File size: 12,710 Bytes
4231e0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
355d58d
4231e0d
355d58d
4231e0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
355d58d
4231e0d
 
 
 
 
355d58d
 
4231e0d
355d58d
4231e0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import logging
import os
import uuid

import gradio as gr

from llmriddles.questions import QuestionExecutor
from llmriddles.questions import list_ordered_questions

_QUESTION_SESSIONS = {}
count = 0
_QUESTIONS = list_ordered_questions()
_LANG = os.environ.get('QUESTION_LANG', 'cn')
assert _LANG in ['cn', 'en'], _LANG
_LLM = os.environ.get('QUESTION_LLM', 'chatgpt')
assert _LLM in ['chatgpt', 'chatglm', 'mistral-7b'], _LLM
_LLM_KEY = os.environ.get('QUESTION_LLM_KEY', None)
_DEBUG = os.environ.get('DEBUG', 'false').lower() == 'true'

if _DEBUG:
    logging.getLogger().setLevel(logging.INFO)
else:
    logging.getLogger().setLevel(logging.WARNING)
if _LANG == "cn":
    title = "完蛋!我被兮辞包围了"
    requirement_ph = """
    <h2 style="color: #6d28d9;"> 欢迎来到 Shi-Ci Riddles! </h2>
    <h4> 你将通过本游戏对大语言模型产生更深刻的理解。在本游戏中,你需要构造一个提给语言大模型的问题,使得它回复的答案符合题目要求。点击<i>\"下一题\"</i> 即可开始游戏。</h4>
    """
    requirement_label = "游戏须知/说明"
    question_ph = "你对大语言模型的提问(例如:请你输出1+1=3)"
    question_label = "玩家提问栏"
    answer_ph = "大语言模型的回答"
    answer_label = "大语言模型回答栏"
    submit_label = "提交"
    next_label = "下一题"
    api_ph = "你个人的大语言模型 API Key (例如:ChatGPT)"
    api_label = "API key"
    predict_label = "结果正确性"
    explanation_label = "结果详细解释"
    game_cleared_label = "<h2 style='color: #6d28d9;'>祝贺!你已成功通关!</h2>"
    correct_label = "正确"
    wrong_label = "错误"
    api_error_info = "请在提交问题之前先输入你的 API Key"
    try_again_label = "再玩一次"
    select_label = "选择关卡(投机取巧需谨慎)"
    title_markdown = """
    <div align="center">
        <img src="https://raw.githubusercontent.com/opendilab/LLMRiddles/main/llmriddles/assets/banner.svg" width="80%" height="20%" alt="Banner Image">
    </div>
    <h2 style="text-align: center; color: black;">🎭Shi-Ci Riddles:完蛋!我被兮辞包围了</a></h2>
    <strong><h5 align="center">注意:算法模型的输出可能包含一定的随机性。相关结果不代表任何开发者和相关 AI 服务的态度和意见。本项目开发者不对生成结果作任何保证,仅供娱乐。<h5></strong>
    """
    tos_markdown = """
    ### 使用条款
    玩家使用本服务须同意以下条款:
    该服务是一项探索性研究预览版,仅供非商业用途。它仅提供有限的安全措施,并可能生成令人反感的内容。不得将其用于任何非法、有害、暴力、种族主义等目的。该服务不会收集玩家对话数据以供未来研究之用。
    如果您的游玩体验有不佳之处,请发送邮件至 [email protected] ! 我们将不断改进这个项目。
    为了获得最佳体验,请使用台式电脑进行此预览版游戏,因为移动设备可能会影响可视化效果。
    **版权所有 2023 NLPark。**
    """
elif _LANG == "en":
    title = "LLM Riddles: Oops! Rolling in LLM."
    requirement_ph = """
    <h2 style="color: #6d28d9;">Welcome to LLM Riddles! </h2>
    <h4> In this game, you'll gain a deeper understanding of language models. Your challenge is to create a question to ask a language model in a way that the answer it provides meets specific criteria. Click <i>\'Next\'</i> to Start</h4>
    """
    requirement_label = "Game Requirements"
    question_ph = "Your Question for LLM (e.g. Please print 1+1=3)"
    question_label = "Question"
    answer_ph = "Answer From LLM"
    answer_label = "Answer"
    submit_label = "Submit"
    next_label = "Next"
    api_ph = "Your API Key (e.g. ChatGPT)"
    api_label = "API key"
    predict_label = "Correctness"
    explanation_label = "Explanation"
    game_cleared_label = "<h2 style='color: #6d28d9;'>Congratulations!</h2>"
    correct_label = "Correct"
    wrong_label = "Wrong"
    api_error_info = "Please Enter API Key Before Submitting Question."
    try_again_label = "Try Again"
    select_label = "Select level"
    title_markdown = """
    <div align="center">
        <img src="https://raw.githubusercontent.com/opendilab/LLMRiddles/main/llmriddles/assets/banner.svg" width="80%" height="20%" alt="Banner Image">
    </div>
    <h2 style="text-align: center; color: black;"><a href="https://github.com/OpenDILab/LLMRiddles"> 🎭LLM Riddles: Oops! Rolling in LLM.</a></h2>
    <h5 align="center"> If you like our project, please give us a star ✨ on GitHub for latest update <a href="https://github.com/OpenDILab/LLMRiddles"> (Code Link) </a>. Thanks for the interesting idea of the original game <a href="https://www.zhihu.com/people/haoqiang-fan"> author </a>.  </h5>
    <strong><h5 align="center">Notice: The output is generated by algorithm scheme and may involve some randomness. It does not represent the attitudes and opinions of any developers and AI services in this project. We do not make any guarantees about the generated content.<h5></strong>
    """
    tos_markdown = """
    ### Terms of use
    By using this service, players are required to agree to the following terms:
    The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
    Please send email to [email protected] if you get any inappropriate answer! We will delete those and keep improving our moderator.
    For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
    **Copyright 2023 OpenDILab.**
    """
else:
    raise KeyError("invalid _LANG: {}".format(_LANG))


def _need_api_key():
    return (_LLM == 'chatgpt' or _LLM == 'chatglm') and _LLM_KEY is None


def _get_api_key_cfgs(api_key):
    if _LLM == 'chatgpt':
        return {'api_key': api_key}
    elif _LLM == 'chatglm':
        return {'api_key': api_key}
    else:
        return {}


if __name__ == '__main__':
    with gr.Blocks(title=title, theme='ParityError/Interstellar') as demo:
        gr.Markdown(title_markdown)

        with gr.Row():
            gr_requirement = gr.HTML(value=requirement_ph, label=requirement_label)
        with gr.Row():
            with gr.Column():
                gr_question = gr.TextArea(placeholder=question_ph, label=question_label)
                gr_api_key = gr.Text(placeholder=api_ph, label=api_label, type='password', visible=_need_api_key())
                with gr.Row():
                    gr_submit = gr.Button(submit_label, interactive=False)
                    gr_next = gr.Button(next_label)
                with gr.Row():
                    gr_select = gr.Radio(
                        choices=[(QuestionExecutor(q, _LANG).question_name, i) for i, q in enumerate(_QUESTIONS)],
                        label=select_label
                    )

            with gr.Column():
                gr_uuid = gr.Text(value='', visible=False)
                gr_predict = gr.Label(label=predict_label)
                gr_answer = gr.TextArea(label=answer_label, lines=3)
                gr_explanation = gr.TextArea(label=explanation_label, lines=1)
        gr.Markdown(tos_markdown)

        def _postprocess_question_text(question_text):
            if _LANG == 'cn':
                idx = question_text.find(',')
                question_title = question_text[:idx]
                former, latter = question_title.split('(')
                question_title = former + ':' + latter[:-1]
                question_text = f"<h2 style='color: #6d28d9;'>{question_title}</h2><h4>{question_text[idx+1:]}</h4>"
            elif _LANG == 'en':
                idx = question_text.find(',')
                question_text = f"<h2 style='color: #6d28d9;'>{question_text[:idx]}</h2><h4>{question_text[idx+1:]}</h4>"
            return question_text


        def _radio_select(uuid_, select_qid):
            global count
            if not uuid_:
                uuid_ = str(uuid.uuid4())
                count += 1
                logging.info(f'Player {count} starts the game now')
            global _QUESTION_SESSIONS
            if uuid_ not in _QUESTION_SESSIONS:
                _QUESTION_SESSIONS[uuid_] = set(), select_qid
            else:
                _exists, _ = _QUESTION_SESSIONS[uuid_]
                _QUESTION_SESSIONS[uuid_] = _exists, select_qid

            executor = QuestionExecutor(_QUESTIONS[select_qid], _LANG)
            question_text = _postprocess_question_text(executor.question_text)
            return question_text, '', '', {}, '', \
                gr.Button(submit_label, interactive=True), \
                gr.Button(next_label, interactive=False), \
                uuid_

        gr_select.select(
            _radio_select,
            inputs=[gr_uuid, gr_select],
            outputs=[
                gr_requirement, gr_question, gr_answer,
                gr_predict, gr_explanation, gr_submit, gr_next, gr_uuid,
            ],
        )


        def _next_question(uuid_):
            global count
            if not uuid_:
                uuid_ = str(uuid.uuid4())
                count += 1
                logging.info(f'Player {count} starts the game now')
            global _QUESTION_SESSIONS
            if uuid_ in _QUESTION_SESSIONS:
                _exists, _qid = _QUESTION_SESSIONS[uuid_]
            else:
                _exists, _qid = set(), -1
            _qid += 1
            _QUESTION_SESSIONS[uuid_] = _exists, _qid

            if _qid >= len(_QUESTIONS):
                del _QUESTION_SESSIONS[uuid_]
                logging.info(f'Player {count} has passed the game now')
                return game_cleared_label, '', '', {}, '', \
                    gr.Button(submit_label, interactive=False), \
                    gr.Button(try_again_label, interactive=True), \
                    '', \
                    gr.Radio(
                        choices=[(QuestionExecutor(q, _LANG).question_name, i) for i, q in enumerate(_QUESTIONS)],
                        label=select_label
                    )
            else:
                executor = QuestionExecutor(_QUESTIONS[_qid], _LANG)
                question_text = _postprocess_question_text(executor.question_text)
                return question_text, '', '', {}, '', \
                    gr.Button(submit_label, interactive=True), \
                    gr.Button(next_label, interactive=False), \
                    uuid_, \
                    gr.Radio(
                        choices=[(QuestionExecutor(q, _LANG).question_name, i) for i, q in enumerate(_QUESTIONS)],
                        value=_qid,
                        label=select_label,
                    )


        gr_next.click(
            fn=_next_question,
            inputs=[gr_uuid],
            outputs=[
                gr_requirement, gr_question, gr_answer,
                gr_predict, gr_explanation, gr_submit, gr_next,
                gr_uuid, gr_select,
            ],
        )


        def _submit_answer(qs_text: str, api_key: str, uuid_: str):
            global _QUESTION_SESSIONS
            if _need_api_key() and not api_key:
                raise gr.Error(api_error_info)

            _exists, _qid = _QUESTION_SESSIONS[uuid_]
            executor = QuestionExecutor(
                _QUESTIONS[_qid], _LANG,
                llm=_LLM, llm_cfgs=_get_api_key_cfgs(api_key) if _need_api_key() else {'api_key': _LLM_KEY}
            )
            answer_text, correctness, explanation = executor.check(qs_text)
            labels = {correct_label: 1.0} if correctness else {wrong_label: 1.0}
            if correctness:
                _QUESTION_SESSIONS[uuid_] = (_exists | {_qid}), _qid
                return answer_text, labels, explanation, gr.Button(next_label, interactive=True), uuid_
            else:
                return answer_text, labels, explanation, gr.Button(next_label, interactive=False), uuid_


        gr_submit.click(
            _submit_answer,
            inputs=[gr_question, gr_api_key, gr_uuid],
            outputs=[gr_answer, gr_predict, gr_explanation, gr_next, gr_uuid],
        )

    concurrency = int(os.environ.get('CONCURRENCY', os.cpu_count()))
    favicon_path = os.path.join(os.path.dirname(__file__), 'llmriddles', 'assets', 'avatar.png')
    demo.queue().launch(max_threads=concurrency, favicon_path=favicon_path, share=True)