Spaces:
Configuration error
Grounding DINO
Official PyTorch implementation of Grounding DINO, a stronger open-set object detector. Code is available now!
Highlight
- Open-Set Detection. Detect everything with language!
- High Performancce. COCO zero-shot 52.5 AP (training without COCO data!). COCO fine-tune 63.0 AP.
- Flexible. Collaboration with Stable Diffusion for Image Editting.
News
[2023/03/28] A YouTube video about Grounding DINO and basic object detection prompt engineering. [SkalskiP]
[2023/03/28] Add a demo on Hugging Face Space!
[2023/03/27] Support CPU-only mode. Now the model can run on machines without GPUs.
[2023/03/25] A demo for Grounding DINO is available at Colab. [SkalskiP]
[2023/03/22] Code is available Now!
Description
TODO
- Release inference code and demo.
- Release checkpoints.
- Grounding DINO with Stable Diffusion and GLIGEN demos.
- Release training codes.
Install
If you have a CUDA environment, please make sure the environment variable CUDA_HOME
is set. It will be compiled under CPU-only mode if no CUDA available.
pip install -e .
Demo
CUDA_VISIBLE_DEVICES=6 python demo/inference_on_a_image.py \
-c /path/to/config \
-p /path/to/checkpoint \
-i .asset/cats.png \
-o "outputs/0" \
-t "cat ear." \
[--cpu-only] # open it for cpu mode
See the demo/inference_on_a_image.py
for more details.
Web UI
We also provide a demo code to integrate Grounding DINO with Gradio Web UI. See the file demo/gradio_app.py
for more details.
Checkpoints
name | backbone | Data | box AP on COCO | Checkpoint | Config | |
---|---|---|---|---|---|---|
1 | GroundingDINO-T | Swin-T | O365,GoldG,Cap4M | 48.4 (zero-shot) / 57.2 (fine-tune) | Github link | HF link | link |
Results
COCO Object Detection Results
ODinW Object Detection Results
Marrying Grounding DINO with Stable Diffusion for Image Editing
Marrying Grounding DINO with GLIGEN for more Detailed Image Editing
Model
Includes: a text backbone, an image backbone, a feature enhancer, a language-guided query selection, and a cross-modality decoder.
Acknowledgement
Our model is related to DINO and GLIP. Thanks for their great work!
We also thank great previous work including DETR, Deformable DETR, SMCA, Conditional DETR, Anchor DETR, Dynamic DETR, DAB-DETR, DN-DETR, etc. More related work are available at Awesome Detection Transformer. A new toolbox detrex is available as well.
Thanks Stable Diffusion and GLIGEN for their awesome models.
Citation
If you find our work helpful for your research, please consider citing the following BibTeX entry.
@inproceedings{ShilongLiu2023GroundingDM,
title={Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection},
author={Shilong Liu and Zhaoyang Zeng and Tianhe Ren and Feng Li and Hao Zhang and Jie Yang and Chunyuan Li and Jianwei Yang and Hang Su and Jun Zhu and Lei Zhang},
year={2023}
}