n_batch	=	128,																										

									shuffle=False))																								

To	print	the	estimated	values	of	,	you	can	use	this	code:

predictions	=	list(p["predictions"]	for	p	in	itertools.islice(y,	

6))print("Predictions:	{}".format(str(predictions)))																					

Output

INFO:tensorflow:Calling	model_fn.

INFO:tensorflow:Done	calling	model_fn.

INFO:tensorflow:Graph	was	finalized.

INFO:tensorflow:Restoring	parameters	from	train/model.ckpt-1000

INFO:tensorflow:Running	local_init_op.

INFO:tensorflow:Done	running	local_init_op.

Predictions:	[array([32.297546],	dtype=float32),	array([18.96125],	

dtype=float32),	array([27.270979],	dtype=float32),	

array([29.299236],	dtype=float32),	array([16.436684],	

dtype=float32),	array([21.460876],	dtype=float32)]

The	model	forecast	the	following	values:

House Prediction

1 32.29

2 18.96

3 27.27

4 29.29

5 16.43

7 21.46

Note	that	we	don't	know	the	true	value	of	.	In	the	tutorial	of	deep	learning,	you
will	try	to	beat	the	linear	model

Numpy	Solution

This	section	explains	how	to	train	the	model	using	a	numpy	estimator	to	feed	the
data.	The	method	is	the	same	exept	that	you	will	use	numpy_input_fn	estimator.

training_set_n	=	pd.read_csv("E:/boston_train.csv").values

test_set_n	=	pd.read_csv("E:/boston_test.csv").values

prediction_set_n	=	pd.read_csv("E:/boston_predict.csv").values

Step	1)	Import	the	data

First	of	all,	you	need	to	differentiate	the	feature	variables	from	the	label.	You
need	to	do	this	for	the	training	data	and	evaluation.	It	is	faster	to	define	a
function	to	split	the	data.

def	prepare_data(df):					

								X_train	=	df[:,	:-3]				

								y_train	=	df[:,-3]				

								return	X_train,	y_train																	

You	can	use	the	function	to	split	the	label	from	the	features	of	the	train/evaluate
dataset

X_train,	y_train	=	prepare_data(training_set_n)

X_test,	y_test	=	prepare_data(test_set_n)																							

You	need	to	exclude	the	last	column	of	the	prediction	dataset	because	it	contains
only	NaN

x_predict	=	prediction_set_n[:,	:-2]																					

Confirm	the	shape	of	the	array.	Note	that,	the	label	should	not	have	a	dimension,
it	means	(400,).

print(X_train.shape,	y_train.shape,	x_predict.shape)																						

Output

(400,	9)	(400,)	(6,	9)																			

You	can	construct	the	feature	columns	as	follow:

feature_columns	=	[tf.feature_column.numeric_column('x',	

shape=X_train.shape[1:])]																	

The	estimator	is	defined	as	before,	you	instruct	the	feature	columns	and	where	to
save	the	graph.

estimator	=	tf.estimator.LinearRegressor(

									feature_columns=feature_columns,				

									model_dir="train1")																				

Output

INFO:tensorflow:Using	default	config.

INFO:tensorflow:Using	config:	{'_model_dir':	'train1',	

'_tf_random_seed':	None,	'_save_summary_steps':	100,	

'_save_checkpoints_steps':	None,	'_save_checkpoints_secs':	600,	

'_session_config':	None,	'_keep_checkpoint_max':	5,	

'_keep_checkpoint_every_n_hours':	10000,	'_log_step_count_steps':	

100,	'_train_distribute':	None,	'_service':	None,	'_cluster_spec':	

<tensorflow.python.training.server_lib.ClusterSpec	object	at	

0x1a218d8f28>,	'_task_type':	'worker',	'_task_id':	0,	

'_global_id_in_cluster':	0,	'_master':	'',	'_evaluation_master':	

'',	'_is_chief':	True,	'_num_ps_replicas':	0,	

'_num_worker_replicas':	1}																	

You	can	use	the	numpy	estimapor	to	feed	the	data	to	the	model	and	then	train	the
model.	Note	that,	we	define	the	input_fn	function	before	to	ease	the	readability.

#	Train	the	estimatortrain_input	=	

tf.estimator.inputs.numpy_input_fn(

											x={"x":	X_train},				

											y=y_train,				

											batch_size=128,				

											shuffle=False,				

											num_epochs=None)

											estimator.train(input_fn	=	train_input,steps=5000)																				

Output

INFO:tensorflow:Calling	model_fn.

INFO:tensorflow:Done	calling	model_fn.

INFO:tensorflow:Create	CheckpointSaverHook.

INFO:tensorflow:Graph	was	finalized.

INFO:tensorflow:Running	local_init_op.

INFO:tensorflow:Done	running	local_init_op.

INFO:tensorflow:Saving	checkpoints	for	1	into	train1/model.ckpt.

INFO:tensorflow:loss	=	83729.64,	step	=	1

INFO:tensorflow:global_step/sec:	490.057

INFO:tensorflow:loss	=	13909.656,	step	=	101	(0.206	sec)

INFO:tensorflow:global_step/sec:	788.986

INFO:tensorflow:loss	=	12881.45,	step	=	201	(0.126	sec)

INFO:tensorflow:global_step/sec:	736.339

INFO:tensorflow:loss	=	12391.541,	step	=	301	(0.136	sec)

INFO:tensorflow:global_step/sec:	383.305

INFO:tensorflow:loss	=	12050.561,	step	=	401	(0.260	sec)

INFO:tensorflow:global_step/sec:	859.832

INFO:tensorflow:loss	=	11766.133,	step	=	501	(0.117	sec)

INFO:tensorflow:global_step/sec:	804.394

INFO:tensorflow:loss	=	11509.918,	step	=	601	(0.125	sec)

INFO:tensorflow:global_step/sec:	753.059

INFO:tensorflow:loss	=	11272.891,	step	=	701	(0.134	sec)

INFO:tensorflow:global_step/sec:	402.165

INFO:tensorflow:loss	=	11051.979,	step	=	801	(0.248	sec)

INFO:tensorflow:global_step/sec:	344.022

INFO:tensorflow:loss	=	10845.854,	step	=	901	(0.288	sec)

INFO:tensorflow:Saving	checkpoints	for	1000	into	train1/model.ckpt.

INFO:tensorflow:Loss	for	final	step:	5925.985.

Out[23]:

<tensorflow.python.estimator.canned.linear.LinearRegressor	at	

0x1a1b6ea860>

You	replicate	the	same	step	with	a	different	estimator	to	evaluate	your	model

eval_input	=	tf.estimator.inputs.numpy_input_fn(

							x={"x":	X_test},				

							y=y_test,	

							shuffle=False,				

							batch_size=128,				

							num_epochs=1)

			estimator.evaluate(eval_input,steps=None)																				

Output

INFO:tensorflow:Calling	model_fn.

INFO:tensorflow:Done	calling	model_fn.

INFO:tensorflow:Starting	evaluation	at	2018-05-13-01:44:00

INFO:tensorflow:Graph	was	finalized.

INFO:tensorflow:Restoring	parameters	from	train1/model.ckpt-1000

INFO:tensorflow:Running	local_init_op.

INFO:tensorflow:Done	running	local_init_op.

INFO:tensorflow:Finished	evaluation	at	2018-05-13-01:44:00

INFO:tensorflow:Saving	dict	for	global	step	1000:	average_loss	=	

32.158947,	global_step	=	1000,	loss	=	3215.8945

Out[24]:

{'average_loss':	32.158947,	'global_step':	1000,	'loss':	3215.8945}

Finaly,	you	can	compute	the	prediction.	It	should	be	the	similar	as	pandas.

test_input	=	tf.estimator.inputs.numpy_input_fn(

								x={"x":	x_predict},				

								batch_size=128,				

								num_epochs=1,			

								shuffle=False)

								y	=	estimator.predict(test_input)																							

predictions	=	list(p["predictions"]	for	p	in	itertools.islice(y,	

6))

print("Predictions:	{}".format(str(predictions)))																								

Output

INFO:tensorflow:Calling	model_fn.

INFO:tensorflow:Done	calling	model_fn.

INFO:tensorflow:Graph	was	finalized.

INFO:tensorflow:Restoring	parameters	from	train1/model.ckpt-1000

INFO:tensorflow:Running	local_init_op.

INFO:tensorflow:Done	running	local_init_op.

Predictions:	[array([32.297546],	dtype=float32),	array([18.961248],	

dtype=float32),	array([27.270979],	dtype=float32),	

array([29.299242],	dtype=float32),	array([16.43668],	

dtype=float32),	array([21.460878],	dtype=float32)]

Tensorflow	solution

The	last	section	is	dedicated	to	a	TensorFlow	solution.	This	method	is	sligthly
more	complicated	than	the	other	one.

Note	that	if	you	use	Jupyter	notebook,	you	need	to	Restart	and	clean	the	kernel
to	run	this	session.

TensorFlow	has	built	a	great	tool	to	pass	the	data	into	the	pipeline.	In	this
section,	you	will	build	the	input_fn	function	by	yourself.

Step	1)	Define	the	path	and	the	format	of	the	data

First	of	all,	you	declare	two	variables	with	the	path	of	the	csv	file.	Note	that,	you
have	two	files,	one	for	the	training	set	and	one	for	the	testing	set.

import	tensorflow	as	tf

df_train	=	"E:/boston_train.csv"

df_eval	=	"E:/boston_test.csv"

Then,	you	need	to	define	the	columns	you	want	to	use	from	the	csv	file.	We	will
use	all.	After	that,	you	need	to	declare	the	type	of	variable	it	is.

Floats	variable	are	defined	by	[0.]

COLUMNS	=	["crim",	"zn",	"indus",	"nox",	"rm",	"age",																													

																"dis",	"tax",	"ptratio",	"medv"]RECORDS_ALL	=	

[[0.0],	[0.0],	[0.0],	[0.0],[0.0],[0.0],[0.0],[0.0],[0.0],[0.0]]																			

Step	2)	Define	the	input_fn	function

The	function	can	be	broken	into	three	part:

1.	 Import	the	data

2.	 Create	the	iterator
3.	 Consume	the	data

Below	is	the	overal	code	to	define	the	function.	The	code	will	be	explained	after

def	input_fn(data_file,	batch_size,	num_epoch	=	None):																												

							#	Step	1																									

										def	parse_csv(value):								

										columns	=	tf.decode_csv(value,	record_defaults=	

RECORDS_ALL)								

										features	=	dict(zip(COLUMNS,	columns))																																	

										#labels	=	features.pop('median_house_value')								

										labels	=		features.pop('medv')								

										return	features,	labels																																																								

										

										#	Extract	lines	from	input	files	using	the	

										Dataset	API.				dataset	=	

(tf.data.TextLineDataset(data_file)	#	Read	text	file							

										.skip(1)	#	Skip	header	row							

										.map(parse_csv))																									

										

										dataset	=	dataset.repeat(num_epoch)				

										dataset	=	dataset.batch(batch_size)																												

										#	Step	3				

										iterator	=	dataset.make_one_shot_iterator()				

										features,	labels	=	iterator.get_next()				

										return	features,	labels																							

**	Import	the	data**

For	a	csv	file,	the	dataset	method	reads	one	line	at	a	time.	To	build	the	dataset,
you	need	to	use	the	object	TextLineDataset.	Your	dataset	has	a	header	so	you
need	to	use	skip(1)	to	skip	the	first	line.	At	this	point,	you	only	read	the	data	and
exclude	the	header	in	the	pipeline.	To	feed	the	model,	you	need	to	separate	the
features	from	the	label.	The	method	used	to	apply	any	transformation	to	the	data
is	map.

This	method	calls	a	function	that	you	will	create	in	order	to	instruct	how	to
transform	the	data.In	a	nutshell,	you	need	to	pass	the	data	in	the	TextLineDataset

object,	exclude	the	header	and	apply	a	transformation	which	is	instructed	by	a
function.Code	explanation

tf.data.TextLineDataset(data_file):	This	line	read	the	csv	file
.skip(1)	:	skip	the	header
.map(parse_csv)):	parse	the	records	into	the	tensorsYou	need	to	define	a
function	to	instruct	the	map	object.	You	can	call	this	function	parse_csv.

This	function	parses	the	csv	file	with	the	method	tf.decode_csv	and	declares	the
features	and	the	label.	The	features	can	be	declared	as	a	dictionary	or	a	tuple.
You	use	the	dictionary	method	because	it	is	more	convenient.Code	explanation

tf.decode_csv(value,	record_defaults=	RECORDS_ALL):	the	method
decode_csv	uses	the	output	of	the	TextLineDataset	to	read	the	csv	file.
record_defaults	instructs	TensorFlow	about	the	columns	type.
dict(zip(_CSV_COLUMNS,	columns)):	Populate	the	dictionary	with	all	the
columns	extracted	during	this	data	processing
features.pop('median_house_value'):	Exclude	the	target	variable	from	the
feature	variable	and	create	a	label	variable

The	Dataset	needs	further	elements	to	iteratively	feeds	the	Tensors.	Indeed,	you
need	to	add	the	method	repeat	to	allow	the	dataset	to	continue	indefinitely	to
feed	the	model.	If	you	don't	add	the	method,	the	model	will	iterate	only	one	time
and	then	throw	an	error	because	no	more	data	are	fed	in	the	pipeline.

After	that,	you	can	control	the	batch	size	with	the	batch	method.	It	means	you
tell	the	dataset	how	many	data	you	want	to	pass	in	the	pipeline	for	each	iteration.
If	you	set	a	big	batch	size,	the	model	will	be	slow.

Step	3)	Create	the	iterator

Now	you	are	ready	for	the	second	step:	create	an	iterator	to	return	the	elements
in	the	dataset.

The	simplest	way	of	creating	an	operator	is	with	the	method
make_one_shot_iterator.

After	that,	you	can	create	the	features	and	labels	from	the	iterator.

Step	4)	Consume	the	data

You	can	check	what	happens	with	input_fn	function.	You	need	to	call	the
function	in	a	session	to	consume	the	data.	You	try	with	a	batch	size	equals	to	1.

Note	that,	it	prints	the	features	in	a	dictionary	and	the	label	as	an	array.

It	will	show	the	first	line	of	the	csv	file.	You	can	try	to	run	this	code	many	times
with	different	batch	size.

next_batch	=	input_fn(df_train,	batch_size	=	1,	num_epoch	=	None)

with	tf.Session()	as	sess:				

					first_batch		=	sess.run(next_batch)				

					print(first_batch)																	

Output

({'crim':	array([2.3004],	dtype=float32),	'zn':	array([0.],	

dtype=float32),	'indus':	array([19.58],	dtype=float32),	'nox':	

array([0.605],	dtype=float32),	'rm':	array([6.319],	dtype=float32),	

'age':	array([96.1],	dtype=float32),	'dis':	array([2.1],	

dtype=float32),	'tax':	array([403.],	dtype=float32),	'ptratio':	

array([14.7],	dtype=float32)},	array([23.8],	dtype=float32))

Step	4)	Define	the	feature	column

You	need	to	define	the	numeric	columns	as	follow:

X1=	tf.feature_column.numeric_column('crim')

X2=	tf.feature_column.numeric_column('zn')

X3=	tf.feature_column.numeric_column('indus')

X4=	tf.feature_column.numeric_column('nox')

X5=	tf.feature_column.numeric_column('rm')

X6=	tf.feature_column.numeric_column('age')

X7=	tf.feature_column.numeric_column('dis')

X8=	tf.feature_column.numeric_column('tax')

X9=	tf.feature_column.numeric_column('ptratio')																	

Note	that	you	need	to	combined	all	the	variables	in	a	bucket

base_columns	=	[X1,	X2,	X3,X4,	X5,	X6,X7,	X8,	X9]																									

Step	5)	Build	the	model

You	can	train	the	model	with	the	estimator	LinearRegressor.

model	=	tf.estimator.LinearRegressor(feature_columns=base_columns,	

model_dir='train3')																			

Output

INFO:tensorflow:Using	default	config.	INFO:tensorflow:Using	config:	

{'_model_dir':	'train3',	'_tf_random_seed':	None,	

'_save_summary_steps':	100,	'_save_checkpoints_steps':	None,	

'_save_checkpoints_secs':	600,	'_session_config':	None,	

'_keep_checkpoint_max':	5,	'_keep_checkpoint_every_n_hours':	10000,	

'_log_step_count_steps':	100,	'_train_distribute':	None,	

'_service':	None,	'_cluster_spec':	

<tensorflow.python.training.server_lib.ClusterSpec	object	at	

0x1820a010f0>,	'_task_type':	'worker',	'_task_id':	0,	

'_global_id_in_cluster':	0,	'_master':	'',	'_evaluation_master':	

'',	'_is_chief':	True,	'_num_ps_replicas':	0,	

'_num_worker_replicas':	1}

You	need	to	use	a	lambda	function	to	allow	to	write	the	argument	in	the	function
inpu_fn.	If	you	don't	use	a	lambda	function,	you	cannot	train	the	model.

#	Train	the	estimatormodel.train(steps	=1000,				

										input_fn=	lambda	:	input_fn(df_train,batch_size=128,	

num_epoch	=	None))																							

Output

INFO:tensorflow:Calling	model_fn.

INFO:tensorflow:Done	calling	model_fn.

INFO:tensorflow:Create	CheckpointSaverHook.

INFO:tensorflow:Graph	was	finalized.

INFO:tensorflow:Running	local_init_op.

INFO:tensorflow:Done	running	local_init_op.

INFO:tensorflow:Saving	checkpoints	for	1	into	train3/model.ckpt.

INFO:tensorflow:loss	=	83729.64,	step	=	1

INFO:tensorflow:global_step/sec:	72.5646

INFO:tensorflow:loss	=	13909.657,	step	=	101	(1.380	sec)

INFO:tensorflow:global_step/sec:	101.355

INFO:tensorflow:loss	=	12881.449,	step	=	201	(0.986	sec)

INFO:tensorflow:global_step/sec:	109.293

INFO:tensorflow:loss	=	12391.541,	step	=	301	(0.915	sec)

INFO:tensorflow:global_step/sec:	102.235

INFO:tensorflow:loss	=	12050.5625,	step	=	401	(0.978	sec)

INFO:tensorflow:global_step/sec:	104.656

INFO:tensorflow:loss	=	11766.134,	step	=	501	(0.956	sec)

INFO:tensorflow:global_step/sec:	106.697

INFO:tensorflow:loss	=	11509.922,	step	=	601	(0.938	sec)

INFO:tensorflow:global_step/sec:	118.454

INFO:tensorflow:loss	=	11272.889,	step	=	701	(0.844	sec)

INFO:tensorflow:global_step/sec:	114.947

INFO:tensorflow:loss	=	11051.9795,	step	=	801	(0.870	sec)

INFO:tensorflow:global_step/sec:	111.484

INFO:tensorflow:loss	=	10845.855,	step	=	901	(0.897	sec)

INFO:tensorflow:Saving	checkpoints	for	1000	into	train3/model.ckpt.

INFO:tensorflow:Loss	for	final	step:	5925.9873.

Out[8]:

<tensorflow.python.estimator.canned.linear.LinearRegressor	at	

0x18225eb8d0>

You	can	evaluate	the	fit	of	you	model	on	the	test	set	with	the	code	below:

results	=	model.evaluate(steps	=None,input_fn=lambda:	

input_fn(df_eval,	batch_size	=128,	num_epoch	=	1))

for	key	in	results:			

print("			{},	was:	{}".format(key,	results[key]))																								

Output

INFO:tensorflow:Calling	model_fn.

INFO:tensorflow:Done	calling	model_fn.

INFO:tensorflow:Starting	evaluation	at	2018-05-13-02:06:02

INFO:tensorflow:Graph	was	finalized.

INFO:tensorflow:Restoring	parameters	from	train3/model.ckpt-1000

INFO:tensorflow:Running	local_init_op.

INFO:tensorflow:Done	running	local_init_op.

INFO:tensorflow:Finished	evaluation	at	2018-05-13-02:06:02

INFO:tensorflow:Saving	dict	for	global	step	1000:	average_loss	=	

32.15896,	global_step	=	1000,	loss	=	3215.896

			average_loss,	was:	32.158958435058594

			loss,	was:	3215.89599609375

			global_step,	was:	1000

The	last	step	is	predicting	the	value	of	based	on	the	value	of	,	the	matrices	of	the
features.	You	can	write	a	dictionary	with	the	values	you	want	to	predict.	Your
model	has	9	features	so	you	need	to	provide	a	value	for	each.	The	model	will
provide	a	prediction	for	each	of	them.

In	the	code	below,	you	wrote	the	values	of	each	features	that	is	contained	in	the
df_predict	csv	file.

You	need	to	write	a	new	input_fn	function	because	there	is	no	label	in	the
dataset.	You	can	use	the	API	from_tensor	from	the	Dataset.

prediction_input	=	{																													

										'crim':	

[0.03359,5.09017,0.12650,0.05515,8.15174,0.24522],																													

										'zn':	[75.0,0.0,25.0,33.0,0.0,0.0],																												

										'indus':	[2.95,18.10,5.13,2.18,18.10,9.90],																												

										'nox':	[0.428,0.713,0.453,0.472,0.700,0.544],																										

										'rm':	[7.024,6.297,6.762,7.236,5.390,5.782],																											

										'age':	[15.8,91.8,43.4,41.1,98.9,71.7],																																

										'dis':	[5.4011,2.3682,7.9809,4.0220,1.7281,4.0317],																												

										'tax':	[252,666,284,222,666,304],																														

										'ptratio':	[18.3,20.2,19.7,18.4,20.2,18.4]

					}

					def	test_input_fn():				

					dataset	=	tf.data.Dataset.from_tensors(prediction_input)				

					return	dataset

					

					#	Predict	all	our	prediction_inputpred_results	=	

model.predict(input_fn=test_input_fn)																					

Finaly,	you	print	the	predictions.

for	pred	in	enumerate(pred_results):				

print(pred)																					

Output

INFO:tensorflow:Calling	model_fn.

INFO:tensorflow:Done	calling	model_fn.

INFO:tensorflow:Graph	was	finalized.

INFO:tensorflow:Restoring	parameters	from	train3/model.ckpt-1000

INFO:tensorflow:Running	local_init_op.

INFO:tensorflow:Done	running	local_init_op.

(0,	{'predictions':	array([32.297546],	dtype=float32)})

(1,	{'predictions':	array([18.96125],	dtype=float32)})

(2,	{'predictions':	array([27.270979],	dtype=float32)})

(3,	{'predictions':	array([29.299236],	dtype=float32)})

(4,	{'predictions':	array([16.436684],	dtype=float32)})

(5,	{'predictions':	array([21.460876],	dtype=float32)})

INFO:tensorflow:Calling	model_fn.	INFO:tensorflow:Done	calling	

model_fn.	INFO:tensorflow:Graph	was	finalized.	

INFO:tensorflow:Restoring	parameters	from	train3/model.ckpt-5000	

INFO:tensorflow:Running	local_init_op.	INFO:tensorflow:Done	running	

local_init_op.	(0,	{'predictions':	array([35.60663],	

dtype=float32)})	(1,	{'predictions':	array([22.298521],	

dtype=float32)})	(2,	{'predictions':	array([25.74533],	

dtype=float32)})	(3,	{'predictions':	array([35.126694],	

dtype=float32)})	(4,	{'predictions':	array([17.94416],	

dtype=float32)})	(5,	{'predictions':	array([22.606628],	

dtype=float32)})

Summary

To	train	a	model,	you	need	to:

Define	the	features:	Independent	variables:	X
Define	the	label:	Dependent	variable:	y
Construct	a	train/test	set
Define	the	initial	weight
Define	the	loss	function:	MSE
Optimize	the	model:	Gradient	descent

Define:
Learning	rate
Number	of	epoch
Batch	size

In	this	tutorial,	you	learned	how	to	use	the	high	level	API	for	a	linear	regression
estimator.	You	need	to	define:

1.	 Feature	columns.	If	continuous:	tf.feature_column.numeric_column().	You
can	populate	a	list	with	python	list	comprehension

2.	 The	estimator:	tf.estimator.LinearRegressor(feature_columns,	model_dir)
3.	 A	function	to	import	the	data,	the	batch	size	and	epoch:	input_fn()

After	that,	you	are	ready	to	train,	evaluate	and	make	prediction	with	train(),
evaluate()	and	predict()

Chapter	14:	Linear	Regression	Case
Study

In	this	tutorial,	you	will	learn	how	to	check	the	data	and	prepare	it	to	create	a
linear	regression	task.

This	tutorial	is	divided	into	two	parts:

Look	for	interaction
Test	the	model

In	the	previous	tutorial,	you	used	the	Boston	dataset	to	estimate	the	median	price
of	a	house.	Boston	dataset	has	a	small	size,	with	only	506	observations.	This
dataset	is	considered	as	a	benchmark	to	try	new	linear	regression	algorithms.

The	dataset	is	composed	of:

Variable Description
zn The	proportion	of	residential	land	zoned	for	lots	over	25,000	sq.ft.
indus The	proportion	of	non-retail	business	acres	per	town.
nox nitric	oxides	concentration
rm average	number	of	rooms	per	dwelling
age the	proportion	of	owner-occupied	units	built	before	1940
dis weighted	distances	to	five	Boston	employment	centers
tax full-value	property-tax	rate	per	dollars	10,000
ptratio the	pupil-teacher	ratio	by	a	town
medv The	median	value	of	owner-occupied	homes	in	thousand	dollars
crim per	capita	crime	rate	by	town
chas Charles	River	dummy	variable	(1	if	bounds	river;	0	otherwise)
B the	proportion	of	blacks	by	the	town

In	this	tutorial,	we	will	estimate	the	median	price	using	a	linear	regressor,	but	the
focus	is	on	one	particular	process	of	machine	learning:	"data	preparation."

A	model	generalizes	the	pattern	in	the	data.	To	capture	such	a	pattern,	you	need
to	find	it	first.	A	good	practice	is	to	perform	a	data	analysis	before	running	any
machine	learning	algorithm.

Choosing	the	right	features	makes	all	the	difference	in	the	success	of	your
model.	Imagine	you	try	to	estimate	the	wage	of	a	people,	if	you	do	not
include	the	gender	as	a	covariate,	you	end	up	with	a	poor	estimate.

Another	way	to	improve	the	model	is	to	look	at	the	correlation	between	the
independent	variable.	Back	to	the	example,	you	can	think	of	education	as	an
excellent	candidate	to	predict	the	wage	but	also	the	occupation.	It	is	fair	to	say,
the	occupation	depends	on	the	level	of	education,	namely	higher	education	often
leads	to	a	better	occupation.	If	we	generalize	this	idea,	we	can	say	the	correlation
between	the	dependent	variable	and	an	explanatory	variable	can	be	magnified	of
yet	another	explanatory	variable.

To	capture	the	limited	effect	of	education	on	occupation,	we	can	use	an
interaction	term.

If	you	look	at	the	wage	equation,	it	becomes:

If	 	is	positive,	then	it	implies	that	an	additional	level	of	education	yields	a
higher	increase	in	the	median	value	of	a	house	for	a	high	occupation	level.	In
other	words,	there	is	an	interaction	effect	between	education	and	occupation.

In	this	tutorial,	we	will	try	to	see	which	variables	can	be	a	good	candidate	for
interaction	terms.	We	will	test	if	adding	this	kind	of	information	leads	to	better
price	prediction.

Summary	statistics

There	are	a	few	steps	you	can	follow	before	proceeding	to	the	model.	As
mentioned	earlier,	the	model	is	a	generalization	of	the	data.	The	best	practice	is
to	understand	the	data	and	the	make	a	prediction.	If	you	do	not	know	your	data,
you	have	slim	chances	to	improve	your	model.

As	a	first	step,	load	the	data	as	a	pandas	dataframe	and	create	a	training	set	and
testing	set.

Tips:	For	this	tutorial,	you	need	to	have	matplotlit	and	seaborn	installed	in
Python.	You	can	install	Python	package	on	the	fly	with	Jupyter.	You	Should	not
do	this

!conda	install	--	yes	matplotlib

but

import	sys

!{sys.executable}	-m	pip	install	matplotlib	#	Already	installed

!{sys.executable}	-m	pip	install	seaborn	

Note	that	this	step	is	not	necessary	if	you	have	matplotlib	and	seaborn	installed.

Matplotlib	is	the	library	to	create	a	graph	in	Python.	Seaborn	is	a	statistical
visualization	library	built	on	top	of	matplotlib.	It	provides	attractive	and
beautiful	plots.

The	code	below	imports	the	necessary	libraries.

import	pandas	as	pd

from	sklearn	import	datasets

import	tensorflow	as	tf

from	sklearn.datasets	import	load_boston

import	numpy	as	np

The	library	sklearn	includes	the	Boston	dataset.	You	can	call	its	API	to	import
the	data.

boston	=	load_boston()

df	=	pd.DataFrame(boston.data)																		

The	feature's	name	are	stored	in	the	object	feature_names	in	an	array.

boston.feature_names

Output

array(['CRIM',	'ZN',	'INDUS',	'CHAS',	'NOX',	'RM',	'AGE',	'DIS',	

'RAD','TAX',	'PTRATIO',	'B',	'LSTAT'],	dtype='<U7')																			

You	can	rename	the	columns.

df.columns	=	boston.feature_names

df['PRICE']	=	boston.target

df.head(2)

You	convert	the	variable	CHAS	as	a	string	variable	and	label	it	with	yes	if
CHAS	=	1	and	no	if	CHAS	=	0

df['CHAS']	=	df['CHAS'].map({1:'yes',	0:'no'})

df['CHAS'].head(5)

0				no

1				no

2				no

3				no

4				no

Name:	CHAS,	dtype:	object

With	pandas,	it	is	straightforward	to	split	the	dataset.	You	randomly	divide	the
dataset	with	80	percent	training	set	and	20	percent	testing	set.	Pandas	have	a

built-in	function	to	split	a	data	frame	sample.

The	first	parameter	frac	is	a	value	from	0	to	1.	You	set	it	to	0.8	to	select
randomly	80	percent	of	the	data	frame.

Random_state	allows	to	have	the	same	dataframe	returned	for	everyone.

###	Create	train/test	set

df_train=df.sample(frac=0.8,random_state=200)

df_test=df.drop(df_train.index)

You	can	get	the	shape	of	the	data.	It	should	be:

Train	set:	506*0.8	=	405
Test	set:	506*0.2	=	101

print(df_train.shape,	df_test.shape)

Output

(405,	14)	(101,	14)																						

df_test.head(5)

Output

CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT PRICE
0 0.00632 18.0 2.31 no 0.538 6.575 65.2 4.0900 1.0 296.0 15.3 396.90 4.98 24.0
1 0.02731 0.0 7.07 no 0.469 6.421 78.9 4.9671 2.0 242.0 17.8 396.90 9.14 21.6
3 0.03237 0.0 2.18 no 0.458 6.998 45.8 6.0622 3.0 222.0 18.7 394.63 2.94 33.4
6 0.08829 12.5 7.87 no 0.524 6.012 66.6 5.5605 5.0 311.0 15.2 395.60 12.43 22.9
7 0.14455 12.5 7.87 no 0.524 6.172 96.1 5.9505 5.0 311.0 15.2 396.90 19.15 27.1

Data	is	messy;	it's	often	misbalanced	and	sprinkled	with	outlier	values	that	throw
off	the	analysis	and	machine	learning	training.

The	first	step	to	getting	the	dataset	cleaned	up	is	understanding	where	it
needs	cleaning.	Cleaning	up	a	dataset	can	be	tricky	to	do,	especially	in	any

generalizable	manner

Google	Research	team	has	developed	a	tool	for	this	job	called	Facets	that	help	to
visualize	the	data	and	slice	it	in	all	sorts	of	manners.	This	is	a	good	starting	point
to	comprehend	how	the	dataset	is	laid	out.

Facets	allow	you	to	find	where	the	data	does	not	quite	look	the	way	you	are
thinking.

Except	for	their	web	app,	Google	makes	it	easy	to	embed	the	toolkit	into	a
Jupyter	notebook.

There	are	two	parts	to	Facets:

Facets	Overview

Facets	Deep	Dive

Facets	Overview

Facets	Overview	gives	an	overview	of	the	dataset.	Facets	Overview	splits	the
columns	of	the	data	into	rows	of	salient	information	showing

1.	 the	percentage	of	missing	observation
2.	 min	and	max	values
3.	 statistics	like	the	mean,	median,	and	standard	deviation.
4.	 It	also	adds	a	column	that	shows	the	percentage	of	values	that	are	zeroes,

which	is	helpful	when	most	of	the	values	are	zeroes.
5.	 It	is	possible	to	see	these	distributions	on	the	test	dataset	as	well	as	the

training	set	for	each	feature.	It	means	you	can	double-check	that	the	test	has
a	similar	distribution	to	the	training	dataset.

This	is	at	least	the	minimum	to	do	before	any	machine	learning	task.	With	this
tool,	you	do	not	miss	this	crucial	step,	and	it	highlights	some	abnormalities.

Facets	Deep	Dive

Facets	Deep	Dive	is	a	cool	tool.	It	allowsto	have	some	clarity	on	your	dataset
and	zoom	all	the	way	in	to	see	an	individual	piece	of	data.	It	means	you	can	facet
the	data	by	row	and	column	across	any	of	the	features	of	the	dataset.

We	will	use	these	two	tools	with	the	Boston	dataset.

Note:	You	cannot	use	Facets	Overview	and	Facets	Deep	Dive	at	the	same	time.
You	need	to	clear	the	notebook	first	to	change	the	tool.

Install	Facet

You	can	use	the	Facet	web	app	for	most	of	the	analysis.	In	this	tutorial,	you	will
see	how	to	use	it	within	a	Jupyter	Notebook.

First	of	all,	you	need	to	install	nbextensions.	It	is	done	with	this	code.	You	copy
and	paste	the	following	code	in	the	terminal	of	your	machine.

pip	install	jupyter_contrib_nbextensions																	

Right	after	that,	you	need	to	clone	the	repositories	in	your	computer.	You	have
two	choices:

Option	1)	Copy	and	paste	this	code	in	the	terminal	(Recommended)

If	you	do	not	have	Git	installed	on	your	machine,	please	go	to	this	URL
https://git-scm.com/download/win	and	follow	the	instruction.	Once	you	are
done,	you	can	use	the	git	command	in	the	terminal	for	Mac	User	or	Anaconda
prompt	for	Windows	user

git	clone	https://github.com/PAIR-code/facets																				

Option	2)	Go	to	https://github.com/PAIR-code/facets	and	download	the
repositories.

If	you	choose	the	first	option,	the	file	ends	up	in	your	download	file.	You	can
either	let	the	file	in	download	or	drag	it	to	another	path.

You	can	check	where	Facets	is	stored	with	this	command	line:

echo	`pwd`/`ls	facets`																			

Now	that	you	have	located	Facets,	you	need	to	install	it	in	Jupyter	Notebook.
You	need	to	set	the	working	directory	to	the	path	where	facets	is	located.

Your	present	working	directory	and	location	of	Facets	zip	should	be	same.

You	need	to	point	the	working	directory	to	Facet:

cd	facets

To	install	Facets	in	Jupyter,	you	have	two	options.	If	you	installed	Jupyter	with
Conda	for	all	the	users,	copy	this	code:

can	use	jupyter	nbextension	install	facets-dist/

jupyter	nbextension	install	facets-dist/

Otherwise,	use:

jupyter	nbextension	install	facets-dist/	--user

All	right,	you	are	all	set.	Let's	open	Facet	Overview.

Overview

Overview	uses	a	Python	script	to	compute	the	statistics.	You	need	to	import	the
script	called	generic_feature_statistics_generator	to	Jupyter.	Don't	worry;	the
script	is	located	in	the	facets	files.

You	need	to	locate	its	path.	It	is	easily	done.	You	open	facets,	open	the	file
facets_overview	and	then	python.	Copy	the	path

After	that,	go	back	to	Jupyter,	and	write	the	following	code.	Change	the	path
'/Users/Thomas/facets/facets_overview/python'	to	your	path.

#	Add	the	facets	overview	python	code	to	the	python	path#	Add	t	

import	sys

sys.path.append('/Users/Thomas/facets/facets_overview/python')

You	can	import	the	script	with	the	code	below.

from	generic_feature_statistics_generator	import	

GenericFeatureStatisticsGenerator

In	windows,	the	same	code	becomes

import	sys

sys.path.append(r"C:\Users\Admin\Anaconda3\facets-

master\facets_overview\python")

from	generic_feature_statistics_generator	import	

GenericFeatureStatisticsGenerator

To	calculate	the	feature	statistics,	you	need	to	use	the	function
GenericFeatureStatisticsGenerator(),	and	you	use	the	object
ProtoFromDataFrames.	You	can	pass	the	data	frame	in	a	dictionary.	For	instance,
if	we	want	to	create	a	summary	statistic	for	the	train	set,	we	can	store	the
information	in	a	dictionary	and	use	it	in	the	object	`ProtoFromDataFrames``

'name':	'train',	'table':	df_train																				

Name	is	the	name	of	the	table	displays,	and	you	use	the	name	of	the	table	you
want	to	compute	the	summary.	In	your	example,	the	table	containing	the	data	is
df_train

#	Calculate	the	feature	statistics	proto	from	the	datasets	and	

stringify	it	for	use	in	facets	overview

import	base64

gfsg	=	GenericFeatureStatisticsGenerator()

proto	=	gfsg.ProtoFromDataFrames([{'name':	'train',	'table':	

df_train},

																																		{'name':	'test',	'table':	

df_test}])

#proto	=	gfsg.ProtoFromDataFrames([{'name':	'train',	'table':	

df_train}])

protostr	=	base64.b64encode(proto.SerializeToString()).decode("utf-

8")

Lastly,	you	just	copy	and	paste	the	code	below.	The	code	comes	directly	from
GitHub.	You	should	be	able	to	see	this:

#	Display	the	facets	overview	visualization	for	this	data#	Displ	

from	IPython.core.display	import	display,	HTML

HTML_TEMPLATE	=	"""<link	rel="import"	href="/nbextensions/facets-

dist/facets-jupyter.html"	>

								<facets-overview	id="elem"></facets-overview>

								<script>

										document.querySelector("#elem").protoInput	=	"

{protostr}";

								</script>"""

html	=	HTML_TEMPLATE.format(protostr=protostr)

display(HTML(html))

Graph

After	you	check	the	data	and	their	distribution,	you	can	plot	a	correlation	matrix.
The	correlation	matrix	computes	the	Pearson	coefficient.	This	coefficient	is
bonded	between	-1	and	1,	with	a	positive	value	indicates	a	positive	correlation
and	negative	value	a	negative	correlation.

You	are	interested	to	see	which	variables	can	be	a	good	candidate	for	interaction
terms.

##	Choose	important	feature	and	further	check	with	Dive

%matplotlib	inline		

import	matplotlib.pyplot	as	plt

import	seaborn	as	sns

sns.set(style="ticks")

#	Compute	the	correlation	matrix

corr	=	df.corr('pearson')

#	Generate	a	mask	for	the	upper	triangle

mask	=	np.zeros_like(corr,	dtype=np.bool)

mask[np.triu_indices_from(mask)]	=	True

#	Set	up	the	matplotlib	figure

f,	ax	=	plt.subplots(figsize=(11,	9))

#	Generate	a	custom	diverging	colormap

cmap	=	sns.diverging_palette(220,	10,	as_cmap=True)

#	Draw	the	heatmap	with	the	mask	and	correct	aspect	ratio

sns.heatmap(corr,	mask=mask,	cmap=cmap,	vmax=.3,	

center=0,annot=True,

												square=True,	linewidths=.5,	cbar_kws={"shrink":	.5})

Output

<matplotlib.axes._subplots.AxesSubplot	at	0x1a184d6518>

png

From	the	matrix,	you	can	see:

LSTAT
RM

Are	strongly	correlated	with	PRICE.	Another	exciting	feature	is	the	strong
positive	correlation	between	NOX	and	INDUS,	which	means	those	two	variables
move	in	the	same	direction.	Besides,	there	are	also	correlated	with	the	PRICE.
DIS	is	also	highly	correlated	with	IND	and	NOX.

You	have	some	first	hint	that	IND	and	NOX	can	be	good	candidates	for	the
interaction	term	and	DIS	might	also	be	interesting	to	focus	on.

You	can	go	a	little	bit	deeper	by	plotting	a	pair	grid.	It	will	illustrate	more	in
detail	the	correlation	map	you	plotted	before.

The	pair	grid	we	are	composed	as	follow:

Upper	part:	Scatter	plot	with	fitted	line
Diagonal:	Kernel	density	plot
Lower	part:	Multivariate	kernel	density	plot

You	choose	the	focus	on	four	independent	variables.	The	choice	corresponds	to
the	variables	with	strong	correlation	with	PRICE

INDUS
NOX
RM
LSTAT

moreover,	the	PRICE.

Note	that	the	standard	error	is	added	by	default	to	the	scatter	plot.

attributes	=	["PRICE",	"INDUS",	"NOX",	"RM",	"LSTAT"]

g	=	sns.PairGrid(df[attributes])

g	=	g.map_upper(sns.regplot,	color="g")

g	=	g.map_lower(sns.kdeplot,cmap="Reds",	shade=True,	

shade_lowest=False)

g	=	g.map_diag(sns.kdeplot)

Output

Let's	begin	with	the	upper	part:

Price	is	negatively	correlated	with	INDUS,	NOX,	and	LSTAT;	positively
correlated	with	RM.
There	is	a	slightly	non-linearity	with	LSTAT	and	PRICE
There	is	like	a	straight	line	when	the	price	is	equal	to	50.	From	the
description	of	the	dataset,	PRICE	has	been	truncated	at	the	value	of	50

Diagonal

NOX	seems	to	have	two	clusters,	one	around	0.5	and	one	around	0.85.

To	check	more	about	it,	you	can	look	at	the	lower	part.	The	Multivariate	Kernel
Density	is	interesting	in	a	sense	it	colors	where	most	of	the	points	are.	The
difference	with	the	scatter	plot	draws	a	probability	density,	even	though	there	is
no	point	in	the	dataset	for	a	given	coordinate.	When	the	color	is	stronger,	it
indicates	a	high	concentration	of	point	around	this	area.

If	you	check	the	multivariate	density	for	INDUS	and	NOX,	you	can	see	the
positive	correlation	and	the	two	clusters.	When	the	share	of	the	industry	is	above
18,	the	nitric	oxides	concentration	is	above	0.6.

You	can	think	about	adding	an	interaction	between	INDUS	and	NOX	in	the
linear	regression.

Finally,	you	can	use	the	second	tools	created	by	Google,	Facets	Deep	Dive.	The
interface	is	divided	up	into	four	main	sections.	The	central	area	in	the	center	is	a
zoomable	display	of	the	data.	On	the	top	of	the	panel,	there	is	the	drop-down
menu	where	you	can	change	the	arrangement	of	the	data	to	controls	faceting,
positioning,	and	color.	On	the	right,	there	is	a	detailed	view	of	a	specific	row	of
data.	It	means	you	can	click	on	any	dot	of	data	in	the	center	visualization	to	see
the	detail	about	that	particular	data	point.

During	the	data	visualization	step,	you	are	interested	in	looking	for	the	pairwise
correlation	between	the	independent	variable	on	the	price	of	the	house.	However,
it	involves	at	least	three	variables,	and	3D	plots	are	complicated	to	work	with.

One	way	to	tackle	this	problem	is	to	create	a	categorical	variable.	That	is,	we	can
create	a	2D	plot	a	color	the	dot.	You	can	split	the	variable	PRICE	into	four
categories,	with	each	category	is	a	quartile	(i.e.,	0.25,	0.5,	0.75).	You	call	this
new	variable	Q_PRICE.

##	Check	non	linearity	with	important	features

df['Q_PRICE']	=		pd.qcut(df['PRICE'],	4,	labels=["Lowest",	"Low",	

"Upper",	"upper_plus"])

##	Show	non	linearity	between	RM	and	LSTAT

ax	=	sns.lmplot(x="DIS",	y="INDUS",	hue="Q_PRICE",	data=df,	fit_reg	

=	False,palette="Set3")

Facets	Deep	Dive

To	open	Deep	Dive,	you	need	to	transform	the	data	into	a	json	format.	Pandas	as
an	object	for	that.	You	can	use	to_json	after	the	Pandas	dataset.

The	first	line	of	code	handle	the	size	of	the	dataset.

df['Q_PRICE']	=		pd.qcut(df['PRICE'],	4,	labels=["Lowest",	"Low",	

"Upper",	"upper_plus"])

sprite_size	=	32	if	len(df.index)>50000	else	64

jsonstr	=	df.to_json(orient='records')

The	code	below	comes	from	Google	GitHub.	After	you	run	the	code,	you	should
be	able	to	see	this:

#	Display	thde	Dive	visualization	for	this	data

from	IPython.core.display	import	display,	HTML

#	Create	Facets	template		

HTML_TEMPLATE	=	"""<link	rel="import"	href="/nbextensions/facets-

dist/facets-jupyter.html">

								<facets-dive	sprite-image-width="{sprite_size}"	sprite-

image-height="{sprite_size}"	id="elem"	height="600"></facets-dive>

								<script>

										document.querySelector("#elem").data	=	{jsonstr};

								</script>"""

#	Load	the	json	dataset	and	the	sprite_size	into	the	template

html	=	HTML_TEMPLATE.format(jsonstr=jsonstr,	

sprite_size=sprite_size)

#	Display	the	template

display(HTML(html))

You	are	interested	to	see	if	there	is	a	connection	between	the	industry	rate,	oxide
concentration,	distance	to	the	job	center	and	the	price	of	the	house.

For	that,	you	first	split	the	data	by	industry	range	and	color	with	the	price
quartile:

Select	faceting	X	and	choose	INDUS.
Select	Display	and	choose	DIS.	It	will	color	the	dots	with	the	quartile	of	the
house	price

here,	darker	colors	mean	the	distance	to	the	first	job	center	is	far.

So	far,	it	shows	again	what	you	know,	lower	industry	rate,	higher	price.	Now	you
can	look	at	the	breakdown	by	INDUX,	by	NOX.

Select	faceting	Y	and	choose	NOX.

Now	you	can	see	the	house	far	from	the	first	job	center	have	the	lowest	industry
share	and	therefore	the	lowest	oxide	concentration.	If	you	choose	to	display	the
type	with	Q_PRICE	and	zoom	the	lower-left	corner,	you	can	see	what	type	of
price	it	is.

You	have	another	hint	that	the	interaction	between	IND,	NOX,	and	DIS	can	be
good	candidates	to	improve	the	model.

TensorFlow

In	this	section,	you	will	estimate	the	linear	classifier	with	TensorFlow	estimators
API.	You	will	proceed	as	follow:

Prepare	the	data
Estimate	a	benchmark	model:	No	interaction
Estimate	a	model	with	interaction

Remember,	the	goal	of	machine	learning	is	the	minimize	the	error.	In	this	case,
the	model	with	the	lowest	mean	square	error	will	win.	The	TensorFlow	estimator
automatically	computes	this	metric.

Preparation	data

In	most	of	the	case,	you	need	to	transform	your	data.	That	is	why	Facets
Overview	is	fascinating.	From	the	summary	statistic,	you	saw	there	are	outliers.
Those	values	affect	the	estimates	because	they	do	not	look	like	the	population
you	are	analyzing.	Outliers	usually	biased	the	results.	For	instance,	a	positive
outlier	tends	to	overestimate	the	coefficient.

A	good	solution	to	tackle	this	problem	is	to	standardize	the	variable.
Standardization	means	a	standard	deviation	of	one	and	means	of	zero.	The
process	of	standardization	involves	two	steps.	First	of	all,	it	subtracts	the	mean
value	of	the	variable.	Secondly,	it	divides	by	the	variance	so	that	the	distribution
has	a	unit	variance

The	library	sklearn	is	helpful	to	standardize	variables.	You	can	use	the	module
preprocessing	with	the	object	scale	for	this	purpose.

You	can	use	the	function	below	to	scale	a	dataset.	Note	that	you	don't	scale	the
label	column	and	categorical	variables.

	TensorFlow in 1 Day: Make your own Neural Network
	Table Of Content
	Chapter 1: What is Deep learning?
	Chapter 2: Machine Learning vs Deep Learning
	Chapter 3: What is TensorFlow?
	Chapter 4: Comparison of Deep Learning Libraries
	Chapter 5: How to Download and Install TensorFlow Windows and Mac
	Chapter 6: Jupyter Notebook Tutorial
	Chapter 7: Tensorflow on AWS
	Chapter 8: TensorFlow Basics: Tensor, Shape, Type, Graph, Sessions & Operators
	Chapter 9: Tensorboard: Graph Visualization with Example
	Chapter 10: NumPy
	Chapter 11: Pandas
	Chapter 12: Scikit-Learn
	Chapter 13: Linear Regression
	Chapter 14: Linear Regression Case Study
	Chapter 15: Linear Classifier in TensorFlow
	Chapter 16: Kernel Methods
	Chapter 17: TensorFlow ANN (Artificial Neural Network)
	Chapter 18: ConvNet(Convolutional Neural Network): TensorFlow Image Classification
	Chapter 19: Autoencoder with TensorFlow
	Chapter 20: RNN(Recurrent Neural Network) TensorFlow

	Chapter 1: What is Deep learning?
	What is Deep learning?
	Deep learning Process
	Classification of Neural Networks
	Types of Deep Learning Networks
	Feed-forward neural networks
	Recurrent neural networks (RNNs)
	Convolutional neural networks (CNN)
	Reinforcement Learning
	Applications/ Examples of deep learning applications
	Why is Deep Learning Important?
	Limitations of deep learning
	Summary

	Chapter 2: Machine Learning vs Deep Learning
	What is AI?
	What is ML?
	What is Deep Learning?
	Machine Learning Process
	Deep Learning Process
	Automate Feature Extraction using DL
	Difference between Machine Learning and Deep Learning
	When to use ML or DL?
	Summary

	Chapter 3: What is TensorFlow?
	What is TensorFlow?
	History of TensorFlow
	TensorFlow Architecture
	Where can Tensorflow run?
	Introduction to Components of TensorFlow
	Why is TensorFlow popular?
	List of Prominent Algorithms supported by TensorFlow
	Simple TensorFlow Example
	Options to Load Data into TensorFlow
	Create Tensorflow pipeline
	Summary

	Chapter 4: Comparison of Deep Learning Libraries
	8 Best Deep learning Libraries /Framework
	MICROSOFT COGNITIVE TOOLKIT(CNTK)
	TenserFlow Vs Theano Vs Torch Vs Keras Vs infer.net Vs CNTK Vs MXNet Vs Caffe: Key Differences
	Comparing Machine Learning as a Service
	Google Cloud ML
	AWS SageMaker
	Azure Machine Learning Studio
	IBM Watson ML
	Verdict:

	Chapter 5: How to Download and Install TensorFlow Windows and Mac
	TensorFlow Versions
	Install Anaconda
	Create .yml file to install Tensorflow and dependencies
	Launch Jupyter Notebook
	Jupyter with the main conda environment

	Chapter 6: Jupyter Notebook Tutorial
	What is Jupyter Notebook?
	Jupyter Notebook App
	How to use Jupyter
	Summary

	Chapter 7: Tensorflow on AWS
	PART 1: Set up a key pair
	PART 2: Set up a security group
	Launch your instance (Windows users)
	Part 4: Install Docker
	Part 5: Install Jupyter
	Part 6: Close connection
	Troubleshooting

	Chapter 8: TensorFlow Basics: Tensor, Shape, Type, Graph, Sessions & Operators
	What is a Tensor?
	Representation of a Tensor
	Types of Tensor
	Create a tensor of n-dimension

	Shape of tensor
	Type of data
	Creating operator
	Some Useful TensorFlow operators

	Variables
	Placeholder
	Session
	Graph
	Summary

	Chapter 9: Tensorboard: Graph Visualization with Example
	What is TensorBoard
	Summary:

	Chapter 10: NumPy
	What is NumPy?
	Why use NumPy?
	How to install NumPy?
	Import NumPy and Check Version
	Create a NumPy Array

	Mathematical Operations on an Array
	Shape of Array
	2 Dimension Array
	3 Dimension Array

	np.zeros and np.ones
	Reshape and Flatten Data
	hstack and vstack
	Generate Random Numbers
	Asarray

	Arrange
	Linspace
	LogSpace
	Indexing and slicing
	Statistical function
	Dot Product
	Matrix Multiplication
	Determinant

	Summary

	Chapter 11: Pandas
	What is Pandas?
	Why use Pandas?
	How to install Pandas?
	What is a data frame?
	What is a Series?
	Create Data frame
	Range Data
	Inspecting data
	Slice data
	Drop a column

	Concatenation
	Drop_duplicates
	Sort values
	Rename: change of index
	Import CSV
	Groupby

	Summary

	Chapter 12: Scikit-Learn
	What is Scikit-learn?
	Download and Install scikit-learn
	Machine learning with scikit-learn
	Step 1) Import the data
	Step 2) Create the train/test set
	Step 3) Build the pipeline
	Step 4) Using our pipeline in a grid search
	XGBoost Model with scikit-learn
	Create DNN with MLPClassifier in scikit-learn
	LIME: Trust your Model
	Data Preparation

	Summary

	Chapter 13: Linear Regression
	Linear regression
	How to train a linear regression model
	How to train a Linear Regression with TensorFlow
	Pandas
	Numpy Solution
	Tensorflow solution

	Chapter 14: Linear Regression Case Study
	Summary statistics
	Facets Overview
	Facets Deep Dive
	Install Facet
	Overview
	Graph
	Facets Deep Dive
	TensorFlow
	Preparation data

