Spaces:
Runtime error
Runtime error
mrfakename
commited on
Commit
•
129f554
0
Parent(s):
update
Browse files- .gitattributes +43 -0
- LICENSE +3 -0
- README.md +16 -0
- README_TEMPLATE.md +22 -0
- app.py +61 -0
- constants.py +4 -0
- cscript.py +1168 -0
- hfconv.py +82 -0
- models/ggml-vocab-aquila.gguf +3 -0
- models/ggml-vocab-baichuan.gguf +3 -0
- models/ggml-vocab-falcon.gguf +3 -0
- models/ggml-vocab-gpt-neox.gguf +3 -0
- models/ggml-vocab-llama.gguf +0 -0
- models/ggml-vocab-mpt.gguf +3 -0
- models/ggml-vocab-refact.gguf +3 -0
- models/ggml-vocab-stablelm-3b-4e1t.gguf +3 -0
- models/ggml-vocab-starcoder.gguf +3 -0
- requirements.txt +8 -0
.gitattributes
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
models/ggml-vocab-aquila.gguf filter=lfs diff=lfs merge=lfs -text
|
37 |
+
models/ggml-vocab-baichuan.gguf filter=lfs diff=lfs merge=lfs -text
|
38 |
+
models/ggml-vocab-falcon.gguf filter=lfs diff=lfs merge=lfs -text
|
39 |
+
models/ggml-vocab-gpt-neox.gguf filter=lfs diff=lfs merge=lfs -text
|
40 |
+
models/ggml-vocab-mpt.gguf filter=lfs diff=lfs merge=lfs -text
|
41 |
+
models/ggml-vocab-refact.gguf filter=lfs diff=lfs merge=lfs -text
|
42 |
+
models/ggml-vocab-stablelm-3b-4e1t.gguf filter=lfs diff=lfs merge=lfs -text
|
43 |
+
models/ggml-vocab-starcoder.gguf filter=lfs diff=lfs merge=lfs -text
|
LICENSE
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
THIS SOFTWARE IS NOT OPEN SOURCED!!! REDISTRIBUTION PROHIBITED!
|
2 |
+
|
3 |
+
Copyright 2023 mrfakename. All rights reserved. REDISTRIBUTION PROHIBITED!!! PLEASE don't go republishing this, putting it on github, sharing colabs of it, etc! Pease DO NOT do this! Please ask FIRST instead! Please don't copy-paste this code into your project!
|
README.md
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Convert to GGUF
|
3 |
+
emoji: 🌍
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: purple
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.8.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
tags:
|
11 |
+
- gguf
|
12 |
+
---
|
13 |
+
|
14 |
+
THIS SOFTWARE IS NOT OPEN SOURCED!!! REDISTRIBUTION PROHIBITED!
|
15 |
+
|
16 |
+
Copyright 2023 mrfakename. All rights reserved. REDISTRIBUTION PROHIBITED!!! PLEASE don't go republishing this, putting it on github, sharing colabs of it, etc! Pease DO NOT do this! Please ask FIRST instead! Please don't copy-paste this code into your project!
|
README_TEMPLATE.md
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: <<MODEL_ID>>
|
3 |
+
inference: false
|
4 |
+
pipeline_tag: text-generation
|
5 |
+
quantized_by: mfn
|
6 |
+
tags:
|
7 |
+
- gguf
|
8 |
+
---
|
9 |
+
|
10 |
+
# GGUF
|
11 |
+
|
12 |
+
## GGUF models for <<MODEL_ID>>
|
13 |
+
|
14 |
+
* Original model: [<<MODEL_ID>>](https://huggingface.co/<<MODEL_ID>>)
|
15 |
+
|
16 |
+
## Description
|
17 |
+
|
18 |
+
This model contains GGUF models for [<<MODEL_ID>>](https://huggingface.co/<<MODEL_ID>>)
|
19 |
+
|
20 |
+
## License
|
21 |
+
|
22 |
+
The license of this model follows that of the original model.
|
app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# THIS SOFTWARE IS NOT OPEN SOURCED!!! REDISTRIBUTION PROHIBITED! SEE LICENSE FOR DETAILS.
|
2 |
+
|
3 |
+
## TODO: Only allow 2 quantizations to run at once
|
4 |
+
from huggingface_hub import HfApi
|
5 |
+
import os
|
6 |
+
from hfconv import convert
|
7 |
+
from constants import *
|
8 |
+
import gradio as gr
|
9 |
+
import threading
|
10 |
+
from slugify import slugify
|
11 |
+
|
12 |
+
theme = gr.themes.Base(
|
13 |
+
font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
|
14 |
+
)
|
15 |
+
DESCRIPTION = """
|
16 |
+
Welcome to Convert to GGUF, a **free** tool to convert all your models to gguf
|
17 |
+
""".strip()
|
18 |
+
|
19 |
+
# def run_real(model_id: str) -> str:
|
20 |
+
def run(model_id):
|
21 |
+
if model_id == "":
|
22 |
+
return """
|
23 |
+
### Invalid input 🐞
|
24 |
+
|
25 |
+
Please input a model_id.
|
26 |
+
"""
|
27 |
+
try:
|
28 |
+
api = HfApi(token=HF_TOKEN)
|
29 |
+
if not api.repo_exists(model_id):
|
30 |
+
raise gr.Error('Unable to locate repo')
|
31 |
+
# repo_id = convert(api=api, model_id=model_id)
|
32 |
+
background_thread = threading.Thread(target=convert, args=(api, model_id))
|
33 |
+
background_thread.start()
|
34 |
+
repo_id = username + "/" + slugify(model_id.strip()) + "-GGUF"
|
35 |
+
string = f"""## Quantizing
|
36 |
+
We are quantizing the model now. If it is successful and it works, it will be available [here](https://huggingface.co/{repo_id}). It may take up to several hours to complete. If it does not work after several hours, please try again. If it does not work after many tries, please contact us.""".strip()
|
37 |
+
# if errors:
|
38 |
+
# string += "\nErrors during conversion:\n"
|
39 |
+
# string += "\n".join(f"Error while converting {filename}: {e}, skipped conversion" for filename, e in errors)
|
40 |
+
return string
|
41 |
+
except Exception as e:
|
42 |
+
return f"""
|
43 |
+
### Error
|
44 |
+
|
45 |
+
{e}
|
46 |
+
"""
|
47 |
+
demo = gr.Interface(
|
48 |
+
title="Convert LLMs to GGUF & Quantize",
|
49 |
+
description=DESCRIPTION,
|
50 |
+
allow_flagging="never",
|
51 |
+
article="Created by [mrfakename](https://twitter.com/realmrfakename).",
|
52 |
+
inputs=[
|
53 |
+
gr.Text(max_lines=1, label="model_id"),
|
54 |
+
],
|
55 |
+
outputs=[gr.Markdown(label="output")],
|
56 |
+
fn=run,
|
57 |
+
css="footer{display:none !important}",
|
58 |
+
theme=theme
|
59 |
+
)
|
60 |
+
|
61 |
+
demo.queue(api_open=False, max_size=15).launch(show_api=False)
|
constants.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
username = 'gguf'
|
3 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
4 |
+
types_to_quantize = ['Q6_K', 'Q5_K_M', 'Q5_K_S', 'Q4_K_M', 'Q4_K_S', 'Q3_K_L', 'Q3_K_M', 'Q3_K_S', 'Q2_K']
|
cscript.py
ADDED
@@ -0,0 +1,1168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# THIS FILE IS MIT LICENSED BUT THE REST IS NOT! SEE THE LICENSE FOR DETAILS! FROM THE LLAMA.CPP MODEL
|
2 |
+
#!/usr/bin/env python3
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import argparse
|
6 |
+
import concurrent.futures
|
7 |
+
import enum
|
8 |
+
import faulthandler
|
9 |
+
import functools
|
10 |
+
import itertools
|
11 |
+
import json
|
12 |
+
import math
|
13 |
+
import mmap
|
14 |
+
import pickle
|
15 |
+
import re
|
16 |
+
import signal
|
17 |
+
import struct
|
18 |
+
import sys
|
19 |
+
import time
|
20 |
+
import zipfile
|
21 |
+
from abc import ABCMeta, abstractmethod
|
22 |
+
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
|
23 |
+
from dataclasses import dataclass
|
24 |
+
from pathlib import Path
|
25 |
+
from typing import IO, TYPE_CHECKING, Any, Callable, Iterable, Literal, TypeVar
|
26 |
+
|
27 |
+
import numpy as np
|
28 |
+
from sentencepiece import SentencePieceProcessor
|
29 |
+
|
30 |
+
import os
|
31 |
+
if 'NO_LOCAL_GGUF' not in os.environ:
|
32 |
+
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
33 |
+
import gguf
|
34 |
+
|
35 |
+
if TYPE_CHECKING:
|
36 |
+
from typing import TypeAlias
|
37 |
+
|
38 |
+
if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'):
|
39 |
+
faulthandler.register(signal.SIGUSR1)
|
40 |
+
|
41 |
+
NDArray: TypeAlias = 'np.ndarray[Any, Any]'
|
42 |
+
|
43 |
+
ARCH = gguf.MODEL_ARCH.LLAMA
|
44 |
+
|
45 |
+
DEFAULT_CONCURRENCY = 8
|
46 |
+
#
|
47 |
+
# data types
|
48 |
+
#
|
49 |
+
|
50 |
+
|
51 |
+
@dataclass(frozen=True)
|
52 |
+
class DataType:
|
53 |
+
name: str
|
54 |
+
dtype: np.dtype[Any]
|
55 |
+
valid_conversions: list[str]
|
56 |
+
|
57 |
+
def elements_to_bytes(self, n_elements: int) -> int:
|
58 |
+
return n_elements * self.dtype.itemsize
|
59 |
+
|
60 |
+
|
61 |
+
@dataclass(frozen=True)
|
62 |
+
class UnquantizedDataType(DataType):
|
63 |
+
pass
|
64 |
+
|
65 |
+
|
66 |
+
DT_F16 = UnquantizedDataType('F16', dtype = np.dtype(np.float16), valid_conversions = ['F32', 'Q8_0'])
|
67 |
+
DT_F32 = UnquantizedDataType('F32', dtype = np.dtype(np.float32), valid_conversions = ['F16', 'Q8_0'])
|
68 |
+
DT_I32 = UnquantizedDataType('I32', dtype = np.dtype(np.int16), valid_conversions = [])
|
69 |
+
DT_BF16 = UnquantizedDataType('BF16', dtype = np.dtype(np.uint16), valid_conversions = ['F32', 'F16', 'Q8_0'])
|
70 |
+
|
71 |
+
|
72 |
+
@dataclass(frozen=True)
|
73 |
+
class QuantizedDataType(DataType):
|
74 |
+
block_size: int
|
75 |
+
quantized_dtype: np.dtype[Any]
|
76 |
+
ggml_type: gguf.GGMLQuantizationType
|
77 |
+
|
78 |
+
def quantize(self, arr: NDArray) -> NDArray:
|
79 |
+
raise NotImplementedError(f'Quantization for {self.name} not implemented')
|
80 |
+
|
81 |
+
def elements_to_bytes(self, n_elements: int) -> int:
|
82 |
+
assert n_elements % self.block_size == 0, f'Invalid number of elements {n_elements} for {self.name} with block size {self.block_size}'
|
83 |
+
return self.quantized_dtype.itemsize * (n_elements // self.block_size)
|
84 |
+
|
85 |
+
|
86 |
+
@dataclass(frozen=True)
|
87 |
+
class Q8_0QuantizedDataType(QuantizedDataType):
|
88 |
+
# Mini Q8_0 quantization in Python!
|
89 |
+
def quantize(self, arr: NDArray) -> NDArray:
|
90 |
+
assert arr.size % self.block_size == 0 and arr.size != 0, f'Bad array size {arr.size}'
|
91 |
+
assert arr.dtype == np.float32, f'Bad array type {arr.dtype}'
|
92 |
+
n_blocks = arr.size // self.block_size
|
93 |
+
blocks = arr.reshape((n_blocks, self.block_size))
|
94 |
+
# Much faster implementation of block quantization contributed by @Cebtenzzre
|
95 |
+
|
96 |
+
def quantize_blocks_q8_0(blocks: NDArray) -> Iterable[tuple[Any, Any]]:
|
97 |
+
d = abs(blocks).max(axis = 1) / np.float32(127)
|
98 |
+
with np.errstate(divide = 'ignore'):
|
99 |
+
qs = (blocks / d[:, None]).round()
|
100 |
+
qs[d == 0] = 0
|
101 |
+
yield from zip(d, qs)
|
102 |
+
return np.fromiter(quantize_blocks_q8_0(blocks), count = n_blocks, dtype = self.quantized_dtype)
|
103 |
+
|
104 |
+
|
105 |
+
DT_Q8_0 = Q8_0QuantizedDataType('Q8_0',
|
106 |
+
dtype = np.dtype(np.float32), valid_conversions = [],
|
107 |
+
ggml_type = gguf.GGMLQuantizationType.Q8_0, block_size = 32,
|
108 |
+
quantized_dtype = np.dtype([('d', '<f2'), ('qs', 'i1', (32,))]))
|
109 |
+
|
110 |
+
# Quantized types skipped here because they may also map to np.float32
|
111 |
+
NUMPY_TYPE_TO_DATA_TYPE: dict[np.dtype[Any], DataType] = {}
|
112 |
+
for dt in (DT_BF16, DT_F16, DT_F32, DT_I32):
|
113 |
+
if dt.dtype in NUMPY_TYPE_TO_DATA_TYPE:
|
114 |
+
raise ValueError(f'Invalid duplicate data type {dt}')
|
115 |
+
NUMPY_TYPE_TO_DATA_TYPE[dt.dtype] = dt
|
116 |
+
|
117 |
+
SAFETENSORS_DATA_TYPES: dict[str, DataType] = {
|
118 |
+
'BF16': DT_BF16,
|
119 |
+
'F16': DT_F16,
|
120 |
+
'F32': DT_F32,
|
121 |
+
'I32': DT_I32,
|
122 |
+
}
|
123 |
+
|
124 |
+
# TODO: match this with `llama_ftype`
|
125 |
+
# TODO: rename to LLAMAFileType
|
126 |
+
# TODO: move to `gguf.py`
|
127 |
+
|
128 |
+
|
129 |
+
class GGMLFileType(enum.IntEnum):
|
130 |
+
AllF32 = 0
|
131 |
+
MostlyF16 = 1 # except 1d tensors
|
132 |
+
MostlyQ8_0 = 7 # except 1d tensors
|
133 |
+
|
134 |
+
def type_for_tensor(self, name: str, tensor: LazyTensor) -> DataType:
|
135 |
+
dt = GGML_FILE_TYPE_TO_DATA_TYPE.get(self)
|
136 |
+
if dt is None:
|
137 |
+
raise ValueError(self)
|
138 |
+
# 1D tensors are always F32.
|
139 |
+
return dt if len(tensor.shape) > 1 else DT_F32
|
140 |
+
|
141 |
+
|
142 |
+
GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = {
|
143 |
+
GGMLFileType.AllF32 : DT_F32,
|
144 |
+
GGMLFileType.MostlyF16 : DT_F16,
|
145 |
+
GGMLFileType.MostlyQ8_0: DT_Q8_0,
|
146 |
+
}
|
147 |
+
|
148 |
+
#
|
149 |
+
# hparams loading
|
150 |
+
#
|
151 |
+
|
152 |
+
|
153 |
+
@dataclass
|
154 |
+
class Params:
|
155 |
+
n_vocab: int
|
156 |
+
n_embd: int
|
157 |
+
n_layer: int
|
158 |
+
n_ctx: int
|
159 |
+
n_ff: int
|
160 |
+
n_head: int
|
161 |
+
n_head_kv: int
|
162 |
+
f_norm_eps: float
|
163 |
+
|
164 |
+
rope_scaling_type: gguf.RopeScalingType | None = None
|
165 |
+
f_rope_freq_base: float | None = None
|
166 |
+
f_rope_scale: float | None = None
|
167 |
+
n_orig_ctx: int | None = None
|
168 |
+
rope_finetuned: bool | None = None
|
169 |
+
|
170 |
+
ftype: GGMLFileType | None = None
|
171 |
+
|
172 |
+
# path to the directory containing the model files
|
173 |
+
path_model: Path | None = None
|
174 |
+
|
175 |
+
@staticmethod
|
176 |
+
def guessed(model: LazyModel) -> Params:
|
177 |
+
# try transformer naming first
|
178 |
+
n_vocab, n_embd = model["model.embed_tokens.weight"].shape if "model.embed_tokens.weight" in model else model["tok_embeddings.weight"].shape
|
179 |
+
|
180 |
+
# try transformer naming first
|
181 |
+
if "model.layers.0.self_attn.q_proj.weight" in model:
|
182 |
+
n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model)
|
183 |
+
elif "model.layers.0.self_attn.W_pack.weight" in model: # next: try baichuan naming
|
184 |
+
n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.W_pack.weight" not in model)
|
185 |
+
else:
|
186 |
+
n_layer = next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model)
|
187 |
+
|
188 |
+
if n_layer < 1:
|
189 |
+
raise Exception("failed to guess 'n_layer'. This model is unknown or unsupported.\n"
|
190 |
+
"Suggestion: provide 'config.json' of the model in the same directory containing model files.")
|
191 |
+
|
192 |
+
n_head = n_embd // 128 # guessed
|
193 |
+
n_mult = 256 # guessed
|
194 |
+
|
195 |
+
# TODO: verify this
|
196 |
+
n_ff = int(2 * (4 * n_embd) / 3)
|
197 |
+
n_ff = n_mult * ((n_ff + n_mult - 1) // n_mult)
|
198 |
+
|
199 |
+
return Params(
|
200 |
+
n_vocab = n_vocab,
|
201 |
+
n_embd = n_embd,
|
202 |
+
n_layer = n_layer,
|
203 |
+
n_ctx = -1,
|
204 |
+
n_ff = n_ff,
|
205 |
+
n_head = n_head,
|
206 |
+
n_head_kv = n_head,
|
207 |
+
f_norm_eps = 1e-5,
|
208 |
+
)
|
209 |
+
|
210 |
+
@staticmethod
|
211 |
+
def loadHFTransformerJson(model: LazyModel, config_path: Path) -> Params:
|
212 |
+
config = json.load(open(config_path))
|
213 |
+
|
214 |
+
rope_scaling_type = f_rope_scale = n_orig_ctx = rope_finetuned = None
|
215 |
+
rope_scaling = config.get("rope_scaling")
|
216 |
+
|
217 |
+
if rope_scaling is not None and (typ := rope_scaling.get("type")):
|
218 |
+
rope_factor = rope_scaling.get("factor")
|
219 |
+
f_rope_scale = rope_factor
|
220 |
+
if typ == "linear":
|
221 |
+
rope_scaling_type = gguf.RopeScalingType.LINEAR
|
222 |
+
elif typ == "yarn":
|
223 |
+
rope_scaling_type = gguf.RopeScalingType.YARN
|
224 |
+
n_orig_ctx = rope_scaling['original_max_position_embeddings']
|
225 |
+
rope_finetuned = rope_scaling['finetuned']
|
226 |
+
else:
|
227 |
+
raise NotImplementedError(f'Unknown rope scaling type: {typ}')
|
228 |
+
|
229 |
+
if "max_sequence_length" in config:
|
230 |
+
n_ctx = config["max_sequence_length"]
|
231 |
+
elif "max_position_embeddings" in config:
|
232 |
+
n_ctx = config["max_position_embeddings"]
|
233 |
+
else:
|
234 |
+
raise Exception("failed to guess 'n_ctx'. This model is unknown or unsupported.\n"
|
235 |
+
"Suggestion: provide 'config.json' of the model in the same directory containing model files.")
|
236 |
+
|
237 |
+
return Params(
|
238 |
+
n_vocab = config["vocab_size"],
|
239 |
+
n_embd = config["hidden_size"],
|
240 |
+
n_layer = config["num_hidden_layers"],
|
241 |
+
n_ctx = n_ctx,
|
242 |
+
n_ff = config["intermediate_size"],
|
243 |
+
n_head = (n_head := config["num_attention_heads"]),
|
244 |
+
n_head_kv = config.get("num_key_value_heads", n_head),
|
245 |
+
f_norm_eps = config["rms_norm_eps"],
|
246 |
+
f_rope_freq_base = config.get("rope_theta"),
|
247 |
+
rope_scaling_type = rope_scaling_type,
|
248 |
+
f_rope_scale = f_rope_scale,
|
249 |
+
n_orig_ctx = n_orig_ctx,
|
250 |
+
rope_finetuned = rope_finetuned,
|
251 |
+
)
|
252 |
+
|
253 |
+
# LLaMA v2 70B params.json
|
254 |
+
# {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1}
|
255 |
+
@staticmethod
|
256 |
+
def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params:
|
257 |
+
config = json.load(open(config_path))
|
258 |
+
|
259 |
+
# hack to determine LLaMA v1 vs v2 vs CodeLlama
|
260 |
+
if config.get("rope_theta") == 1000000:
|
261 |
+
# CodeLlama
|
262 |
+
n_ctx = 16384
|
263 |
+
elif config["norm_eps"] == 1e-05:
|
264 |
+
# LLaMA v2
|
265 |
+
n_ctx = 4096
|
266 |
+
else:
|
267 |
+
# LLaMA v1
|
268 |
+
n_ctx = 2048
|
269 |
+
|
270 |
+
return Params(
|
271 |
+
n_vocab = model["tok_embeddings.weight"].shape[0],
|
272 |
+
n_embd = config["dim"],
|
273 |
+
n_layer = config["n_layers"],
|
274 |
+
n_ctx = n_ctx,
|
275 |
+
n_ff = model["layers.0.feed_forward.w1.weight"].shape[0],
|
276 |
+
n_head = (n_head := config["n_heads"]),
|
277 |
+
n_head_kv = config.get("n_kv_heads", n_head),
|
278 |
+
f_norm_eps = config["norm_eps"],
|
279 |
+
f_rope_freq_base = config.get("rope_theta"),
|
280 |
+
)
|
281 |
+
|
282 |
+
@staticmethod
|
283 |
+
def load(model_plus: ModelPlus) -> Params:
|
284 |
+
hf_config_path = model_plus.paths[0].parent / "config.json"
|
285 |
+
orig_config_path = model_plus.paths[0].parent / "params.json"
|
286 |
+
|
287 |
+
if hf_config_path.exists():
|
288 |
+
params = Params.loadHFTransformerJson(model_plus.model, hf_config_path)
|
289 |
+
elif orig_config_path.exists():
|
290 |
+
params = Params.loadOriginalParamsJson(model_plus.model, orig_config_path)
|
291 |
+
elif model_plus.format != 'none':
|
292 |
+
params = Params.guessed(model_plus.model)
|
293 |
+
else:
|
294 |
+
raise ValueError('Cannot guess params when model format is none')
|
295 |
+
|
296 |
+
params.path_model = model_plus.paths[0].parent
|
297 |
+
|
298 |
+
return params
|
299 |
+
|
300 |
+
|
301 |
+
#
|
302 |
+
# vocab
|
303 |
+
#
|
304 |
+
|
305 |
+
class BpeVocab:
|
306 |
+
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None:
|
307 |
+
self.bpe_tokenizer = json.loads(open(str(fname_tokenizer), encoding="utf-8").read())
|
308 |
+
added_tokens: dict[str, int]
|
309 |
+
if fname_added_tokens is not None:
|
310 |
+
# FIXME: Verify that added tokens here _cannot_ overlap with the main vocab.
|
311 |
+
added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
|
312 |
+
else:
|
313 |
+
# Fall back to trying to find the added tokens in tokenizer.json
|
314 |
+
tokenizer_json_file = fname_tokenizer.parent / 'tokenizer.json'
|
315 |
+
if not tokenizer_json_file.is_file():
|
316 |
+
added_tokens = {}
|
317 |
+
else:
|
318 |
+
tokenizer_json = json.load(open(tokenizer_json_file, encoding="utf-8"))
|
319 |
+
added_tokens = dict(
|
320 |
+
(item['content'], item['id'])
|
321 |
+
for item in tokenizer_json.get('added_tokens', [])
|
322 |
+
# Added tokens here can be duplicates of the main vocabulary.
|
323 |
+
if item['content'] not in self.bpe_tokenizer)
|
324 |
+
|
325 |
+
vocab_size: int = len(self.bpe_tokenizer)
|
326 |
+
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
|
327 |
+
actual_ids = sorted(added_tokens.values())
|
328 |
+
if expected_ids != actual_ids:
|
329 |
+
expected_end_id = vocab_size + len(actual_ids) - 1
|
330 |
+
raise Exception(f"Expected the {len(actual_ids)} added token ID(s) to be sequential in the range {vocab_size} - {expected_end_id}; got {actual_ids}")
|
331 |
+
|
332 |
+
items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
|
333 |
+
self.added_tokens_list = [text for (text, idx) in items]
|
334 |
+
self.vocab_size_base: int = vocab_size
|
335 |
+
self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list)
|
336 |
+
self.fname_tokenizer = fname_tokenizer
|
337 |
+
self.fname_added_tokens = fname_added_tokens
|
338 |
+
|
339 |
+
def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
340 |
+
tokenizer = self.bpe_tokenizer
|
341 |
+
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.items()}
|
342 |
+
|
343 |
+
for i, _ in enumerate(tokenizer):
|
344 |
+
yield reverse_vocab[i], 0.0, gguf.TokenType.NORMAL
|
345 |
+
|
346 |
+
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
347 |
+
for text in self.added_tokens_list:
|
348 |
+
score = -1000.0
|
349 |
+
yield text.encode("utf-8"), score, gguf.TokenType.CONTROL
|
350 |
+
|
351 |
+
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
352 |
+
yield from self.bpe_tokens()
|
353 |
+
yield from self.added_tokens()
|
354 |
+
|
355 |
+
def __repr__(self) -> str:
|
356 |
+
return f"<BpeVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
|
357 |
+
|
358 |
+
|
359 |
+
class SentencePieceVocab:
|
360 |
+
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None:
|
361 |
+
self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
|
362 |
+
added_tokens: dict[str, int]
|
363 |
+
if fname_added_tokens is not None:
|
364 |
+
added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
|
365 |
+
else:
|
366 |
+
added_tokens = {}
|
367 |
+
|
368 |
+
vocab_size: int = self.sentencepiece_tokenizer.vocab_size()
|
369 |
+
|
370 |
+
new_tokens = {id: piece for piece, id in added_tokens.items() if id >= vocab_size}
|
371 |
+
expected_new_ids = list(range(vocab_size, vocab_size + len(new_tokens)))
|
372 |
+
actual_new_ids = sorted(new_tokens.keys())
|
373 |
+
|
374 |
+
if expected_new_ids != actual_new_ids:
|
375 |
+
raise ValueError(f"Expected new token IDs {expected_new_ids} to be sequential; got {actual_new_ids}")
|
376 |
+
|
377 |
+
# Token pieces that were added to the base vocabulary.
|
378 |
+
self.added_tokens_list = [new_tokens[id] for id in actual_new_ids]
|
379 |
+
self.vocab_size_base = vocab_size
|
380 |
+
self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
|
381 |
+
self.fname_tokenizer = fname_tokenizer
|
382 |
+
self.fname_added_tokens = fname_added_tokens
|
383 |
+
|
384 |
+
def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
385 |
+
tokenizer = self.sentencepiece_tokenizer
|
386 |
+
for i in range(tokenizer.vocab_size()):
|
387 |
+
piece = tokenizer.id_to_piece(i)
|
388 |
+
text: bytes = piece.encode("utf-8")
|
389 |
+
score: float = tokenizer.get_score(i)
|
390 |
+
|
391 |
+
toktype = gguf.TokenType.NORMAL
|
392 |
+
if tokenizer.is_unknown(i):
|
393 |
+
toktype = gguf.TokenType.UNKNOWN
|
394 |
+
if tokenizer.is_control(i):
|
395 |
+
toktype = gguf.TokenType.CONTROL
|
396 |
+
|
397 |
+
# NOTE: I think added_tokens are user defined.
|
398 |
+
# ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
|
399 |
+
# if tokenizer.is_user_defined(i): toktype = gguf.TokenType.USER_DEFINED
|
400 |
+
|
401 |
+
if tokenizer.is_unused(i):
|
402 |
+
toktype = gguf.TokenType.UNUSED
|
403 |
+
if tokenizer.is_byte(i):
|
404 |
+
toktype = gguf.TokenType.BYTE
|
405 |
+
|
406 |
+
yield text, score, toktype
|
407 |
+
|
408 |
+
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
409 |
+
for text in self.added_tokens_list:
|
410 |
+
score = -1000.0
|
411 |
+
yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED
|
412 |
+
|
413 |
+
def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
414 |
+
yield from self.sentencepiece_tokens()
|
415 |
+
yield from self.added_tokens()
|
416 |
+
|
417 |
+
def __repr__(self) -> str:
|
418 |
+
return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
|
419 |
+
|
420 |
+
|
421 |
+
Vocab: TypeAlias = 'BpeVocab | SentencePieceVocab'
|
422 |
+
|
423 |
+
#
|
424 |
+
# data loading
|
425 |
+
# TODO: reuse (probably move to gguf.py?)
|
426 |
+
#
|
427 |
+
|
428 |
+
|
429 |
+
def permute(weights: NDArray, n_head: int, n_head_kv: int) -> NDArray:
|
430 |
+
# print( "permute debug " + str(weights.shape[0]) + " x " + str(weights.shape[1]) + " nhead " + str(n_head) + " nheadkv " + str(n_kv_head) )
|
431 |
+
if n_head_kv is not None and n_head != n_head_kv:
|
432 |
+
n_head = n_head_kv
|
433 |
+
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
|
434 |
+
.swapaxes(1, 2)
|
435 |
+
.reshape(weights.shape))
|
436 |
+
|
437 |
+
|
438 |
+
class Tensor(metaclass=ABCMeta):
|
439 |
+
data_type: DataType
|
440 |
+
|
441 |
+
@abstractmethod
|
442 |
+
def astype(self, data_type: DataType) -> Tensor: ...
|
443 |
+
@abstractmethod
|
444 |
+
def permute(self, n_head: int, n_head_kv: int) -> Tensor: ...
|
445 |
+
@abstractmethod
|
446 |
+
def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> UnquantizedTensor: ...
|
447 |
+
@abstractmethod
|
448 |
+
def part(self, n_part: int) -> UnquantizedTensor: ...
|
449 |
+
@abstractmethod
|
450 |
+
def to_ggml(self) -> GGMLCompatibleTensor: ...
|
451 |
+
|
452 |
+
|
453 |
+
def bf16_to_fp32(bf16_arr: np.ndarray[Any, np.dtype[np.uint16]]) -> NDArray:
|
454 |
+
assert bf16_arr.dtype == np.uint16, f"Input array should be of dtype uint16, but got {bf16_arr.dtype}"
|
455 |
+
fp32_arr = bf16_arr.astype(np.uint32) << 16
|
456 |
+
return fp32_arr.view(np.float32)
|
457 |
+
|
458 |
+
|
459 |
+
class UnquantizedTensor(Tensor):
|
460 |
+
def __init__(self, ndarray: NDArray) -> None:
|
461 |
+
assert isinstance(ndarray, np.ndarray)
|
462 |
+
self.ndarray = ndarray
|
463 |
+
self.data_type = NUMPY_TYPE_TO_DATA_TYPE[ndarray.dtype]
|
464 |
+
|
465 |
+
def astype(self, data_type: DataType) -> Tensor:
|
466 |
+
dtype = data_type.dtype
|
467 |
+
if self.data_type == DT_BF16:
|
468 |
+
self.ndarray = bf16_to_fp32(self.ndarray)
|
469 |
+
return UnquantizedTensor(self.ndarray.astype(dtype))
|
470 |
+
|
471 |
+
def to_ggml(self) -> UnquantizedTensor:
|
472 |
+
return self
|
473 |
+
|
474 |
+
def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> UnquantizedTensor:
|
475 |
+
r = self.ndarray.shape[0] // 3
|
476 |
+
return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head, n_head_kv))
|
477 |
+
|
478 |
+
def part(self, n_part: int) -> UnquantizedTensor:
|
479 |
+
r = self.ndarray.shape[0] // 3
|
480 |
+
return UnquantizedTensor(self.ndarray[r * n_part : r * n_part + r, ...])
|
481 |
+
|
482 |
+
def permute(self, n_head: int, n_head_kv: int) -> UnquantizedTensor:
|
483 |
+
return UnquantizedTensor(permute(self.ndarray, n_head, n_head_kv))
|
484 |
+
|
485 |
+
|
486 |
+
def load_unquantized(lazy_tensor: LazyTensor, expected_dtype: Any = None, convert: bool = False) -> NDArray:
|
487 |
+
tensor = lazy_tensor.load()
|
488 |
+
assert isinstance(tensor, UnquantizedTensor)
|
489 |
+
|
490 |
+
# double-check:
|
491 |
+
actual_shape = list(tensor.ndarray.shape)
|
492 |
+
assert actual_shape == lazy_tensor.shape, (actual_shape, lazy_tensor.shape)
|
493 |
+
if expected_dtype is not None and expected_dtype != tensor.ndarray.dtype:
|
494 |
+
if convert:
|
495 |
+
tensor.ndarray = tensor.ndarray.astype(expected_dtype)
|
496 |
+
else:
|
497 |
+
raise ValueError(f'expected this tensor to have dtype {expected_dtype}, got {tensor.ndarray.dtype}')
|
498 |
+
|
499 |
+
return tensor.ndarray
|
500 |
+
|
501 |
+
|
502 |
+
GGMLCompatibleTensor = UnquantizedTensor
|
503 |
+
|
504 |
+
|
505 |
+
@dataclass
|
506 |
+
class LazyTensor:
|
507 |
+
_load: Callable[[], Tensor]
|
508 |
+
shape: list[int]
|
509 |
+
data_type: DataType
|
510 |
+
description: str
|
511 |
+
|
512 |
+
def load(self) -> Tensor:
|
513 |
+
ret = self._load()
|
514 |
+
# Should be okay if it maps to the same numpy type?
|
515 |
+
assert ret.data_type == self.data_type or (self.data_type.dtype == ret.data_type.dtype), \
|
516 |
+
(self.data_type, ret.data_type, self.description)
|
517 |
+
return ret
|
518 |
+
|
519 |
+
def astype(self, data_type: DataType) -> LazyTensor:
|
520 |
+
self.validate_conversion_to(data_type)
|
521 |
+
|
522 |
+
def load() -> Tensor:
|
523 |
+
return self.load().astype(data_type)
|
524 |
+
return LazyTensor(load, self.shape, data_type, f'convert({data_type}) {self.description}')
|
525 |
+
|
526 |
+
def validate_conversion_to(self, data_type: DataType) -> None:
|
527 |
+
if data_type != self.data_type and data_type.name not in self.data_type.valid_conversions:
|
528 |
+
raise ValueError(f'Cannot validate conversion from {self.data_type} to {data_type}.')
|
529 |
+
|
530 |
+
|
531 |
+
LazyModel: TypeAlias = 'dict[str, LazyTensor]'
|
532 |
+
|
533 |
+
|
534 |
+
@dataclass
|
535 |
+
class ModelPlus:
|
536 |
+
model: LazyModel
|
537 |
+
paths: list[Path] # Where this was read from.
|
538 |
+
format: Literal['ggml', 'torch', 'safetensors', 'none']
|
539 |
+
vocab: Vocab | None # For GGML models (which have vocab built in), the vocab.
|
540 |
+
|
541 |
+
|
542 |
+
def merge_sharded(models: list[LazyModel]) -> LazyModel:
|
543 |
+
# Original LLaMA models have each file contain one part of each tensor.
|
544 |
+
# Use a dict instead of a set to preserve order.
|
545 |
+
names = {name: None for model in models for name in model}
|
546 |
+
|
547 |
+
def convert(name: str) -> LazyTensor:
|
548 |
+
lazy_tensors: list[LazyTensor] = [model[name] for model in models]
|
549 |
+
if len(lazy_tensors) == 1:
|
550 |
+
# only one file; don't go through this procedure since there might
|
551 |
+
# be quantized tensors
|
552 |
+
return lazy_tensors[0]
|
553 |
+
if len(lazy_tensors[0].shape) == 1:
|
554 |
+
# the tensor is just duplicated in every file
|
555 |
+
return lazy_tensors[0]
|
556 |
+
if name.startswith('tok_embeddings.') or \
|
557 |
+
name.endswith('.attention.wo.weight') or \
|
558 |
+
name.endswith('.feed_forward.w2.weight'):
|
559 |
+
# split by columns
|
560 |
+
axis = 1
|
561 |
+
else:
|
562 |
+
# split by rows
|
563 |
+
axis = 0
|
564 |
+
concatenated_shape = list(lazy_tensors[0].shape)
|
565 |
+
concatenated_shape[axis] = sum(tensor.shape[axis] for tensor in lazy_tensors)
|
566 |
+
|
567 |
+
def load() -> UnquantizedTensor:
|
568 |
+
ndarrays = [load_unquantized(tensor) for tensor in lazy_tensors]
|
569 |
+
concatenated: NDArray = np.concatenate(ndarrays, axis=axis)
|
570 |
+
return UnquantizedTensor(concatenated)
|
571 |
+
description = 'concatenated[[' + '] | ['.join(lt.description for lt in lazy_tensors) + ']]'
|
572 |
+
return LazyTensor(load, concatenated_shape, lazy_tensors[0].data_type, description)
|
573 |
+
return {name: convert(name) for name in names}
|
574 |
+
|
575 |
+
|
576 |
+
def merge_multifile_models(models_plus: list[ModelPlus]) -> ModelPlus:
|
577 |
+
formats = set(mp.format for mp in models_plus)
|
578 |
+
assert len(formats) == 1, "different formats?"
|
579 |
+
format = formats.pop()
|
580 |
+
paths = [path for mp in models_plus for path in mp.paths]
|
581 |
+
# Use the first non-None vocab, if any.
|
582 |
+
try:
|
583 |
+
vocab = next(mp.vocab for mp in models_plus if mp.vocab is not None)
|
584 |
+
except StopIteration:
|
585 |
+
vocab = None
|
586 |
+
|
587 |
+
if any("model.embed_tokens.weight" in mp.model for mp in models_plus):
|
588 |
+
# Transformers models put different tensors in different files, but
|
589 |
+
# don't split indivdual tensors between files.
|
590 |
+
model: LazyModel = {}
|
591 |
+
for mp in models_plus:
|
592 |
+
model.update(mp.model)
|
593 |
+
else:
|
594 |
+
model = merge_sharded([mp.model for mp in models_plus])
|
595 |
+
|
596 |
+
return ModelPlus(model, paths, format, vocab)
|
597 |
+
|
598 |
+
|
599 |
+
def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_head_kv: int) -> LazyTensor:
|
600 |
+
def load() -> Tensor:
|
601 |
+
return lazy_tensor.load().permute(n_head, n_head_kv)
|
602 |
+
return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)
|
603 |
+
|
604 |
+
|
605 |
+
def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int, n_head_kv: int) -> LazyTensor:
|
606 |
+
def load() -> Tensor:
|
607 |
+
return lazy_tensor.load().permute_part(n_part, n_head, n_head_kv)
|
608 |
+
s = lazy_tensor.shape.copy()
|
609 |
+
s[0] = s[0] // 3
|
610 |
+
return LazyTensor(load, s, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)
|
611 |
+
|
612 |
+
|
613 |
+
def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor:
|
614 |
+
def load() -> Tensor:
|
615 |
+
return lazy_tensor.load().part(n_part)
|
616 |
+
s = lazy_tensor.shape.copy()
|
617 |
+
s[0] = s[0] // 3
|
618 |
+
return LazyTensor(load, s, lazy_tensor.data_type, 'part ' + lazy_tensor.description)
|
619 |
+
|
620 |
+
|
621 |
+
# Functionality that simulates `torch.load` but where individual tensors are
|
622 |
+
# only loaded into memory on demand, not all at once.
|
623 |
+
# PyTorch can't do this natively as of time of writing:
|
624 |
+
# - https://github.com/pytorch/pytorch/issues/64327
|
625 |
+
# This allows us to de-shard without multiplying RAM usage, and also
|
626 |
+
# conveniently drops the PyTorch dependency (though we still need numpy).
|
627 |
+
|
628 |
+
|
629 |
+
@dataclass
|
630 |
+
class LazyStorageKind:
|
631 |
+
data_type: DataType
|
632 |
+
|
633 |
+
|
634 |
+
@dataclass
|
635 |
+
class LazyStorage:
|
636 |
+
load: Callable[[int, int], NDArray]
|
637 |
+
kind: LazyStorageKind
|
638 |
+
description: str
|
639 |
+
|
640 |
+
|
641 |
+
class LazyUnpickler(pickle.Unpickler):
|
642 |
+
def __init__(self, fp: IO[bytes], data_base_path: str, zip_file: zipfile.ZipFile):
|
643 |
+
super().__init__(fp)
|
644 |
+
self.data_base_path = data_base_path
|
645 |
+
self.zip_file = zip_file
|
646 |
+
|
647 |
+
def persistent_load(self, pid: Any) -> Any:
|
648 |
+
assert pid[0] == 'storage'
|
649 |
+
assert isinstance(pid[1], LazyStorageKind)
|
650 |
+
data_type = pid[1].data_type
|
651 |
+
filename_stem = pid[2]
|
652 |
+
filename = f'{self.data_base_path}/{filename_stem}'
|
653 |
+
info = self.zip_file.getinfo(filename)
|
654 |
+
|
655 |
+
def load(offset: int, elm_count: int) -> NDArray:
|
656 |
+
dtype = data_type.dtype
|
657 |
+
fp = self.zip_file.open(info)
|
658 |
+
fp.seek(offset * dtype.itemsize)
|
659 |
+
size = elm_count * dtype.itemsize
|
660 |
+
data = fp.read(size)
|
661 |
+
assert len(data) == size
|
662 |
+
return np.frombuffer(data, dtype)
|
663 |
+
description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}'
|
664 |
+
return LazyStorage(load=load, kind=pid[1], description=description)
|
665 |
+
|
666 |
+
@staticmethod
|
667 |
+
def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any,
|
668 |
+
requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor:
|
669 |
+
assert isinstance(storage, LazyStorage)
|
670 |
+
|
671 |
+
def load() -> UnquantizedTensor:
|
672 |
+
elm_count = stride[0] * size[0]
|
673 |
+
return UnquantizedTensor(storage.load(storage_offset, elm_count).reshape(size))
|
674 |
+
description = f'pickled storage_offset={storage_offset} in {storage.description}'
|
675 |
+
return LazyTensor(load, list(size), storage.kind.data_type, description)
|
676 |
+
|
677 |
+
@staticmethod
|
678 |
+
def rebuild_from_type_v2(func, new_type, args, state):
|
679 |
+
return func(*args)
|
680 |
+
|
681 |
+
CLASSES: dict[tuple[str, str], Any] = {
|
682 |
+
# getattr used here as a workaround for mypy not being smart enough to detrmine
|
683 |
+
# the staticmethods have a __func__ attribute.
|
684 |
+
('torch._tensor', '_rebuild_from_type_v2'): getattr(rebuild_from_type_v2, '__func__'),
|
685 |
+
('torch._utils', '_rebuild_tensor_v2'): getattr(lazy_rebuild_tensor_v2, '__func__'),
|
686 |
+
('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16),
|
687 |
+
('torch', 'HalfStorage'): LazyStorageKind(DT_F16),
|
688 |
+
('torch', 'FloatStorage'): LazyStorageKind(DT_F32),
|
689 |
+
('torch', 'IntStorage'): LazyStorageKind(DT_I32),
|
690 |
+
('torch', 'Tensor'): LazyTensor,
|
691 |
+
}
|
692 |
+
|
693 |
+
def find_class(self, module: str, name: str) -> Any:
|
694 |
+
if not module.startswith('torch'):
|
695 |
+
return super().find_class(module, name)
|
696 |
+
return self.CLASSES[(module, name)]
|
697 |
+
|
698 |
+
|
699 |
+
def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus:
|
700 |
+
zf = zipfile.ZipFile(outer_fp)
|
701 |
+
pickle_paths = [name for name in zf.namelist() if name.endswith('.pkl')]
|
702 |
+
assert len(pickle_paths) == 1, pickle_paths
|
703 |
+
pickle_fp = zf.open(pickle_paths[0], 'r')
|
704 |
+
unpickler = LazyUnpickler(pickle_fp,
|
705 |
+
data_base_path=pickle_paths[0][:-4],
|
706 |
+
zip_file=zf)
|
707 |
+
model = unpickler.load()
|
708 |
+
if 'model' in model: model = model['model']
|
709 |
+
as_dict = dict(model.items())
|
710 |
+
return ModelPlus(model=as_dict, paths=[path], format='torch', vocab=None)
|
711 |
+
|
712 |
+
|
713 |
+
def lazy_load_safetensors_file(fp: IO[bytes], path: Path) -> ModelPlus:
|
714 |
+
header_size, = struct.unpack('<Q', fp.read(8))
|
715 |
+
header: dict[str, dict[str, Any]] = json.loads(fp.read(header_size))
|
716 |
+
# Use mmap for the actual data to avoid race conditions with the file offset.
|
717 |
+
mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ))
|
718 |
+
byte_buf = mapped[8 + header_size:]
|
719 |
+
|
720 |
+
def convert(info: dict[str, Any]) -> LazyTensor:
|
721 |
+
data_type = SAFETENSORS_DATA_TYPES[info['dtype']]
|
722 |
+
numpy_dtype = data_type.dtype
|
723 |
+
shape: list[int] = info['shape']
|
724 |
+
begin, end = info['data_offsets']
|
725 |
+
assert 0 <= begin <= end <= len(byte_buf)
|
726 |
+
assert end - begin == math.prod(shape) * numpy_dtype.itemsize
|
727 |
+
buf = byte_buf[begin:end]
|
728 |
+
|
729 |
+
def load() -> UnquantizedTensor:
|
730 |
+
return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape))
|
731 |
+
description = f'safetensors begin={begin} end={end} type={data_type} path={path}'
|
732 |
+
return LazyTensor(load, shape, data_type, description)
|
733 |
+
model = {name: convert(info) for (name, info) in header.items() if name != '__metadata__'}
|
734 |
+
return ModelPlus(model=model, paths=[path], format='safetensors', vocab=None)
|
735 |
+
|
736 |
+
|
737 |
+
def must_read(fp: IO[bytes], length: int) -> bytes:
|
738 |
+
ret = fp.read(length)
|
739 |
+
if len(ret) < length:
|
740 |
+
raise Exception("unexpectedly reached end of file")
|
741 |
+
return ret
|
742 |
+
|
743 |
+
|
744 |
+
@functools.lru_cache(maxsize=None)
|
745 |
+
def lazy_load_file(path: Path) -> ModelPlus:
|
746 |
+
fp = open(path, 'rb')
|
747 |
+
first8 = fp.read(8)
|
748 |
+
fp.seek(0)
|
749 |
+
if first8[:2] == b'PK':
|
750 |
+
# A zip file, i.e. PyTorch format
|
751 |
+
return lazy_load_torch_file(fp, path)
|
752 |
+
elif struct.unpack('<Q', first8)[0] < 16 * 1024 * 1024:
|
753 |
+
# Probably safetensors
|
754 |
+
return lazy_load_safetensors_file(fp, path)
|
755 |
+
else:
|
756 |
+
raise ValueError(f"unknown format: {path}")
|
757 |
+
|
758 |
+
|
759 |
+
In = TypeVar('In')
|
760 |
+
Out = TypeVar('Out')
|
761 |
+
|
762 |
+
|
763 |
+
def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int, max_workers: int | None = None, use_processpool_executor: bool = False) -> Iterable[Out]:
|
764 |
+
'''Parallel map, but with backpressure. If the caller doesn't call `next`
|
765 |
+
fast enough, this will stop calling `func` at some point rather than
|
766 |
+
letting results pile up in memory. Specifically, there is a max of one
|
767 |
+
output value buffered per thread.'''
|
768 |
+
if concurrency < 2:
|
769 |
+
yield from map(func, iterable)
|
770 |
+
# Not reached.
|
771 |
+
iterable = iter(iterable)
|
772 |
+
executor_class: type[ThreadPoolExecutor] | type[ProcessPoolExecutor]
|
773 |
+
if use_processpool_executor:
|
774 |
+
executor_class = ProcessPoolExecutor
|
775 |
+
else:
|
776 |
+
executor_class = ThreadPoolExecutor
|
777 |
+
with executor_class(max_workers = max_workers) as executor:
|
778 |
+
futures: list[concurrent.futures.Future[Out]] = []
|
779 |
+
done = False
|
780 |
+
for _ in range(concurrency):
|
781 |
+
try:
|
782 |
+
futures.append(executor.submit(func, next(iterable)))
|
783 |
+
except StopIteration:
|
784 |
+
done = True
|
785 |
+
break
|
786 |
+
|
787 |
+
while futures:
|
788 |
+
result = futures.pop(0).result()
|
789 |
+
while not done and len(futures) < concurrency:
|
790 |
+
try:
|
791 |
+
futures.append(executor.submit(func, next(iterable)))
|
792 |
+
except StopIteration:
|
793 |
+
done = True
|
794 |
+
break
|
795 |
+
yield result
|
796 |
+
|
797 |
+
|
798 |
+
def check_vocab_size(params: Params, vocab: Vocab) -> None:
|
799 |
+
if params.n_vocab != vocab.vocab_size:
|
800 |
+
assert isinstance(vocab, BpeVocab) or isinstance(vocab, SentencePieceVocab)
|
801 |
+
if params.n_vocab == vocab.vocab_size_base:
|
802 |
+
print("Ignoring added_tokens.json since model matches vocab size without it.")
|
803 |
+
vocab.added_tokens_list = []
|
804 |
+
vocab.vocab_size = vocab.vocab_size_base
|
805 |
+
return
|
806 |
+
msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer}"
|
807 |
+
if vocab.fname_added_tokens is not None:
|
808 |
+
msg += f" combined with {vocab.fname_added_tokens}"
|
809 |
+
msg += f" has {vocab.vocab_size})."
|
810 |
+
if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20 and vocab.fname_added_tokens is None:
|
811 |
+
msg += f" Most likely you are missing added_tokens.json (should be in {vocab.fname_tokenizer.parent})."
|
812 |
+
raise Exception(msg)
|
813 |
+
|
814 |
+
|
815 |
+
class OutputFile:
|
816 |
+
def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE) -> None:
|
817 |
+
self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess)
|
818 |
+
|
819 |
+
def add_meta_arch(self, params: Params) -> None:
|
820 |
+
name = "LLaMA"
|
821 |
+
|
822 |
+
# TODO: better logic to determine model name
|
823 |
+
if params.n_ctx == 4096:
|
824 |
+
name = "LLaMA v2"
|
825 |
+
elif params.path_model is not None:
|
826 |
+
name = str(params.path_model.parent).split('/')[-1]
|
827 |
+
|
828 |
+
self.gguf.add_name (name)
|
829 |
+
self.gguf.add_context_length (params.n_ctx)
|
830 |
+
self.gguf.add_embedding_length (params.n_embd)
|
831 |
+
self.gguf.add_block_count (params.n_layer)
|
832 |
+
self.gguf.add_feed_forward_length (params.n_ff)
|
833 |
+
self.gguf.add_rope_dimension_count(params.n_embd // params.n_head)
|
834 |
+
self.gguf.add_head_count (params.n_head)
|
835 |
+
self.gguf.add_head_count_kv (params.n_head_kv)
|
836 |
+
self.gguf.add_layer_norm_rms_eps (params.f_norm_eps)
|
837 |
+
|
838 |
+
if params.f_rope_freq_base is not None:
|
839 |
+
self.gguf.add_rope_freq_base(params.f_rope_freq_base)
|
840 |
+
|
841 |
+
if params.rope_scaling_type:
|
842 |
+
assert params.f_rope_scale is not None
|
843 |
+
self.gguf.add_rope_scaling_type(params.rope_scaling_type)
|
844 |
+
self.gguf.add_rope_scaling_factor(params.f_rope_scale)
|
845 |
+
|
846 |
+
if params.n_orig_ctx is not None:
|
847 |
+
self.gguf.add_rope_scaling_orig_ctx_len(params.n_orig_ctx)
|
848 |
+
|
849 |
+
if params.rope_finetuned is not None:
|
850 |
+
self.gguf.add_rope_scaling_finetuned(params.rope_finetuned)
|
851 |
+
|
852 |
+
if params.ftype is not None:
|
853 |
+
self.gguf.add_file_type(params.ftype)
|
854 |
+
|
855 |
+
def add_meta_vocab(self, vocab: Vocab) -> None:
|
856 |
+
tokens = []
|
857 |
+
scores = []
|
858 |
+
toktypes = []
|
859 |
+
# NOTE: `all_tokens` returns the base vocabulary and added tokens
|
860 |
+
for text, score, toktype in vocab.all_tokens():
|
861 |
+
tokens.append(text)
|
862 |
+
scores.append(score)
|
863 |
+
toktypes.append(toktype)
|
864 |
+
|
865 |
+
if isinstance(vocab, SentencePieceVocab):
|
866 |
+
self.gguf.add_tokenizer_model("llama")
|
867 |
+
elif isinstance(vocab, BpeVocab):
|
868 |
+
self.gguf.add_tokenizer_model("gpt2")
|
869 |
+
else:
|
870 |
+
raise ValueError('Unknown vocab type: Not BpeVocab or SentencePieceVocab')
|
871 |
+
self.gguf.add_token_list(tokens)
|
872 |
+
self.gguf.add_token_scores(scores)
|
873 |
+
self.gguf.add_token_types(toktypes)
|
874 |
+
|
875 |
+
def add_meta_special_vocab(self, svocab: gguf.SpecialVocab) -> None:
|
876 |
+
svocab.add_to_gguf(self.gguf)
|
877 |
+
|
878 |
+
def add_tensor_info(self, name: str, tensor: LazyTensor) -> None:
|
879 |
+
n_elements = int(np.prod(tensor.shape))
|
880 |
+
raw_dtype = getattr(tensor.data_type, 'ggml_type', None)
|
881 |
+
data_type = getattr(tensor.data_type, 'quantized_type', None) or tensor.data_type.dtype
|
882 |
+
data_nbytes = tensor.data_type.elements_to_bytes(n_elements)
|
883 |
+
self.gguf.add_tensor_info(name, tensor.shape, data_type, data_nbytes, raw_dtype = raw_dtype)
|
884 |
+
|
885 |
+
def write_meta(self) -> None:
|
886 |
+
self.gguf.write_header_to_file()
|
887 |
+
self.gguf.write_kv_data_to_file()
|
888 |
+
|
889 |
+
def write_tensor_info(self) -> None:
|
890 |
+
self.gguf.write_ti_data_to_file()
|
891 |
+
|
892 |
+
def close(self) -> None:
|
893 |
+
self.gguf.close()
|
894 |
+
|
895 |
+
@staticmethod
|
896 |
+
def write_vocab_only(fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE) -> None:
|
897 |
+
check_vocab_size(params, vocab)
|
898 |
+
|
899 |
+
of = OutputFile(fname_out, endianess=endianess)
|
900 |
+
|
901 |
+
# meta data
|
902 |
+
of.add_meta_arch(params)
|
903 |
+
of.add_meta_vocab(vocab)
|
904 |
+
of.add_meta_special_vocab(svocab)
|
905 |
+
|
906 |
+
of.write_meta()
|
907 |
+
|
908 |
+
of.close()
|
909 |
+
|
910 |
+
@staticmethod
|
911 |
+
def do_item(item: tuple[str, LazyTensor]) -> tuple[DataType, NDArray]:
|
912 |
+
name, lazy_tensor = item
|
913 |
+
tensor = lazy_tensor.load().to_ggml()
|
914 |
+
return (lazy_tensor.data_type, tensor.ndarray)
|
915 |
+
|
916 |
+
@staticmethod
|
917 |
+
def maybe_do_quantize(item: tuple[DataType, NDArray]) -> NDArray:
|
918 |
+
dt, arr = item
|
919 |
+
if not isinstance(dt, QuantizedDataType):
|
920 |
+
return arr
|
921 |
+
return dt.quantize(arr)
|
922 |
+
|
923 |
+
@staticmethod
|
924 |
+
def write_all(fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: Vocab, svocab: gguf.SpecialVocab, concurrency: int = DEFAULT_CONCURRENCY, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE) -> None:
|
925 |
+
check_vocab_size(params, vocab)
|
926 |
+
|
927 |
+
of = OutputFile(fname_out, endianess=endianess)
|
928 |
+
|
929 |
+
# meta data
|
930 |
+
of.add_meta_arch(params)
|
931 |
+
of.add_meta_vocab(vocab)
|
932 |
+
of.add_meta_special_vocab(svocab)
|
933 |
+
|
934 |
+
# tensor info
|
935 |
+
for name, lazy_tensor in model.items():
|
936 |
+
of.add_tensor_info(name, lazy_tensor)
|
937 |
+
|
938 |
+
of.write_meta()
|
939 |
+
of.write_tensor_info()
|
940 |
+
|
941 |
+
# tensor data
|
942 |
+
ndarrays_inner = bounded_parallel_map(OutputFile.do_item, model.items(), concurrency = concurrency)
|
943 |
+
if ftype == GGMLFileType.MostlyQ8_0:
|
944 |
+
ndarrays = bounded_parallel_map(OutputFile.maybe_do_quantize, ndarrays_inner, concurrency = concurrency, max_workers = concurrency, use_processpool_executor = True)
|
945 |
+
else:
|
946 |
+
ndarrays = map(OutputFile.maybe_do_quantize, ndarrays_inner)
|
947 |
+
|
948 |
+
start = time.time()
|
949 |
+
for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)):
|
950 |
+
elapsed = time.time() - start
|
951 |
+
size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape)
|
952 |
+
padi = len(str(len(model)))
|
953 |
+
print(f"[{i+1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type.name:4} | T+{int(elapsed):4}")
|
954 |
+
of.gguf.write_tensor_data(ndarray)
|
955 |
+
|
956 |
+
of.close()
|
957 |
+
|
958 |
+
|
959 |
+
def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileType:
|
960 |
+
wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0) +".weight"].data_type
|
961 |
+
|
962 |
+
if output_type_str == "f32" or (output_type_str is None and wq_type == DT_F32):
|
963 |
+
return GGMLFileType.AllF32
|
964 |
+
if output_type_str == "f16" or (output_type_str is None and wq_type in (DT_F16, DT_BF16)):
|
965 |
+
return GGMLFileType.MostlyF16
|
966 |
+
if output_type_str == "q8_0":
|
967 |
+
return GGMLFileType.MostlyQ8_0
|
968 |
+
|
969 |
+
name_to_type = {name: lazy_tensor.data_type for (name, lazy_tensor) in model.items()}
|
970 |
+
|
971 |
+
raise Exception(f"Unexpected combination of types: {name_to_type}")
|
972 |
+
|
973 |
+
|
974 |
+
def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel:
|
975 |
+
return {name: tensor.astype(output_type.type_for_tensor(name, tensor))
|
976 |
+
for (name, tensor) in model.items()}
|
977 |
+
|
978 |
+
|
979 |
+
def convert_model_names(model: LazyModel, params: Params) -> LazyModel:
|
980 |
+
tmap = gguf.TensorNameMap(ARCH, params.n_layer)
|
981 |
+
should_skip: set[gguf.MODEL_TENSOR] = set(gguf.MODEL_TENSOR_SKIP.get(ARCH, []))
|
982 |
+
|
983 |
+
tmp = model
|
984 |
+
|
985 |
+
# HF models permut or pack some of the tensors, so we need to undo that
|
986 |
+
for i in itertools.count():
|
987 |
+
if f"model.layers.{i}.self_attn.q_proj.weight" in model:
|
988 |
+
print(f"Permuting layer {i}")
|
989 |
+
tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head, params.n_head)
|
990 |
+
tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head, params.n_head_kv)
|
991 |
+
# tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
|
992 |
+
elif f"model.layers.{i}.self_attn.W_pack.weight" in model:
|
993 |
+
print(f"Unpacking and permuting layer {i}")
|
994 |
+
tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head, params.n_head)
|
995 |
+
tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head, params.n_head_kv)
|
996 |
+
tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = part_lazy (model[f"model.layers.{i}.self_attn.W_pack.weight"], 2)
|
997 |
+
del tmp[f"model.layers.{i}.self_attn.W_pack.weight"]
|
998 |
+
else:
|
999 |
+
break
|
1000 |
+
|
1001 |
+
out: LazyModel = {}
|
1002 |
+
for name, lazy_tensor in model.items():
|
1003 |
+
tensor_type, name_new = tmap.get_type_and_name(name, try_suffixes = (".weight", ".bias")) or (None, None)
|
1004 |
+
if name_new is None:
|
1005 |
+
raise Exception(f"Unexpected tensor name: {name}")
|
1006 |
+
|
1007 |
+
if tensor_type in should_skip:
|
1008 |
+
print(f"skipping tensor {name_new}")
|
1009 |
+
continue
|
1010 |
+
|
1011 |
+
print(f"{name:48s} -> {name_new:40s} | {lazy_tensor.data_type.name:6s} | {lazy_tensor.shape}")
|
1012 |
+
out[name_new] = lazy_tensor
|
1013 |
+
|
1014 |
+
return out
|
1015 |
+
|
1016 |
+
|
1017 |
+
def nth_multifile_path(path: Path, n: int) -> Path | None:
|
1018 |
+
'''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
|
1019 |
+
the nth path in the model.
|
1020 |
+
'''
|
1021 |
+
# Support the following patterns:
|
1022 |
+
patterns: list[tuple[str, str]] = [
|
1023 |
+
# - x.00.pth, x.01.pth, etc.
|
1024 |
+
(r'\.[0-9]{2}\.pth$', f'.{n:02}.pth'),
|
1025 |
+
# - x-00001-of-00002.bin, x-00002-of-00002.bin, etc.
|
1026 |
+
(r'-[0-9]{5}-of-(.*)$', fr'-{n:05}-of-\1'),
|
1027 |
+
# x.bin, x.bin.1, etc.
|
1028 |
+
(r'(\.[0-9]+)?$', r'\1' if n == 0 else fr'\1.{n}')
|
1029 |
+
]
|
1030 |
+
for regex, replacement in patterns:
|
1031 |
+
if re.search(regex, path.name):
|
1032 |
+
new_path = path.with_name(re.sub(regex, replacement, path.name))
|
1033 |
+
if new_path.exists():
|
1034 |
+
return new_path
|
1035 |
+
return None
|
1036 |
+
|
1037 |
+
|
1038 |
+
def find_multifile_paths(path: Path) -> list[Path]:
|
1039 |
+
'''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
|
1040 |
+
the whole list of paths in the model.
|
1041 |
+
'''
|
1042 |
+
ret: list[Path] = []
|
1043 |
+
for i in itertools.count():
|
1044 |
+
nth_path = nth_multifile_path(path, i)
|
1045 |
+
if nth_path is None:
|
1046 |
+
break
|
1047 |
+
ret.append(nth_path)
|
1048 |
+
if not ret:
|
1049 |
+
# No matches. This should only happen if the file was named, e.g.,
|
1050 |
+
# foo.0, and there was no file named foo. Oh well, try to process it
|
1051 |
+
# as a single file.
|
1052 |
+
return [path]
|
1053 |
+
return ret
|
1054 |
+
|
1055 |
+
|
1056 |
+
def load_some_model(path: Path) -> ModelPlus:
|
1057 |
+
'''Load a model of any supported format.'''
|
1058 |
+
# Be extra-friendly and accept either a file or a directory:
|
1059 |
+
if path.is_dir():
|
1060 |
+
# Check if it's a set of safetensors files first
|
1061 |
+
globs = ["model-00001-of-*.safetensors", "model.safetensors"]
|
1062 |
+
files = [file for glob in globs for file in path.glob(glob)]
|
1063 |
+
if not files:
|
1064 |
+
# Try the PyTorch patterns too, with lower priority
|
1065 |
+
globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt", "pytorch_model.bin"]
|
1066 |
+
files = [file for glob in globs for file in path.glob(glob)]
|
1067 |
+
if not files:
|
1068 |
+
raise Exception(f"Can't find model in directory {path}")
|
1069 |
+
if len(files) > 1:
|
1070 |
+
raise Exception(f"Found multiple models in {path}, not sure which to pick: {files}")
|
1071 |
+
path = files[0]
|
1072 |
+
|
1073 |
+
paths = find_multifile_paths(path)
|
1074 |
+
models_plus: list[ModelPlus] = []
|
1075 |
+
for path in paths:
|
1076 |
+
print(f"Loading model file {path}")
|
1077 |
+
models_plus.append(lazy_load_file(path))
|
1078 |
+
|
1079 |
+
model_plus = merge_multifile_models(models_plus)
|
1080 |
+
return model_plus
|
1081 |
+
|
1082 |
+
|
1083 |
+
def load_vocab(path: Path, vocabtype: str | None) -> Vocab:
|
1084 |
+
# Be extra-friendly and accept either a file or a directory. Also, if it's
|
1085 |
+
# a directory, it might be the model directory, and tokenizer.model might
|
1086 |
+
# be in the parent of that.
|
1087 |
+
if path.is_dir():
|
1088 |
+
vocab_file = "tokenizer.model"
|
1089 |
+
if vocabtype == 'bpe':
|
1090 |
+
vocab_file = "vocab.json"
|
1091 |
+
path2 = path / vocab_file
|
1092 |
+
# Use `.parent` instead of /.. to handle the symlink case better.
|
1093 |
+
path3 = path.parent / vocab_file
|
1094 |
+
path4 = Path(os.path.abspath("./models")) / vocab_file
|
1095 |
+
if path2.exists():
|
1096 |
+
path = path2
|
1097 |
+
elif path3.exists():
|
1098 |
+
path = path3
|
1099 |
+
elif path4.exists():
|
1100 |
+
path = path4
|
1101 |
+
else:
|
1102 |
+
raise FileNotFoundError(
|
1103 |
+
f"Could not find {vocab_file} in {path} or its parent; "
|
1104 |
+
"if it's in another directory, pass the directory as --vocab-dir")
|
1105 |
+
|
1106 |
+
print(f"Loading vocab file '{path}', type '{vocabtype}'")
|
1107 |
+
|
1108 |
+
added_tokens_path = path.parent / "added_tokens.json"
|
1109 |
+
if vocabtype == "bpe":
|
1110 |
+
return BpeVocab(path, added_tokens_path if added_tokens_path.exists() else None)
|
1111 |
+
elif vocabtype == "spm":
|
1112 |
+
return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None)
|
1113 |
+
else:
|
1114 |
+
raise ValueError(f"Unsupported vocabulary type {vocabtype}")
|
1115 |
+
|
1116 |
+
|
1117 |
+
def default_outfile(model_paths: list[Path], file_type: GGMLFileType) -> Path:
|
1118 |
+
namestr = {
|
1119 |
+
GGMLFileType.AllF32: "f32",
|
1120 |
+
GGMLFileType.MostlyF16: "f16",
|
1121 |
+
GGMLFileType.MostlyQ8_0:"q8_0",
|
1122 |
+
}[file_type]
|
1123 |
+
ret = model_paths[0].parent / f"ggml-model-{namestr}.gguf"
|
1124 |
+
if ret in model_paths:
|
1125 |
+
sys.stderr.write(
|
1126 |
+
f"Error: Default output path ({ret}) would overwrite the input. "
|
1127 |
+
"Please explicitly specify a path using --outfile.\n")
|
1128 |
+
sys.exit(1)
|
1129 |
+
return ret
|
1130 |
+
|
1131 |
+
|
1132 |
+
def do_dump_model(model_plus: ModelPlus) -> None:
|
1133 |
+
print(f"model_plus.paths = {model_plus.paths!r}")
|
1134 |
+
print(f"model_plus.format = {model_plus.format!r}")
|
1135 |
+
print(f"model_plus.vocab = {model_plus.vocab!r}")
|
1136 |
+
for name, lazy_tensor in model_plus.model.items():
|
1137 |
+
print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}")
|
1138 |
+
|
1139 |
+
|
1140 |
+
def main(amodel, outfile, outtype=None):
|
1141 |
+
output_choices = ["f32", "f16"]
|
1142 |
+
if np.uint32(1) == np.uint32(1).newbyteorder("<"):
|
1143 |
+
# We currently only support Q8_0 output on little endian systems.
|
1144 |
+
output_choices.append("q8_0")
|
1145 |
+
|
1146 |
+
model_plus = load_some_model(Path(amodel))
|
1147 |
+
if model_plus.vocab:
|
1148 |
+
vocab = model_plus.vocab
|
1149 |
+
else:
|
1150 |
+
vocab_dir = model_plus.paths[0].parent
|
1151 |
+
vocab = load_vocab(Path(vocab_dir), vocabtype="spm")
|
1152 |
+
print(vocab)
|
1153 |
+
endianess = gguf.GGUFEndian.LITTLE
|
1154 |
+
|
1155 |
+
params = Params.load(model_plus)
|
1156 |
+
if params.n_ctx == -1:
|
1157 |
+
raise ValueError("CTX is 1")
|
1158 |
+
special_vocab = gguf.SpecialVocab(model_plus.paths[0].parent, load_merges = False, n_vocab = vocab.vocab_size)
|
1159 |
+
model = model_plus.model
|
1160 |
+
model = convert_model_names(model, params)
|
1161 |
+
ftype = pick_output_type(model, outtype)
|
1162 |
+
model = convert_to_output_type(model, ftype)
|
1163 |
+
outfile = outfile
|
1164 |
+
params.ftype = ftype
|
1165 |
+
print(f"Writing {outfile}, format {ftype}")
|
1166 |
+
OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab, concurrency = DEFAULT_CONCURRENCY, endianess=endianess)
|
1167 |
+
print(f"Wrote {outfile}")
|
1168 |
+
|
hfconv.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# THIS SOFTWARE IS NOT OPEN SOURCED!!! REDISTRIBUTION PROHIBITED! SEE LICENSE FOR DETAILS.
|
2 |
+
from constants import *
|
3 |
+
|
4 |
+
from llama_cpp import llama_cpp
|
5 |
+
types = {
|
6 |
+
'F32': 0,
|
7 |
+
'F16': 1,
|
8 |
+
'Q4_0': 2,
|
9 |
+
'Q4_1': 3,
|
10 |
+
'Q8_0': 7,
|
11 |
+
'Q5_0': 8,
|
12 |
+
'Q5_1': 9,
|
13 |
+
'Q2_K': 10,
|
14 |
+
'Q3_K_S': 11,
|
15 |
+
'Q3_K_M': 12,
|
16 |
+
'Q3_K_L': 13,
|
17 |
+
'Q4_K_S': 14,
|
18 |
+
'Q4_K_M': 15,
|
19 |
+
'Q5_K_S': 16,
|
20 |
+
'Q5_K_M': 17,
|
21 |
+
'Q6_K': 18,
|
22 |
+
}
|
23 |
+
def calcftype(type):
|
24 |
+
return types[type.upper()]
|
25 |
+
|
26 |
+
|
27 |
+
import shutil
|
28 |
+
import tempfile
|
29 |
+
import os
|
30 |
+
from slugify import slugify
|
31 |
+
from huggingface_hub import CommitInfo, CommitOperationAdd, Discussion, HfApi, hf_hub_download, repo_exists
|
32 |
+
from huggingface_hub.file_download import repo_folder_name
|
33 |
+
from typing import Dict, List, Optional, Set, Tuple
|
34 |
+
from huggingface_hub import snapshot_download
|
35 |
+
from cscript import main
|
36 |
+
|
37 |
+
def convert_it(
|
38 |
+
model_id, token, folder
|
39 |
+
):
|
40 |
+
with open("README_TEMPLATE.md", 'r') as f:
|
41 |
+
README = f.read().replace('<<MODEL_ID>>', model_id)
|
42 |
+
path = snapshot_download(
|
43 |
+
repo_id=model_id, token=token, cache_dir=folder
|
44 |
+
)
|
45 |
+
sf_name = "model-f16.gguf"
|
46 |
+
main(path, os.path.join(folder, "model-f16.gguf"))
|
47 |
+
operation = [
|
48 |
+
CommitOperationAdd(path_in_repo=sf_name, path_or_fileobj=os.path.join(folder, "model-f16.gguf")),
|
49 |
+
CommitOperationAdd(path_in_repo="README.md", path_or_fileobj=README.encode()),
|
50 |
+
]
|
51 |
+
print("Quantization Time!")
|
52 |
+
for type in types_to_quantize:
|
53 |
+
print(f"Quantizing {type}!")
|
54 |
+
llama_cpp.llama_model_quantize(os.path.join(folder, "model-f16.gguf").encode(), os.path.join(folder, f"model-{type.lower()}.gguf").encode(), llama_cpp.llama_model_quantize_params(0, calcftype(type), True))
|
55 |
+
print(f"Done Quantizing {type}!")
|
56 |
+
operation.append(CommitOperationAdd(path_in_repo=f"model-{type.lower()}.gguf", path_or_fileobj=os.path.join(folder, f"model-{type.lower()}.gguf")))
|
57 |
+
return operation
|
58 |
+
|
59 |
+
|
60 |
+
def convert(
|
61 |
+
api: "HfApi", model_id: str, revision: Optional[str] = None, force: bool = False
|
62 |
+
) -> Tuple["CommitInfo", List[Tuple[str, "Exception"]]]:
|
63 |
+
repo_id = username + "/" + slugify(model_id.strip()) + "-GGUF"
|
64 |
+
with tempfile.TemporaryDirectory() as d:
|
65 |
+
# d = "~/test"
|
66 |
+
folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
|
67 |
+
os.makedirs(folder)
|
68 |
+
if repo_exists(repo_id, token=api.token):
|
69 |
+
raise ValueError("Already exists")
|
70 |
+
try:
|
71 |
+
ops = convert_it(model_id, api.token, d)
|
72 |
+
api.create_repo(repo_id)
|
73 |
+
api.create_commit(
|
74 |
+
repo_id=repo_id,
|
75 |
+
revision=revision,
|
76 |
+
operations=ops,
|
77 |
+
commit_message="Add GGUF version",
|
78 |
+
commit_description="Automated commit"
|
79 |
+
)
|
80 |
+
finally:
|
81 |
+
shutil.rmtree(folder)
|
82 |
+
return repo_id
|
models/ggml-vocab-aquila.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c53c3c516ac67c7ca12977b9690fdea3d2ef13bbaed6378f98191a13ef5ca00
|
3 |
+
size 4825676
|
models/ggml-vocab-baichuan.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f5b955697f3bd3108070b1d5936c7eb9fc542b81c6932e59abddec75bca1963
|
3 |
+
size 1340998
|
models/ggml-vocab-falcon.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ffbc7c119de7e9aab8f4257d617e3fa55f942a9f9ca84139ef3f5b1ca53836a8
|
3 |
+
size 2547782
|
models/ggml-vocab-gpt-neox.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae593a7f9b8bb174ed4f5019e41530463e4dac7aa06e42dee8aa650d2bdac53d
|
3 |
+
size 1771431
|
models/ggml-vocab-llama.gguf
ADDED
Binary file (724 kB). View file
|
|
models/ggml-vocab-mpt.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55c7df0d0443a24260ac6f8d3710f224fa38137cfaec6693413b913194d47cc5
|
3 |
+
size 1771406
|
models/ggml-vocab-refact.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38ffb84a4c1aba7dc7f84358827e252874edeb80050bb0358e2b34fca09741d3
|
3 |
+
size 1720666
|
models/ggml-vocab-stablelm-3b-4e1t.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d9bc7a5570cf02a9d9347afa2a5d3847a9a96e88309b9b41c929b871021a6dd
|
3 |
+
size 1768581
|
models/ggml-vocab-starcoder.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:621db3ccdfcc3e5ed687fbba6dec9c6b29cec9f3c48172435a704f6321689b66
|
3 |
+
size 1719281
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
gradio
|
4 |
+
sentencepiece
|
5 |
+
gguf
|
6 |
+
numpy
|
7 |
+
python-slugify
|
8 |
+
llama-cpp-python
|