Spaces:
Configuration error
Configuration error
liuyizhang
commited on
Commit
•
72fe59d
1
Parent(s):
1f8f331
update app.py
Browse files- GroundingDINO/demo/inference_on_a_image.py +1 -1
- app.py +285 -79
- automatic_label_demo.py +5 -3
- gradio_app.py +0 -345
- gradio_auto_label.py +0 -392
- grounded_sam.ipynb +4 -2
- grounded_sam_demo.py +0 -217
- grounded_sam_inpainting_demo.py +0 -215
- grounded_sam_whisper_demo.py +0 -258
- grounded_sam_whisper_inpainting_demo.py +0 -281
- requirements.txt +9 -0
GroundingDINO/demo/inference_on_a_image.py
CHANGED
@@ -143,7 +143,7 @@ if __name__ == "__main__":
|
|
143 |
text_prompt = args.text_prompt
|
144 |
output_dir = args.output_dir
|
145 |
box_threshold = args.box_threshold
|
146 |
-
text_threshold = args.
|
147 |
|
148 |
# make dir
|
149 |
os.makedirs(output_dir, exist_ok=True)
|
|
|
143 |
text_prompt = args.text_prompt
|
144 |
output_dir = args.output_dir
|
145 |
box_threshold = args.box_threshold
|
146 |
+
text_threshold = args.text_threshold
|
147 |
|
148 |
# make dir
|
149 |
os.makedirs(output_dir, exist_ok=True)
|
app.py
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
|
2 |
-
import subprocess, os, sys, time
|
3 |
|
4 |
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
8 |
|
9 |
result = subprocess.run(['pip', 'list'], check=True)
|
10 |
print(f'pip list = {result}')
|
@@ -12,6 +13,7 @@ print(f'pip list = {result}')
|
|
12 |
sys.path.insert(0, './GroundingDINO')
|
13 |
|
14 |
if not os.path.exists('./sam_vit_h_4b8939.pth'):
|
|
|
15 |
result = subprocess.run(['wget', 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth'], check=True)
|
16 |
print(f'wget sam_vit_h_4b8939.pth result = {result}')
|
17 |
|
@@ -19,10 +21,11 @@ import gradio as gr
|
|
19 |
|
20 |
import argparse
|
21 |
import copy
|
|
|
22 |
|
23 |
import numpy as np
|
24 |
import torch
|
25 |
-
from PIL import Image, ImageDraw, ImageFont
|
26 |
|
27 |
# Grounding DINO
|
28 |
import GroundingDINO.groundingdino.datasets.transforms as T
|
@@ -31,12 +34,14 @@ from GroundingDINO.groundingdino.util import box_ops
|
|
31 |
from GroundingDINO.groundingdino.util.slconfig import SLConfig
|
32 |
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
|
33 |
|
34 |
-
# segment anything
|
35 |
-
from segment_anything import build_sam, SamPredictor
|
36 |
import cv2
|
37 |
import numpy as np
|
38 |
import matplotlib.pyplot as plt
|
|
|
|
|
39 |
|
|
|
|
|
40 |
|
41 |
# diffusers
|
42 |
import PIL
|
@@ -108,8 +113,10 @@ def plot_boxes_to_image(image_pil, tgt):
|
|
108 |
|
109 |
def load_image(image_path):
|
110 |
# # load image
|
111 |
-
|
112 |
-
|
|
|
|
|
113 |
|
114 |
transform = T.Compose(
|
115 |
[
|
@@ -181,6 +188,38 @@ def show_box(box, ax, label):
|
|
181 |
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
|
182 |
ax.text(x0, y0, label)
|
183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
|
185 |
ckpt_repo_id = "ShilongLiu/GroundingDINO"
|
186 |
ckpt_filenmae = "groundingdino_swint_ogc.pth"
|
@@ -189,53 +228,157 @@ output_dir = "outputs"
|
|
189 |
device = "cuda"
|
190 |
|
191 |
device = get_device()
|
192 |
-
|
193 |
print(f'device={device}')
|
194 |
|
195 |
# initialize groundingdino model
|
|
|
196 |
groundingdino_model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae)
|
197 |
|
198 |
# initialize SAM
|
|
|
199 |
sam_predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint))
|
200 |
|
201 |
# initialize stable-diffusion-inpainting
|
202 |
-
|
203 |
-
|
204 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
)
|
206 |
-
sd_pipe = sd_pipe.to(device)
|
207 |
|
208 |
-
|
209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
|
211 |
# make dir
|
212 |
os.makedirs(output_dir, exist_ok=True)
|
213 |
# load image
|
214 |
-
|
|
|
|
|
|
|
215 |
|
216 |
file_temp = int(time.time())
|
217 |
|
218 |
# visualize raw image
|
219 |
# image_pil.save(os.path.join(output_dir, f"raw_image_{file_temp}.jpg"))
|
|
|
|
|
220 |
|
|
|
221 |
# run grounding dino model
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
|
|
|
|
|
|
|
|
234 |
|
235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
|
237 |
-
|
238 |
-
|
|
|
239 |
sam_predictor.set_image(image)
|
240 |
|
241 |
H, W = size[1], size[0]
|
@@ -253,25 +396,8 @@ def run_grounded_sam(image_path, text_prompt, task_type, inpaint_prompt, box_thr
|
|
253 |
boxes = transformed_boxes,
|
254 |
multimask_output = False,
|
255 |
)
|
256 |
-
|
257 |
-
# masks: [1, 1, 512, 512]
|
258 |
-
|
259 |
-
if task_type == 'detection':
|
260 |
-
pred_dict = {
|
261 |
-
"boxes": boxes_filt,
|
262 |
-
"size": [size[1], size[0]], # H,W
|
263 |
-
"labels": pred_phrases,
|
264 |
-
}
|
265 |
-
# import ipdb; ipdb.set_trace()
|
266 |
-
image_with_box = plot_boxes_to_image(image_pil, pred_dict)[0]
|
267 |
-
image_path = os.path.join(output_dir, f"grounding_dino_output_{file_temp}.jpg")
|
268 |
-
image_with_box.save(image_path)
|
269 |
-
image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
|
270 |
-
os.remove(image_path)
|
271 |
-
return image_result
|
272 |
-
elif task_type == 'segment':
|
273 |
assert sam_checkpoint, 'sam_checkpoint is not found!'
|
274 |
-
|
275 |
# draw output image
|
276 |
plt.figure(figsize=(10, 10))
|
277 |
plt.imshow(image)
|
@@ -282,39 +408,106 @@ def run_grounded_sam(image_path, text_prompt, task_type, inpaint_prompt, box_thr
|
|
282 |
plt.axis('off')
|
283 |
image_path = os.path.join(output_dir, f"grounding_seg_output_{file_temp}.jpg")
|
284 |
plt.savefig(image_path, bbox_inches="tight")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
|
286 |
os.remove(image_path)
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
image_inpainting = image_inpainting.resize((image_pil.size[0], image_pil.size[1]))
|
301 |
|
302 |
image_path = os.path.join(output_dir, f"grounded_sam_inpainting_output_{file_temp}.jpg")
|
303 |
image_inpainting.save(image_path)
|
304 |
image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
|
305 |
os.remove(image_path)
|
306 |
-
|
|
|
|
|
307 |
else:
|
308 |
-
|
309 |
-
|
310 |
-
|
|
|
|
|
|
|
|
|
|
|
311 |
if task_type == "inpainting":
|
312 |
-
|
313 |
-
|
314 |
-
|
|
|
|
|
|
|
315 |
|
316 |
if __name__ == "__main__":
|
317 |
-
|
318 |
parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True)
|
319 |
parser.add_argument("--debug", action="store_true", help="using debug mode")
|
320 |
parser.add_argument("--share", action="store_true", help="share the app")
|
@@ -326,11 +519,14 @@ if __name__ == "__main__":
|
|
326 |
with block:
|
327 |
with gr.Row():
|
328 |
with gr.Column():
|
329 |
-
input_image = gr.Image(source='upload', type=
|
330 |
-
task_type = gr.Radio(["detection", "segment", "inpainting"], value="detection",
|
331 |
label='Task type',interactive=True, visible=True)
|
|
|
|
|
|
|
332 |
text_prompt = gr.Textbox(label="Detection Prompt", placeholder="Cannot be empty")
|
333 |
-
inpaint_prompt = gr.Textbox(label="Inpaint Prompt", visible=
|
334 |
run_button = gr.Button(label="Run")
|
335 |
with gr.Accordion("Advanced options", open=False):
|
336 |
box_threshold = gr.Slider(
|
@@ -339,18 +535,28 @@ if __name__ == "__main__":
|
|
339 |
text_threshold = gr.Slider(
|
340 |
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
|
341 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
342 |
|
343 |
with gr.Column():
|
344 |
-
gallery = gr.
|
345 |
-
|
346 |
-
).style(full_width=True, full_height=True)
|
347 |
|
348 |
run_button.click(fn=run_grounded_sam, inputs=[
|
349 |
-
input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold], outputs=[gallery])
|
350 |
-
|
|
|
351 |
|
352 |
DESCRIPTION = '### This demo from [Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything). Thanks for their excellent work.'
|
353 |
DESCRIPTION += f'<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/yizhangliu/Grounded-Segment-Anything?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
|
354 |
gr.Markdown(DESCRIPTION)
|
355 |
|
356 |
-
block.launch(server_name='0.0.0.0', debug=args.debug, share=args.share)
|
|
|
1 |
|
2 |
+
import subprocess, io, os, sys, time
|
3 |
|
4 |
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
5 |
|
6 |
+
if os.environ.get('IS_MY_DEBUG') is None:
|
7 |
+
result = subprocess.run(['pip', 'install', '-e', 'GroundingDINO'], check=True)
|
8 |
+
print(f'pip install GroundingDINO = {result}')
|
9 |
|
10 |
result = subprocess.run(['pip', 'list'], check=True)
|
11 |
print(f'pip list = {result}')
|
|
|
13 |
sys.path.insert(0, './GroundingDINO')
|
14 |
|
15 |
if not os.path.exists('./sam_vit_h_4b8939.pth'):
|
16 |
+
logger.info(f"get sam_vit_h_4b8939.pth...")
|
17 |
result = subprocess.run(['wget', 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth'], check=True)
|
18 |
print(f'wget sam_vit_h_4b8939.pth result = {result}')
|
19 |
|
|
|
21 |
|
22 |
import argparse
|
23 |
import copy
|
24 |
+
from loguru import logger
|
25 |
|
26 |
import numpy as np
|
27 |
import torch
|
28 |
+
from PIL import Image, ImageDraw, ImageFont, ImageOps
|
29 |
|
30 |
# Grounding DINO
|
31 |
import GroundingDINO.groundingdino.datasets.transforms as T
|
|
|
34 |
from GroundingDINO.groundingdino.util.slconfig import SLConfig
|
35 |
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
|
36 |
|
|
|
|
|
37 |
import cv2
|
38 |
import numpy as np
|
39 |
import matplotlib.pyplot as plt
|
40 |
+
from lama_cleaner.model_manager import ModelManager
|
41 |
+
from lama_cleaner.schema import Config
|
42 |
|
43 |
+
# segment anything
|
44 |
+
from segment_anything import build_sam, SamPredictor
|
45 |
|
46 |
# diffusers
|
47 |
import PIL
|
|
|
113 |
|
114 |
def load_image(image_path):
|
115 |
# # load image
|
116 |
+
if isinstance(image_path, PIL.Image.Image):
|
117 |
+
image_pil = image_path
|
118 |
+
else:
|
119 |
+
image_pil = Image.open(image_path).convert("RGB") # load image
|
120 |
|
121 |
transform = T.Compose(
|
122 |
[
|
|
|
188 |
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
|
189 |
ax.text(x0, y0, label)
|
190 |
|
191 |
+
def xywh_to_xyxy(box, sizeW, sizeH):
|
192 |
+
if isinstance(box, list):
|
193 |
+
box = torch.Tensor(box)
|
194 |
+
box = box * torch.Tensor([sizeW, sizeH, sizeW, sizeH])
|
195 |
+
box[:2] -= box[2:] / 2
|
196 |
+
box[2:] += box[:2]
|
197 |
+
box = box.numpy()
|
198 |
+
return box
|
199 |
+
|
200 |
+
def mask_extend(img, box, extend_pixels=10, useRectangle=True):
|
201 |
+
box[0] = int(box[0])
|
202 |
+
box[1] = int(box[1])
|
203 |
+
box[2] = int(box[2])
|
204 |
+
box[3] = int(box[3])
|
205 |
+
region = img.crop(tuple(box))
|
206 |
+
new_width = box[2] - box[0] + 2*extend_pixels
|
207 |
+
new_height = box[3] - box[1] + 2*extend_pixels
|
208 |
+
|
209 |
+
region_BILINEAR = region.resize((int(new_width), int(new_height)))
|
210 |
+
if useRectangle:
|
211 |
+
region_draw = ImageDraw.Draw(region_BILINEAR)
|
212 |
+
region_draw.rectangle((0, 0, new_width, new_height), fill=(255, 255, 255))
|
213 |
+
img.paste(region_BILINEAR, (int(box[0]-extend_pixels), int(box[1]-extend_pixels)))
|
214 |
+
return img
|
215 |
+
|
216 |
+
def mix_masks(imgs):
|
217 |
+
re_img = 1 - np.asarray(imgs[0].convert("1"))
|
218 |
+
for i in range(len(imgs)-1):
|
219 |
+
re_img = np.multiply(re_img, 1 - np.asarray(imgs[i+1].convert("1")))
|
220 |
+
re_img = 1 - re_img
|
221 |
+
return Image.fromarray(np.uint8(255*re_img))
|
222 |
+
|
223 |
config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
|
224 |
ckpt_repo_id = "ShilongLiu/GroundingDINO"
|
225 |
ckpt_filenmae = "groundingdino_swint_ogc.pth"
|
|
|
228 |
device = "cuda"
|
229 |
|
230 |
device = get_device()
|
|
|
231 |
print(f'device={device}')
|
232 |
|
233 |
# initialize groundingdino model
|
234 |
+
logger.info(f"initialize groundingdino model...")
|
235 |
groundingdino_model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae)
|
236 |
|
237 |
# initialize SAM
|
238 |
+
logger.info(f"initialize SAM model...")
|
239 |
sam_predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint))
|
240 |
|
241 |
# initialize stable-diffusion-inpainting
|
242 |
+
logger.info(f"initialize stable-diffusion-inpainting...")
|
243 |
+
sd_pipe = None
|
244 |
+
if os.environ.get('IS_MY_DEBUG') is None:
|
245 |
+
sd_pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
246 |
+
"runwayml/stable-diffusion-inpainting",
|
247 |
+
torch_dtype=torch.float16
|
248 |
+
)
|
249 |
+
sd_pipe = sd_pipe.to(device)
|
250 |
+
|
251 |
+
# initialize lama_cleaner
|
252 |
+
logger.info(f"initialize lama_cleaner...")
|
253 |
+
from lama_cleaner.helper import (
|
254 |
+
load_img,
|
255 |
+
numpy_to_bytes,
|
256 |
+
resize_max_size,
|
257 |
)
|
|
|
258 |
|
259 |
+
lama_cleaner_model = ModelManager(
|
260 |
+
name='lama',
|
261 |
+
device=device,
|
262 |
+
)
|
263 |
+
|
264 |
+
def lama_cleaner_process(image, mask):
|
265 |
+
ori_image = image
|
266 |
+
if mask.shape[0] == image.shape[1] and mask.shape[1] == image.shape[0] and mask.shape[0] != mask.shape[1]:
|
267 |
+
# rotate image
|
268 |
+
ori_image = np.transpose(image[::-1, ...][:, ::-1], axes=(1, 0, 2))[::-1, ...]
|
269 |
+
image = ori_image
|
270 |
+
|
271 |
+
original_shape = ori_image.shape
|
272 |
+
interpolation = cv2.INTER_CUBIC
|
273 |
+
|
274 |
+
size_limit = 1080
|
275 |
+
if size_limit == "Original":
|
276 |
+
size_limit = max(image.shape)
|
277 |
+
else:
|
278 |
+
size_limit = int(size_limit)
|
279 |
+
|
280 |
+
config = Config(
|
281 |
+
ldm_steps=25,
|
282 |
+
ldm_sampler='plms',
|
283 |
+
zits_wireframe=True,
|
284 |
+
hd_strategy='Original',
|
285 |
+
hd_strategy_crop_margin=196,
|
286 |
+
hd_strategy_crop_trigger_size=1280,
|
287 |
+
hd_strategy_resize_limit=2048,
|
288 |
+
prompt='',
|
289 |
+
use_croper=False,
|
290 |
+
croper_x=0,
|
291 |
+
croper_y=0,
|
292 |
+
croper_height=512,
|
293 |
+
croper_width=512,
|
294 |
+
sd_mask_blur=5,
|
295 |
+
sd_strength=0.75,
|
296 |
+
sd_steps=50,
|
297 |
+
sd_guidance_scale=7.5,
|
298 |
+
sd_sampler='ddim',
|
299 |
+
sd_seed=42,
|
300 |
+
cv2_flag='INPAINT_NS',
|
301 |
+
cv2_radius=5,
|
302 |
+
)
|
303 |
+
|
304 |
+
if config.sd_seed == -1:
|
305 |
+
config.sd_seed = random.randint(1, 999999999)
|
306 |
+
|
307 |
+
# logger.info(f"Origin image shape_0_: {original_shape} / {size_limit}")
|
308 |
+
image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
|
309 |
+
# logger.info(f"Resized image shape_1_: {image.shape}")
|
310 |
+
|
311 |
+
# logger.info(f"mask image shape_0_: {mask.shape} / {type(mask)}")
|
312 |
+
mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
|
313 |
+
# logger.info(f"mask image shape_1_: {mask.shape} / {type(mask)}")
|
314 |
+
|
315 |
+
res_np_img = lama_cleaner_model(image, mask, config)
|
316 |
+
torch.cuda.empty_cache()
|
317 |
+
|
318 |
+
image = Image.open(io.BytesIO(numpy_to_bytes(res_np_img, 'png')))
|
319 |
+
return image
|
320 |
+
|
321 |
+
mask_source_draw = "draw a mask on input image"
|
322 |
+
mask_source_segment = "type what to detect below"
|
323 |
+
|
324 |
+
def run_grounded_sam(input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold,
|
325 |
+
iou_threshold, inpaint_mode, mask_source_radio, remove_mode, remove_mask_extend):
|
326 |
+
if (task_type == 'inpainting' or task_type == 'remove') and mask_source_radio == mask_source_draw:
|
327 |
+
pass
|
328 |
+
else:
|
329 |
+
assert text_prompt, 'text_prompt is not found!'
|
330 |
+
|
331 |
+
logger.info(f'run_grounded_sam_1_')
|
332 |
|
333 |
# make dir
|
334 |
os.makedirs(output_dir, exist_ok=True)
|
335 |
# load image
|
336 |
+
input_mask_pil = input_image['mask']
|
337 |
+
input_mask = np.array(input_mask_pil.convert("L"))
|
338 |
+
|
339 |
+
image_pil, image = load_image(input_image['image'].convert("RGB"))
|
340 |
|
341 |
file_temp = int(time.time())
|
342 |
|
343 |
# visualize raw image
|
344 |
# image_pil.save(os.path.join(output_dir, f"raw_image_{file_temp}.jpg"))
|
345 |
+
|
346 |
+
size = image_pil.size
|
347 |
|
348 |
+
output_images = []
|
349 |
# run grounding dino model
|
350 |
+
if (task_type == 'inpainting' or task_type == 'remove') and mask_source_radio == mask_source_draw:
|
351 |
+
pass
|
352 |
+
else:
|
353 |
+
groundingdino_device = 'cpu'
|
354 |
+
if device != 'cpu':
|
355 |
+
try:
|
356 |
+
from groundingdino import _C
|
357 |
+
groundingdino_device = 'cuda:0'
|
358 |
+
except:
|
359 |
+
warnings.warn("Failed to load custom C++ ops. Running on CPU mode Only in groundingdino!")
|
360 |
+
|
361 |
+
groundingdino_device = 'cpu'
|
362 |
+
boxes_filt, pred_phrases = get_grounding_output(
|
363 |
+
groundingdino_model, image, text_prompt, box_threshold, text_threshold, device=groundingdino_device
|
364 |
+
)
|
365 |
+
boxes_filt_ori = copy.deepcopy(boxes_filt)
|
366 |
|
367 |
+
pred_dict = {
|
368 |
+
"boxes": boxes_filt,
|
369 |
+
"size": [size[1], size[0]], # H,W
|
370 |
+
"labels": pred_phrases,
|
371 |
+
}
|
372 |
+
image_with_box = plot_boxes_to_image(copy.deepcopy(image_pil), pred_dict)[0]
|
373 |
+
image_path = os.path.join(output_dir, f"grounding_dino_output_{file_temp}.jpg")
|
374 |
+
image_with_box.save(image_path)
|
375 |
+
detection_image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
|
376 |
+
os.remove(image_path)
|
377 |
+
output_images.append(detection_image_result)
|
378 |
|
379 |
+
logger.info(f'run_grounded_sam_2_')
|
380 |
+
if task_type == 'segment' or ((task_type == 'inpainting' or task_type == 'remove') and mask_source_radio == mask_source_segment):
|
381 |
+
image = np.array(input_image['image'])
|
382 |
sam_predictor.set_image(image)
|
383 |
|
384 |
H, W = size[1], size[0]
|
|
|
396 |
boxes = transformed_boxes,
|
397 |
multimask_output = False,
|
398 |
)
|
399 |
+
# masks: [9, 1, 512, 512]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
400 |
assert sam_checkpoint, 'sam_checkpoint is not found!'
|
|
|
401 |
# draw output image
|
402 |
plt.figure(figsize=(10, 10))
|
403 |
plt.imshow(image)
|
|
|
408 |
plt.axis('off')
|
409 |
image_path = os.path.join(output_dir, f"grounding_seg_output_{file_temp}.jpg")
|
410 |
plt.savefig(image_path, bbox_inches="tight")
|
411 |
+
segment_image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
|
412 |
+
os.remove(image_path)
|
413 |
+
output_images.append(segment_image_result)
|
414 |
+
|
415 |
+
logger.info(f'run_grounded_sam_3_')
|
416 |
+
if task_type == 'detection' or task_type == 'segment':
|
417 |
+
logger.info(f'run_grounded_sam_9_{task_type}_')
|
418 |
+
return output_images
|
419 |
+
elif task_type == 'inpainting' or task_type == 'remove':
|
420 |
+
if inpaint_prompt.strip() == '' and mask_source_radio == mask_source_segment:
|
421 |
+
task_type = 'remove'
|
422 |
+
|
423 |
+
logger.info(f'run_grounded_sam_4_{task_type}_')
|
424 |
+
if mask_source_radio == mask_source_draw:
|
425 |
+
mask_pil = input_mask_pil
|
426 |
+
mask = input_mask
|
427 |
+
else:
|
428 |
+
if inpaint_mode == 'merge':
|
429 |
+
masks = torch.sum(masks, dim=0).unsqueeze(0)
|
430 |
+
masks = torch.where(masks > 0, True, False)
|
431 |
+
mask = masks[0][0].cpu().numpy()
|
432 |
+
mask_pil = Image.fromarray(mask)
|
433 |
+
|
434 |
+
image_path = os.path.join(output_dir, f"image_mask_{file_temp}.jpg")
|
435 |
+
mask_pil.convert("RGB").save(image_path)
|
436 |
image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
|
437 |
os.remove(image_path)
|
438 |
+
output_images.append(image_result)
|
439 |
+
|
440 |
+
if task_type == 'inpainting':
|
441 |
+
# inpainting pipeline
|
442 |
+
image_source_for_inpaint = image_pil.resize((512, 512))
|
443 |
+
image_mask_for_inpaint = mask_pil.resize((512, 512))
|
444 |
+
image_inpainting = sd_pipe(prompt=inpaint_prompt, image=image_source_for_inpaint, mask_image=image_mask_for_inpaint).images[0]
|
445 |
+
else:
|
446 |
+
# remove from mask
|
447 |
+
if mask_source_radio == mask_source_segment:
|
448 |
+
mask_imgs = []
|
449 |
+
masks_shape = masks.shape
|
450 |
+
boxes_filt_ori_array = boxes_filt_ori.numpy()
|
451 |
+
if inpaint_mode == 'merge':
|
452 |
+
extend_shape_0 = masks_shape[0]
|
453 |
+
extend_shape_1 = masks_shape[1]
|
454 |
+
else:
|
455 |
+
extend_shape_0 = 1
|
456 |
+
extend_shape_1 = 1
|
457 |
+
for i in range(extend_shape_0):
|
458 |
+
for j in range(extend_shape_1):
|
459 |
+
mask = masks[i][j].cpu().numpy()
|
460 |
+
mask_pil = Image.fromarray(mask)
|
461 |
+
|
462 |
+
if remove_mode == 'segment':
|
463 |
+
useRectangle = False
|
464 |
+
else:
|
465 |
+
useRectangle = True
|
466 |
+
|
467 |
+
try:
|
468 |
+
remove_mask_extend = int(remove_mask_extend)
|
469 |
+
except:
|
470 |
+
remove_mask_extend = 10
|
471 |
+
mask_pil_exp = mask_extend(copy.deepcopy(mask_pil).convert("RGB"),
|
472 |
+
xywh_to_xyxy(torch.tensor(boxes_filt_ori_array[i]), size[0], size[1]),
|
473 |
+
extend_pixels=remove_mask_extend, useRectangle=useRectangle)
|
474 |
+
mask_imgs.append(mask_pil_exp)
|
475 |
+
mask_pil = mix_masks(mask_imgs)
|
476 |
+
|
477 |
+
image_path = os.path.join(output_dir, f"image_mask_{file_temp}.jpg")
|
478 |
+
mask_pil.convert("RGB").save(image_path)
|
479 |
+
image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
|
480 |
+
os.remove(image_path)
|
481 |
+
output_images.append(image_result)
|
482 |
+
image_inpainting = lama_cleaner_process(np.array(image_pil), np.array(mask_pil.convert("L")))
|
483 |
+
|
484 |
image_inpainting = image_inpainting.resize((image_pil.size[0], image_pil.size[1]))
|
485 |
|
486 |
image_path = os.path.join(output_dir, f"grounded_sam_inpainting_output_{file_temp}.jpg")
|
487 |
image_inpainting.save(image_path)
|
488 |
image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
|
489 |
os.remove(image_path)
|
490 |
+
logger.info(f'run_grounded_sam_9_{task_type}_')
|
491 |
+
output_images.append(image_result)
|
492 |
+
return output_images
|
493 |
else:
|
494 |
+
logger.info(f"task_type:{task_type} error!")
|
495 |
+
logger.info(f'run_grounded_sam_9_9_')
|
496 |
+
return output_images
|
497 |
+
|
498 |
+
def change_radio_display(task_type, mask_source_radio):
|
499 |
+
text_prompt_visible = True
|
500 |
+
inpaint_prompt_visible = False
|
501 |
+
mask_source_radio_visible = False
|
502 |
if task_type == "inpainting":
|
503 |
+
inpaint_prompt_visible = True
|
504 |
+
if task_type == "inpainting" or task_type == "remove":
|
505 |
+
mask_source_radio_visible = True
|
506 |
+
if mask_source_radio == mask_source_draw:
|
507 |
+
text_prompt_visible = False
|
508 |
+
return gr.Textbox.update(visible=text_prompt_visible), gr.Textbox.update(visible=inpaint_prompt_visible), gr.Radio.update(visible=mask_source_radio_visible)
|
509 |
|
510 |
if __name__ == "__main__":
|
|
|
511 |
parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True)
|
512 |
parser.add_argument("--debug", action="store_true", help="using debug mode")
|
513 |
parser.add_argument("--share", action="store_true", help="share the app")
|
|
|
519 |
with block:
|
520 |
with gr.Row():
|
521 |
with gr.Column():
|
522 |
+
input_image = gr.Image(source='upload', elem_id="image_upload", tool='sketch', type='pil', label="Upload")
|
523 |
+
task_type = gr.Radio(["detection", "segment", "inpainting", "remove"], value="detection",
|
524 |
label='Task type',interactive=True, visible=True)
|
525 |
+
mask_source_radio = gr.Radio([mask_source_draw, mask_source_segment],
|
526 |
+
value=mask_source_segment, label="Mask from",
|
527 |
+
interactive=True, visible=False)
|
528 |
text_prompt = gr.Textbox(label="Detection Prompt", placeholder="Cannot be empty")
|
529 |
+
inpaint_prompt = gr.Textbox(label="Inpaint Prompt (if this is empty, then remove)", visible=False)
|
530 |
run_button = gr.Button(label="Run")
|
531 |
with gr.Accordion("Advanced options", open=False):
|
532 |
box_threshold = gr.Slider(
|
|
|
535 |
text_threshold = gr.Slider(
|
536 |
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
|
537 |
)
|
538 |
+
iou_threshold = gr.Slider(
|
539 |
+
label="IOU Threshold", minimum=0.0, maximum=1.0, value=0.5, step=0.001
|
540 |
+
)
|
541 |
+
inpaint_mode = gr.Radio(["merge", "first"], value="merge", label="inpaint_mode")
|
542 |
+
with gr.Row():
|
543 |
+
with gr.Column(scale=1):
|
544 |
+
remove_mode = gr.Radio(["segment", "rectangle"], value="segment", label='remove mode')
|
545 |
+
with gr.Column(scale=1):
|
546 |
+
remove_mask_extend = gr.Textbox(label="remove_mask_extend", value='10')
|
547 |
|
548 |
with gr.Column():
|
549 |
+
gallery = gr.Gallery(
|
550 |
+
label="Generated images", show_label=False, elem_id="gallery"
|
551 |
+
).style(grid=[2], full_width=True, full_height=True)
|
552 |
|
553 |
run_button.click(fn=run_grounded_sam, inputs=[
|
554 |
+
input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold, iou_threshold, inpaint_mode, mask_source_radio, remove_mode, remove_mask_extend], outputs=[gallery])
|
555 |
+
task_type.change(fn=change_radio_display, inputs=[task_type, mask_source_radio], outputs=[text_prompt, inpaint_prompt, mask_source_radio])
|
556 |
+
mask_source_radio.change(fn=change_radio_display, inputs=[task_type, mask_source_radio], outputs=[text_prompt, inpaint_prompt, mask_source_radio])
|
557 |
|
558 |
DESCRIPTION = '### This demo from [Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything). Thanks for their excellent work.'
|
559 |
DESCRIPTION += f'<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/yizhangliu/Grounded-Segment-Anything?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
|
560 |
gr.Markdown(DESCRIPTION)
|
561 |
|
562 |
+
block.launch(server_name='0.0.0.0', debug=args.debug, share=args.share)
|
automatic_label_demo.py
CHANGED
@@ -224,7 +224,7 @@ if __name__ == "__main__":
|
|
224 |
openai_proxy = args.openai_proxy
|
225 |
output_dir = args.output_dir
|
226 |
box_threshold = args.box_threshold
|
227 |
-
text_threshold = args.
|
228 |
iou_threshold = args.iou_threshold
|
229 |
device = args.device
|
230 |
|
@@ -264,7 +264,9 @@ if __name__ == "__main__":
|
|
264 |
)
|
265 |
|
266 |
# initialize SAM
|
267 |
-
|
|
|
|
|
268 |
image = cv2.imread(image_path)
|
269 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
270 |
predictor.set_image(image)
|
@@ -286,7 +288,7 @@ if __name__ == "__main__":
|
|
286 |
caption = check_caption(caption, pred_phrases)
|
287 |
print(f"Revise caption with number: {caption}")
|
288 |
|
289 |
-
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2])
|
290 |
|
291 |
masks, _, _ = predictor.predict_torch(
|
292 |
point_coords = None,
|
|
|
224 |
openai_proxy = args.openai_proxy
|
225 |
output_dir = args.output_dir
|
226 |
box_threshold = args.box_threshold
|
227 |
+
text_threshold = args.text_threshold
|
228 |
iou_threshold = args.iou_threshold
|
229 |
device = args.device
|
230 |
|
|
|
264 |
)
|
265 |
|
266 |
# initialize SAM
|
267 |
+
sam = build_sam(checkpoint=sam_checkpoint)
|
268 |
+
sam.to(device=device)
|
269 |
+
predictor = SamPredictor(sam)
|
270 |
image = cv2.imread(image_path)
|
271 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
272 |
predictor.set_image(image)
|
|
|
288 |
caption = check_caption(caption, pred_phrases)
|
289 |
print(f"Revise caption with number: {caption}")
|
290 |
|
291 |
+
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device)
|
292 |
|
293 |
masks, _, _ = predictor.predict_torch(
|
294 |
point_coords = None,
|
gradio_app.py
DELETED
@@ -1,345 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
# os.system('pip install v0.1.0-alpha2.tar.gz')
|
3 |
-
import gradio as gr
|
4 |
-
|
5 |
-
import argparse
|
6 |
-
import copy
|
7 |
-
|
8 |
-
import numpy as np
|
9 |
-
import torch
|
10 |
-
import torchvision
|
11 |
-
from PIL import Image, ImageDraw, ImageFont
|
12 |
-
|
13 |
-
# Grounding DINO
|
14 |
-
import GroundingDINO.groundingdino.datasets.transforms as T
|
15 |
-
from GroundingDINO.groundingdino.models import build_model
|
16 |
-
from GroundingDINO.groundingdino.util import box_ops
|
17 |
-
from GroundingDINO.groundingdino.util.slconfig import SLConfig
|
18 |
-
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
|
19 |
-
|
20 |
-
# segment anything
|
21 |
-
from segment_anything import build_sam, SamPredictor
|
22 |
-
import cv2
|
23 |
-
import numpy as np
|
24 |
-
import matplotlib.pyplot as plt
|
25 |
-
|
26 |
-
|
27 |
-
# diffusers
|
28 |
-
import PIL
|
29 |
-
import requests
|
30 |
-
import torch
|
31 |
-
from io import BytesIO
|
32 |
-
from diffusers import StableDiffusionInpaintPipeline
|
33 |
-
from huggingface_hub import hf_hub_download
|
34 |
-
|
35 |
-
# BLIP
|
36 |
-
from transformers import BlipProcessor, BlipForConditionalGeneration
|
37 |
-
|
38 |
-
|
39 |
-
def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
|
40 |
-
args = SLConfig.fromfile(model_config_path)
|
41 |
-
model = build_model(args)
|
42 |
-
args.device = device
|
43 |
-
|
44 |
-
cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
|
45 |
-
checkpoint = torch.load(cache_file, map_location='cpu')
|
46 |
-
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
|
47 |
-
print("Model loaded from {} \n => {}".format(cache_file, log))
|
48 |
-
_ = model.eval()
|
49 |
-
return model
|
50 |
-
|
51 |
-
def generate_caption(processor, blip_model, raw_image):
|
52 |
-
# unconditional image captioning
|
53 |
-
inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
|
54 |
-
out = blip_model.generate(**inputs)
|
55 |
-
caption = processor.decode(out[0], skip_special_tokens=True)
|
56 |
-
return caption
|
57 |
-
|
58 |
-
def plot_boxes_to_image(image_pil, tgt):
|
59 |
-
H, W = tgt["size"]
|
60 |
-
boxes = tgt["boxes"]
|
61 |
-
labels = tgt["labels"]
|
62 |
-
assert len(boxes) == len(labels), "boxes and labels must have same length"
|
63 |
-
|
64 |
-
draw = ImageDraw.Draw(image_pil)
|
65 |
-
mask = Image.new("L", image_pil.size, 0)
|
66 |
-
mask_draw = ImageDraw.Draw(mask)
|
67 |
-
|
68 |
-
# draw boxes and masks
|
69 |
-
for box, label in zip(boxes, labels):
|
70 |
-
# from 0..1 to 0..W, 0..H
|
71 |
-
box = box * torch.Tensor([W, H, W, H])
|
72 |
-
# from xywh to xyxy
|
73 |
-
box[:2] -= box[2:] / 2
|
74 |
-
box[2:] += box[:2]
|
75 |
-
# random color
|
76 |
-
color = tuple(np.random.randint(0, 255, size=3).tolist())
|
77 |
-
# draw
|
78 |
-
x0, y0, x1, y1 = box
|
79 |
-
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
|
80 |
-
|
81 |
-
draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
|
82 |
-
# draw.text((x0, y0), str(label), fill=color)
|
83 |
-
|
84 |
-
font = ImageFont.load_default()
|
85 |
-
if hasattr(font, "getbbox"):
|
86 |
-
bbox = draw.textbbox((x0, y0), str(label), font)
|
87 |
-
else:
|
88 |
-
w, h = draw.textsize(str(label), font)
|
89 |
-
bbox = (x0, y0, w + x0, y0 + h)
|
90 |
-
# bbox = draw.textbbox((x0, y0), str(label))
|
91 |
-
draw.rectangle(bbox, fill=color)
|
92 |
-
draw.text((x0, y0), str(label), fill="white")
|
93 |
-
|
94 |
-
mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6)
|
95 |
-
|
96 |
-
return image_pil, mask
|
97 |
-
|
98 |
-
def load_image(image_path):
|
99 |
-
# # load image
|
100 |
-
# image_pil = Image.open(image_path).convert("RGB") # load image
|
101 |
-
image_pil = image_path
|
102 |
-
|
103 |
-
transform = T.Compose(
|
104 |
-
[
|
105 |
-
T.RandomResize([800], max_size=1333),
|
106 |
-
T.ToTensor(),
|
107 |
-
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
108 |
-
]
|
109 |
-
)
|
110 |
-
image, _ = transform(image_pil, None) # 3, h, w
|
111 |
-
return image_pil, image
|
112 |
-
|
113 |
-
|
114 |
-
def load_model(model_config_path, model_checkpoint_path, device):
|
115 |
-
args = SLConfig.fromfile(model_config_path)
|
116 |
-
args.device = device
|
117 |
-
model = build_model(args)
|
118 |
-
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
|
119 |
-
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
|
120 |
-
print(load_res)
|
121 |
-
_ = model.eval()
|
122 |
-
return model
|
123 |
-
|
124 |
-
|
125 |
-
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"):
|
126 |
-
caption = caption.lower()
|
127 |
-
caption = caption.strip()
|
128 |
-
if not caption.endswith("."):
|
129 |
-
caption = caption + "."
|
130 |
-
model = model.to(device)
|
131 |
-
image = image.to(device)
|
132 |
-
with torch.no_grad():
|
133 |
-
outputs = model(image[None], captions=[caption])
|
134 |
-
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
|
135 |
-
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
|
136 |
-
logits.shape[0]
|
137 |
-
|
138 |
-
# filter output
|
139 |
-
logits_filt = logits.clone()
|
140 |
-
boxes_filt = boxes.clone()
|
141 |
-
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
|
142 |
-
logits_filt = logits_filt[filt_mask] # num_filt, 256
|
143 |
-
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
|
144 |
-
logits_filt.shape[0]
|
145 |
-
|
146 |
-
# get phrase
|
147 |
-
tokenlizer = model.tokenizer
|
148 |
-
tokenized = tokenlizer(caption)
|
149 |
-
# build pred
|
150 |
-
pred_phrases = []
|
151 |
-
scores = []
|
152 |
-
for logit, box in zip(logits_filt, boxes_filt):
|
153 |
-
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
|
154 |
-
if with_logits:
|
155 |
-
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
|
156 |
-
else:
|
157 |
-
pred_phrases.append(pred_phrase)
|
158 |
-
scores.append(logit.max().item())
|
159 |
-
|
160 |
-
return boxes_filt, torch.Tensor(scores), pred_phrases
|
161 |
-
|
162 |
-
def show_mask(mask, ax, random_color=False):
|
163 |
-
if random_color:
|
164 |
-
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
165 |
-
else:
|
166 |
-
color = np.array([30/255, 144/255, 255/255, 0.6])
|
167 |
-
h, w = mask.shape[-2:]
|
168 |
-
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
169 |
-
ax.imshow(mask_image)
|
170 |
-
|
171 |
-
|
172 |
-
def show_box(box, ax, label):
|
173 |
-
x0, y0 = box[0], box[1]
|
174 |
-
w, h = box[2] - box[0], box[3] - box[1]
|
175 |
-
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
|
176 |
-
ax.text(x0, y0, label)
|
177 |
-
|
178 |
-
|
179 |
-
config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
|
180 |
-
ckpt_repo_id = "ShilongLiu/GroundingDINO"
|
181 |
-
ckpt_filenmae = "groundingdino_swint_ogc.pth"
|
182 |
-
sam_checkpoint='sam_vit_h_4b8939.pth'
|
183 |
-
output_dir="outputs"
|
184 |
-
device="cuda"
|
185 |
-
|
186 |
-
def run_grounded_sam(image_path, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold, iou_threshold, inpaint_mode):
|
187 |
-
|
188 |
-
# make dir
|
189 |
-
os.makedirs(output_dir, exist_ok=True)
|
190 |
-
# load image
|
191 |
-
image_pil, image = load_image(image_path.convert("RGB"))
|
192 |
-
# load model
|
193 |
-
model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae)
|
194 |
-
# model = load_model(config_file, ckpt_filenmae, device=device)
|
195 |
-
|
196 |
-
# visualize raw image
|
197 |
-
image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
|
198 |
-
|
199 |
-
if task_type == 'automatic':
|
200 |
-
# generate caption and tags
|
201 |
-
# use Tag2Text can generate better captions
|
202 |
-
# https://huggingface.co/spaces/xinyu1205/Tag2Text
|
203 |
-
# but there are some bugs...
|
204 |
-
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
205 |
-
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda")
|
206 |
-
text_prompt = generate_caption(processor, blip_model, image_pil)
|
207 |
-
print(f"Caption: {text_prompt}")
|
208 |
-
|
209 |
-
# run grounding dino model
|
210 |
-
boxes_filt, scores, pred_phrases = get_grounding_output(
|
211 |
-
model, image, text_prompt, box_threshold, text_threshold, device=device
|
212 |
-
)
|
213 |
-
|
214 |
-
size = image_pil.size
|
215 |
-
|
216 |
-
if task_type == 'seg' or task_type == 'inpainting' or task_type == 'automatic':
|
217 |
-
# initialize SAM
|
218 |
-
predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint))
|
219 |
-
image = np.array(image_path)
|
220 |
-
predictor.set_image(image)
|
221 |
-
|
222 |
-
H, W = size[1], size[0]
|
223 |
-
for i in range(boxes_filt.size(0)):
|
224 |
-
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
|
225 |
-
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
|
226 |
-
boxes_filt[i][2:] += boxes_filt[i][:2]
|
227 |
-
|
228 |
-
boxes_filt = boxes_filt.cpu()
|
229 |
-
|
230 |
-
if task_type == 'automatic':
|
231 |
-
# use NMS to handle overlapped boxes
|
232 |
-
print(f"Before NMS: {boxes_filt.shape[0]} boxes")
|
233 |
-
nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist()
|
234 |
-
boxes_filt = boxes_filt[nms_idx]
|
235 |
-
pred_phrases = [pred_phrases[idx] for idx in nms_idx]
|
236 |
-
print(f"After NMS: {boxes_filt.shape[0]} boxes")
|
237 |
-
print(f"Revise caption with number: {text_prompt}")
|
238 |
-
|
239 |
-
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2])
|
240 |
-
|
241 |
-
masks, _, _ = predictor.predict_torch(
|
242 |
-
point_coords = None,
|
243 |
-
point_labels = None,
|
244 |
-
boxes = transformed_boxes,
|
245 |
-
multimask_output = False,
|
246 |
-
)
|
247 |
-
|
248 |
-
# masks: [1, 1, 512, 512]
|
249 |
-
|
250 |
-
if task_type == 'det':
|
251 |
-
pred_dict = {
|
252 |
-
"boxes": boxes_filt,
|
253 |
-
"size": [size[1], size[0]], # H,W
|
254 |
-
"labels": pred_phrases,
|
255 |
-
}
|
256 |
-
# import ipdb; ipdb.set_trace()
|
257 |
-
image_with_box = plot_boxes_to_image(image_pil, pred_dict)[0]
|
258 |
-
image_path = os.path.join(output_dir, "grounding_dino_output.jpg")
|
259 |
-
image_with_box.save(image_path)
|
260 |
-
image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
|
261 |
-
return image_result
|
262 |
-
elif task_type == 'seg' or task_type == 'automatic':
|
263 |
-
assert sam_checkpoint, 'sam_checkpoint is not found!'
|
264 |
-
|
265 |
-
# draw output image
|
266 |
-
plt.figure(figsize=(10, 10))
|
267 |
-
plt.imshow(image)
|
268 |
-
for mask in masks:
|
269 |
-
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
|
270 |
-
for box, label in zip(boxes_filt, pred_phrases):
|
271 |
-
show_box(box.numpy(), plt.gca(), label)
|
272 |
-
if task_type == 'automatic':
|
273 |
-
plt.title(text_prompt)
|
274 |
-
plt.axis('off')
|
275 |
-
image_path = os.path.join(output_dir, "grounding_dino_output.jpg")
|
276 |
-
plt.savefig(image_path, bbox_inches="tight")
|
277 |
-
image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
|
278 |
-
return image_result
|
279 |
-
elif task_type == 'inpainting':
|
280 |
-
assert inpaint_prompt, 'inpaint_prompt is not found!'
|
281 |
-
# inpainting pipeline
|
282 |
-
if inpaint_mode == 'merge':
|
283 |
-
masks = torch.sum(masks, dim=0).unsqueeze(0)
|
284 |
-
masks = torch.where(masks > 0, True, False)
|
285 |
-
else:
|
286 |
-
mask = masks[0][0].cpu().numpy() # simply choose the first mask, which will be refine in the future release
|
287 |
-
mask_pil = Image.fromarray(mask)
|
288 |
-
|
289 |
-
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
290 |
-
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16
|
291 |
-
)
|
292 |
-
pipe = pipe.to("cuda")
|
293 |
-
|
294 |
-
image_pil = image_pil.resize((512, 512))
|
295 |
-
mask_pil = mask_pil.resize((512, 512))
|
296 |
-
|
297 |
-
image = pipe(prompt=inpaint_prompt, image=image_pil, mask_image=mask_pil).images[0]
|
298 |
-
image = image.resize(size)
|
299 |
-
|
300 |
-
image_path = os.path.join(output_dir, "grounded_sam_inpainting_output.jpg")
|
301 |
-
image.save(image_path)
|
302 |
-
image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
|
303 |
-
return image_result
|
304 |
-
else:
|
305 |
-
print("task_type:{} error!".format(task_type))
|
306 |
-
|
307 |
-
if __name__ == "__main__":
|
308 |
-
|
309 |
-
parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True)
|
310 |
-
parser.add_argument("--debug", action="store_true", help="using debug mode")
|
311 |
-
parser.add_argument("--share", action="store_true", help="share the app")
|
312 |
-
parser.add_argument('--port', type=int, default=7589, help='port to run the server')
|
313 |
-
args = parser.parse_args()
|
314 |
-
|
315 |
-
block = gr.Blocks().queue()
|
316 |
-
with block:
|
317 |
-
with gr.Row():
|
318 |
-
with gr.Column():
|
319 |
-
input_image = gr.Image(source='upload', type="pil", value="assets/demo1.jpg")
|
320 |
-
task_type = gr.Dropdown(["det", "seg", "inpainting", "automatic"], value="automatic", label="task_type")
|
321 |
-
text_prompt = gr.Textbox(label="Text Prompt")
|
322 |
-
inpaint_prompt = gr.Textbox(label="Inpaint Prompt")
|
323 |
-
run_button = gr.Button(label="Run")
|
324 |
-
with gr.Accordion("Advanced options", open=False):
|
325 |
-
box_threshold = gr.Slider(
|
326 |
-
label="Box Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.001
|
327 |
-
)
|
328 |
-
text_threshold = gr.Slider(
|
329 |
-
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
|
330 |
-
)
|
331 |
-
iou_threshold = gr.Slider(
|
332 |
-
label="IOU Threshold", minimum=0.0, maximum=1.0, value=0.5, step=0.001
|
333 |
-
)
|
334 |
-
inpaint_mode = gr.Dropdown(["merge", "first"], value="merge", label="inpaint_mode")
|
335 |
-
|
336 |
-
with gr.Column():
|
337 |
-
gallery = gr.outputs.Image(
|
338 |
-
type="pil",
|
339 |
-
).style(full_width=True, full_height=True)
|
340 |
-
|
341 |
-
run_button.click(fn=run_grounded_sam, inputs=[
|
342 |
-
input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold, iou_threshold, inpaint_mode], outputs=[gallery])
|
343 |
-
|
344 |
-
|
345 |
-
block.launch(server_name='0.0.0.0', server_port=args.port, debug=args.debug, share=args.share)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gradio_auto_label.py
DELETED
@@ -1,392 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import json
|
3 |
-
import argparse
|
4 |
-
import os
|
5 |
-
import copy
|
6 |
-
|
7 |
-
import numpy as np
|
8 |
-
import torch
|
9 |
-
import torchvision
|
10 |
-
from PIL import Image, ImageDraw, ImageFont
|
11 |
-
import openai
|
12 |
-
# Grounding DINO
|
13 |
-
import GroundingDINO.groundingdino.datasets.transforms as T
|
14 |
-
from GroundingDINO.groundingdino.models import build_model
|
15 |
-
from GroundingDINO.groundingdino.util import box_ops
|
16 |
-
from GroundingDINO.groundingdino.util.slconfig import SLConfig
|
17 |
-
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
|
18 |
-
from transformers import BlipProcessor, BlipForConditionalGeneration
|
19 |
-
# segment anything
|
20 |
-
from segment_anything import build_sam, SamPredictor
|
21 |
-
from segment_anything.utils.amg import remove_small_regions
|
22 |
-
import cv2
|
23 |
-
import numpy as np
|
24 |
-
import matplotlib.pyplot as plt
|
25 |
-
|
26 |
-
|
27 |
-
# diffusers
|
28 |
-
import PIL
|
29 |
-
import requests
|
30 |
-
import torch
|
31 |
-
from io import BytesIO
|
32 |
-
from huggingface_hub import hf_hub_download
|
33 |
-
from sys import platform
|
34 |
-
|
35 |
-
#macos
|
36 |
-
if platform == 'darwin':
|
37 |
-
import matplotlib
|
38 |
-
matplotlib.use('agg')
|
39 |
-
|
40 |
-
def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
|
41 |
-
args = SLConfig.fromfile(model_config_path)
|
42 |
-
model = build_model(args)
|
43 |
-
args.device = device
|
44 |
-
|
45 |
-
cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
|
46 |
-
checkpoint = torch.load(cache_file, map_location='cpu')
|
47 |
-
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
|
48 |
-
print("Model loaded from {} \n => {}".format(cache_file, log))
|
49 |
-
_ = model.eval()
|
50 |
-
return model
|
51 |
-
|
52 |
-
def plot_boxes_to_image(image_pil, tgt):
|
53 |
-
H, W = tgt["size"]
|
54 |
-
boxes = tgt["boxes"]
|
55 |
-
labels = tgt["labels"]
|
56 |
-
assert len(boxes) == len(labels), "boxes and labels must have same length"
|
57 |
-
|
58 |
-
draw = ImageDraw.Draw(image_pil)
|
59 |
-
mask = Image.new("L", image_pil.size, 0)
|
60 |
-
mask_draw = ImageDraw.Draw(mask)
|
61 |
-
|
62 |
-
# draw boxes and masks
|
63 |
-
for box, label in zip(boxes, labels):
|
64 |
-
# from 0..1 to 0..W, 0..H
|
65 |
-
box = box * torch.Tensor([W, H, W, H])
|
66 |
-
# from xywh to xyxy
|
67 |
-
box[:2] -= box[2:] / 2
|
68 |
-
box[2:] += box[:2]
|
69 |
-
# random color
|
70 |
-
color = tuple(np.random.randint(0, 255, size=3).tolist())
|
71 |
-
# draw
|
72 |
-
x0, y0, x1, y1 = box
|
73 |
-
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
|
74 |
-
|
75 |
-
draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
|
76 |
-
# draw.text((x0, y0), str(label), fill=color)
|
77 |
-
|
78 |
-
font = ImageFont.load_default()
|
79 |
-
if hasattr(font, "getbbox"):
|
80 |
-
bbox = draw.textbbox((x0, y0), str(label), font)
|
81 |
-
else:
|
82 |
-
w, h = draw.textsize(str(label), font)
|
83 |
-
bbox = (x0, y0, w + x0, y0 + h)
|
84 |
-
# bbox = draw.textbbox((x0, y0), str(label))
|
85 |
-
draw.rectangle(bbox, fill=color)
|
86 |
-
draw.text((x0, y0), str(label), fill="white")
|
87 |
-
|
88 |
-
mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6)
|
89 |
-
|
90 |
-
return image_pil, mask
|
91 |
-
|
92 |
-
def load_image(image_path):
|
93 |
-
# # load image
|
94 |
-
# image_pil = Image.open(image_path).convert("RGB") # load image
|
95 |
-
image_pil = image_path
|
96 |
-
|
97 |
-
transform = T.Compose(
|
98 |
-
[
|
99 |
-
T.RandomResize([800], max_size=1333),
|
100 |
-
T.ToTensor(),
|
101 |
-
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
102 |
-
]
|
103 |
-
)
|
104 |
-
image, _ = transform(image_pil, None) # 3, h, w
|
105 |
-
return image_pil, image
|
106 |
-
|
107 |
-
|
108 |
-
def load_model(model_config_path, model_checkpoint_path, device):
|
109 |
-
args = SLConfig.fromfile(model_config_path)
|
110 |
-
args.device = device
|
111 |
-
model = build_model(args)
|
112 |
-
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
|
113 |
-
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
|
114 |
-
_ = model.eval()
|
115 |
-
return model
|
116 |
-
|
117 |
-
|
118 |
-
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"):
|
119 |
-
caption = caption.lower()
|
120 |
-
caption = caption.strip()
|
121 |
-
if not caption.endswith("."):
|
122 |
-
caption = caption + "."
|
123 |
-
model = model.to(device)
|
124 |
-
image = image.to(device)
|
125 |
-
with torch.no_grad():
|
126 |
-
outputs = model(image[None], captions=[caption])
|
127 |
-
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
|
128 |
-
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
|
129 |
-
logits.shape[0]
|
130 |
-
|
131 |
-
# filter output
|
132 |
-
logits_filt = logits.clone()
|
133 |
-
boxes_filt = boxes.clone()
|
134 |
-
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
|
135 |
-
logits_filt = logits_filt[filt_mask] # num_filt, 256
|
136 |
-
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
|
137 |
-
logits_filt.shape[0]
|
138 |
-
|
139 |
-
# get phrase
|
140 |
-
tokenlizer = model.tokenizer
|
141 |
-
tokenized = tokenlizer(caption)
|
142 |
-
# build pred
|
143 |
-
pred_phrases = []
|
144 |
-
scores = []
|
145 |
-
for logit, box in zip(logits_filt, boxes_filt):
|
146 |
-
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
|
147 |
-
if with_logits:
|
148 |
-
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
|
149 |
-
else:
|
150 |
-
pred_phrases.append(pred_phrase)
|
151 |
-
scores.append(logit.max().item())
|
152 |
-
|
153 |
-
return boxes_filt, torch.Tensor(scores), pred_phrases
|
154 |
-
|
155 |
-
def show_mask(mask, ax, random_color=False):
|
156 |
-
if random_color:
|
157 |
-
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
158 |
-
else:
|
159 |
-
color = np.array([30/255, 144/255, 255/255, 0.6])
|
160 |
-
h, w = mask.shape[-2:]
|
161 |
-
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
162 |
-
ax.imshow(mask_image)
|
163 |
-
|
164 |
-
def save_mask_data(output_dir, mask_list, box_list, label_list):
|
165 |
-
value = 0 # 0 for background
|
166 |
-
|
167 |
-
mask_img = torch.zeros(mask_list.shape[-2:])
|
168 |
-
for idx, mask in enumerate(mask_list):
|
169 |
-
mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1
|
170 |
-
plt.figure(figsize=(10, 10))
|
171 |
-
plt.imshow(mask_img.numpy())
|
172 |
-
plt.axis('off')
|
173 |
-
mask_img_path = os.path.join(output_dir, 'mask.jpg')
|
174 |
-
plt.savefig(mask_img_path, bbox_inches="tight", dpi=300, pad_inches=0.0)
|
175 |
-
|
176 |
-
json_data = [{
|
177 |
-
'value': value,
|
178 |
-
'label': 'background'
|
179 |
-
}]
|
180 |
-
for label, box in zip(label_list, box_list):
|
181 |
-
value += 1
|
182 |
-
name, logit = label.split('(')
|
183 |
-
logit = logit[:-1] # the last is ')'
|
184 |
-
json_data.append({
|
185 |
-
'value': value,
|
186 |
-
'label': name,
|
187 |
-
'logit': float(logit),
|
188 |
-
'box': box.numpy().tolist(),
|
189 |
-
})
|
190 |
-
|
191 |
-
mask_json_path = os.path.join(output_dir, 'mask.json')
|
192 |
-
with open(mask_json_path, 'w') as f:
|
193 |
-
json.dump(json_data, f)
|
194 |
-
|
195 |
-
return mask_img_path, mask_json_path
|
196 |
-
|
197 |
-
def show_box(box, ax, label):
|
198 |
-
x0, y0 = box[0], box[1]
|
199 |
-
w, h = box[2] - box[0], box[3] - box[1]
|
200 |
-
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
|
201 |
-
ax.text(x0, y0, label)
|
202 |
-
|
203 |
-
config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
|
204 |
-
ckpt_repo_id = "ShilongLiu/GroundingDINO"
|
205 |
-
ckpt_filenmae = "groundingdino_swint_ogc.pth"
|
206 |
-
sam_checkpoint='sam_vit_h_4b8939.pth'
|
207 |
-
output_dir="outputs"
|
208 |
-
device="cpu"
|
209 |
-
|
210 |
-
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
211 |
-
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
212 |
-
|
213 |
-
def generate_caption(raw_image):
|
214 |
-
# unconditional image captioning
|
215 |
-
inputs = processor(raw_image, return_tensors="pt")
|
216 |
-
out = blip_model.generate(**inputs)
|
217 |
-
caption = processor.decode(out[0], skip_special_tokens=True)
|
218 |
-
return caption
|
219 |
-
|
220 |
-
|
221 |
-
def generate_tags(caption, split=',', max_tokens=100, model="gpt-3.5-turbo", openai_key=''):
|
222 |
-
openai.api_key = openai_key
|
223 |
-
prompt = [
|
224 |
-
{
|
225 |
-
'role': 'system',
|
226 |
-
'content': 'Extract the unique nouns in the caption. Remove all the adjectives. ' + \
|
227 |
-
f'List the nouns in singular form. Split them by "{split} ". ' + \
|
228 |
-
f'Caption: {caption}.'
|
229 |
-
}
|
230 |
-
]
|
231 |
-
response = openai.ChatCompletion.create(model=model, messages=prompt, temperature=0.6, max_tokens=max_tokens)
|
232 |
-
reply = response['choices'][0]['message']['content']
|
233 |
-
# sometimes return with "noun: xxx, xxx, xxx"
|
234 |
-
tags = reply.split(':')[-1].strip()
|
235 |
-
return tags
|
236 |
-
|
237 |
-
def check_caption(caption, pred_phrases, max_tokens=100, model="gpt-3.5-turbo"):
|
238 |
-
object_list = [obj.split('(')[0] for obj in pred_phrases]
|
239 |
-
object_num = []
|
240 |
-
for obj in set(object_list):
|
241 |
-
object_num.append(f'{object_list.count(obj)} {obj}')
|
242 |
-
object_num = ', '.join(object_num)
|
243 |
-
print(f"Correct object number: {object_num}")
|
244 |
-
|
245 |
-
prompt = [
|
246 |
-
{
|
247 |
-
'role': 'system',
|
248 |
-
'content': 'Revise the number in the caption if it is wrong. ' + \
|
249 |
-
f'Caption: {caption}. ' + \
|
250 |
-
f'True object number: {object_num}. ' + \
|
251 |
-
'Only give the revised caption: '
|
252 |
-
}
|
253 |
-
]
|
254 |
-
response = openai.ChatCompletion.create(model=model, messages=prompt, temperature=0.6, max_tokens=max_tokens)
|
255 |
-
reply = response['choices'][0]['message']['content']
|
256 |
-
# sometimes return with "Caption: xxx, xxx, xxx"
|
257 |
-
caption = reply.split(':')[-1].strip()
|
258 |
-
return caption
|
259 |
-
|
260 |
-
def run_grounded_sam(image_path, openai_key, box_threshold, text_threshold, iou_threshold, area_threshold):
|
261 |
-
assert openai_key, 'Openai key is not found!'
|
262 |
-
|
263 |
-
# make dir
|
264 |
-
os.makedirs(output_dir, exist_ok=True)
|
265 |
-
# load image
|
266 |
-
image_pil, image = load_image(image_path.convert("RGB"))
|
267 |
-
# load model
|
268 |
-
model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae)
|
269 |
-
|
270 |
-
# visualize raw image
|
271 |
-
image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
|
272 |
-
|
273 |
-
caption = generate_caption(image_pil)
|
274 |
-
# Currently ", " is better for detecting single tags
|
275 |
-
# while ". " is a little worse in some case
|
276 |
-
split = ','
|
277 |
-
tags = generate_tags(caption, split=split, openai_key=openai_key)
|
278 |
-
|
279 |
-
# run grounding dino model
|
280 |
-
boxes_filt, scores, pred_phrases = get_grounding_output(
|
281 |
-
model, image, tags, box_threshold, text_threshold, device=device
|
282 |
-
)
|
283 |
-
|
284 |
-
size = image_pil.size
|
285 |
-
|
286 |
-
# initialize SAM
|
287 |
-
predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint))
|
288 |
-
image = np.array(image_path)
|
289 |
-
predictor.set_image(image)
|
290 |
-
|
291 |
-
H, W = size[1], size[0]
|
292 |
-
for i in range(boxes_filt.size(0)):
|
293 |
-
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
|
294 |
-
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
|
295 |
-
boxes_filt[i][2:] += boxes_filt[i][:2]
|
296 |
-
|
297 |
-
boxes_filt = boxes_filt.cpu()
|
298 |
-
# use NMS to handle overlapped boxes
|
299 |
-
print(f"Before NMS: {boxes_filt.shape[0]} boxes")
|
300 |
-
nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist()
|
301 |
-
boxes_filt = boxes_filt[nms_idx]
|
302 |
-
pred_phrases = [pred_phrases[idx] for idx in nms_idx]
|
303 |
-
print(f"After NMS: {boxes_filt.shape[0]} boxes")
|
304 |
-
caption = check_caption(caption, pred_phrases)
|
305 |
-
print(f"Revise caption with number: {caption}")
|
306 |
-
|
307 |
-
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2])
|
308 |
-
|
309 |
-
masks, _, _ = predictor.predict_torch(
|
310 |
-
point_coords = None,
|
311 |
-
point_labels = None,
|
312 |
-
boxes = transformed_boxes,
|
313 |
-
multimask_output = False,
|
314 |
-
)
|
315 |
-
# area threshold: remove the mask when area < area_thresh (in pixels)
|
316 |
-
new_masks = []
|
317 |
-
for mask in masks:
|
318 |
-
# reshape to be used in remove_small_regions()
|
319 |
-
mask = mask.cpu().numpy().squeeze()
|
320 |
-
mask, _ = remove_small_regions(mask, area_threshold, mode="holes")
|
321 |
-
mask, _ = remove_small_regions(mask, area_threshold, mode="islands")
|
322 |
-
new_masks.append(torch.as_tensor(mask).unsqueeze(0))
|
323 |
-
|
324 |
-
masks = torch.stack(new_masks, dim=0)
|
325 |
-
# masks: [1, 1, 512, 512]
|
326 |
-
assert sam_checkpoint, 'sam_checkpoint is not found!'
|
327 |
-
|
328 |
-
# draw output image
|
329 |
-
plt.figure(figsize=(10, 10))
|
330 |
-
plt.imshow(image)
|
331 |
-
for mask in masks:
|
332 |
-
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
|
333 |
-
for box, label in zip(boxes_filt, pred_phrases):
|
334 |
-
show_box(box.numpy(), plt.gca(), label)
|
335 |
-
plt.axis('off')
|
336 |
-
image_path = os.path.join(output_dir, "grounding_dino_output.jpg")
|
337 |
-
plt.savefig(image_path, bbox_inches="tight")
|
338 |
-
image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
|
339 |
-
|
340 |
-
mask_img_path, _ = save_mask_data('./outputs', masks, boxes_filt, pred_phrases)
|
341 |
-
|
342 |
-
mask_img = cv2.cvtColor(cv2.imread(mask_img_path), cv2.COLOR_BGR2RGB)
|
343 |
-
|
344 |
-
return image_result, mask_img, caption, tags
|
345 |
-
|
346 |
-
if __name__ == "__main__":
|
347 |
-
|
348 |
-
parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True)
|
349 |
-
parser.add_argument("--debug", action="store_true", help="using debug mode")
|
350 |
-
parser.add_argument("--share", action="store_true", help="share the app")
|
351 |
-
args = parser.parse_args()
|
352 |
-
|
353 |
-
block = gr.Blocks().queue()
|
354 |
-
with block:
|
355 |
-
with gr.Row():
|
356 |
-
with gr.Column():
|
357 |
-
input_image = gr.Image(source='upload', type="pil")
|
358 |
-
openai_key = gr.Textbox(label="OpenAI key")
|
359 |
-
|
360 |
-
run_button = gr.Button(label="Run")
|
361 |
-
with gr.Accordion("Advanced options", open=False):
|
362 |
-
box_threshold = gr.Slider(
|
363 |
-
label="Box Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.001
|
364 |
-
)
|
365 |
-
text_threshold = gr.Slider(
|
366 |
-
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
|
367 |
-
)
|
368 |
-
iou_threshold = gr.Slider(
|
369 |
-
label="IoU Threshold", minimum=0.0, maximum=1.0, value=0.5, step=0.001
|
370 |
-
)
|
371 |
-
area_threshold = gr.Slider(
|
372 |
-
label="Area Threshold", minimum=0.0, maximum=2500, value=100, step=10
|
373 |
-
)
|
374 |
-
|
375 |
-
with gr.Column():
|
376 |
-
image_caption = gr.Textbox(label="Image Caption")
|
377 |
-
identified_labels = gr.Textbox(label="Key objects extracted by ChatGPT")
|
378 |
-
gallery = gr.outputs.Image(
|
379 |
-
type="pil",
|
380 |
-
).style(full_width=True, full_height=True)
|
381 |
-
|
382 |
-
mask_gallary = gr.outputs.Image(
|
383 |
-
type="pil",
|
384 |
-
).style(full_width=True, full_height=True)
|
385 |
-
|
386 |
-
|
387 |
-
run_button.click(fn=run_grounded_sam, inputs=[
|
388 |
-
input_image, openai_key, box_threshold, text_threshold, iou_threshold, area_threshold],
|
389 |
-
outputs=[gallery, mask_gallary, image_caption, identified_labels])
|
390 |
-
|
391 |
-
|
392 |
-
block.launch(server_name='0.0.0.0', server_port=7589, debug=args.debug, share=args.share)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
grounded_sam.ipynb
CHANGED
@@ -224,7 +224,9 @@
|
|
224 |
"outputs": [],
|
225 |
"source": [
|
226 |
"sam_checkpoint = 'sam_vit_h_4b8939.pth'\n",
|
227 |
-
"
|
|
|
|
|
228 |
]
|
229 |
},
|
230 |
{
|
@@ -404,7 +406,7 @@
|
|
404 |
"metadata": {},
|
405 |
"outputs": [],
|
406 |
"source": [
|
407 |
-
"transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes_xyxy, image_source.shape[:2])\n",
|
408 |
"masks, _, _ = sam_predictor.predict_torch(\n",
|
409 |
" point_coords = None,\n",
|
410 |
" point_labels = None,\n",
|
|
|
224 |
"outputs": [],
|
225 |
"source": [
|
226 |
"sam_checkpoint = 'sam_vit_h_4b8939.pth'\n",
|
227 |
+
"sam = build_sam(checkpoint=sam_checkpoint)\n",
|
228 |
+
"sam.to(device=device)\n",
|
229 |
+
"sam_predictor = SamPredictor(sam)"
|
230 |
]
|
231 |
},
|
232 |
{
|
|
|
406 |
"metadata": {},
|
407 |
"outputs": [],
|
408 |
"source": [
|
409 |
+
"transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes_xyxy, image_source.shape[:2]).to(device)\n",
|
410 |
"masks, _, _ = sam_predictor.predict_torch(\n",
|
411 |
" point_coords = None,\n",
|
412 |
" point_labels = None,\n",
|
grounded_sam_demo.py
DELETED
@@ -1,217 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import os
|
3 |
-
import copy
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import json
|
7 |
-
import torch
|
8 |
-
from PIL import Image, ImageDraw, ImageFont
|
9 |
-
|
10 |
-
# Grounding DINO
|
11 |
-
import GroundingDINO.groundingdino.datasets.transforms as T
|
12 |
-
from GroundingDINO.groundingdino.models import build_model
|
13 |
-
from GroundingDINO.groundingdino.util import box_ops
|
14 |
-
from GroundingDINO.groundingdino.util.slconfig import SLConfig
|
15 |
-
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
|
16 |
-
|
17 |
-
# segment anything
|
18 |
-
from segment_anything import build_sam, SamPredictor
|
19 |
-
import cv2
|
20 |
-
import numpy as np
|
21 |
-
import matplotlib.pyplot as plt
|
22 |
-
|
23 |
-
|
24 |
-
def load_image(image_path):
|
25 |
-
# load image
|
26 |
-
image_pil = Image.open(image_path).convert("RGB") # load image
|
27 |
-
|
28 |
-
transform = T.Compose(
|
29 |
-
[
|
30 |
-
T.RandomResize([800], max_size=1333),
|
31 |
-
T.ToTensor(),
|
32 |
-
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
33 |
-
]
|
34 |
-
)
|
35 |
-
image, _ = transform(image_pil, None) # 3, h, w
|
36 |
-
return image_pil, image
|
37 |
-
|
38 |
-
|
39 |
-
def load_model(model_config_path, model_checkpoint_path, device):
|
40 |
-
args = SLConfig.fromfile(model_config_path)
|
41 |
-
args.device = device
|
42 |
-
model = build_model(args)
|
43 |
-
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
|
44 |
-
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
|
45 |
-
print(load_res)
|
46 |
-
_ = model.eval()
|
47 |
-
return model
|
48 |
-
|
49 |
-
|
50 |
-
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"):
|
51 |
-
caption = caption.lower()
|
52 |
-
caption = caption.strip()
|
53 |
-
if not caption.endswith("."):
|
54 |
-
caption = caption + "."
|
55 |
-
model = model.to(device)
|
56 |
-
image = image.to(device)
|
57 |
-
with torch.no_grad():
|
58 |
-
outputs = model(image[None], captions=[caption])
|
59 |
-
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
|
60 |
-
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
|
61 |
-
logits.shape[0]
|
62 |
-
|
63 |
-
# filter output
|
64 |
-
logits_filt = logits.clone()
|
65 |
-
boxes_filt = boxes.clone()
|
66 |
-
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
|
67 |
-
logits_filt = logits_filt[filt_mask] # num_filt, 256
|
68 |
-
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
|
69 |
-
logits_filt.shape[0]
|
70 |
-
|
71 |
-
# get phrase
|
72 |
-
tokenlizer = model.tokenizer
|
73 |
-
tokenized = tokenlizer(caption)
|
74 |
-
# build pred
|
75 |
-
pred_phrases = []
|
76 |
-
for logit, box in zip(logits_filt, boxes_filt):
|
77 |
-
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
|
78 |
-
if with_logits:
|
79 |
-
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
|
80 |
-
else:
|
81 |
-
pred_phrases.append(pred_phrase)
|
82 |
-
|
83 |
-
return boxes_filt, pred_phrases
|
84 |
-
|
85 |
-
def show_mask(mask, ax, random_color=False):
|
86 |
-
if random_color:
|
87 |
-
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
88 |
-
else:
|
89 |
-
color = np.array([30/255, 144/255, 255/255, 0.6])
|
90 |
-
h, w = mask.shape[-2:]
|
91 |
-
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
92 |
-
ax.imshow(mask_image)
|
93 |
-
|
94 |
-
|
95 |
-
def show_box(box, ax, label):
|
96 |
-
x0, y0 = box[0], box[1]
|
97 |
-
w, h = box[2] - box[0], box[3] - box[1]
|
98 |
-
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
|
99 |
-
ax.text(x0, y0, label)
|
100 |
-
|
101 |
-
|
102 |
-
def save_mask_data(output_dir, mask_list, box_list, label_list):
|
103 |
-
value = 0 # 0 for background
|
104 |
-
|
105 |
-
mask_img = torch.zeros(mask_list.shape[-2:])
|
106 |
-
for idx, mask in enumerate(mask_list):
|
107 |
-
mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1
|
108 |
-
plt.figure(figsize=(10, 10))
|
109 |
-
plt.imshow(mask_img.numpy())
|
110 |
-
plt.axis('off')
|
111 |
-
plt.savefig(os.path.join(output_dir, 'mask.jpg'), bbox_inches="tight", dpi=300, pad_inches=0.0)
|
112 |
-
|
113 |
-
json_data = [{
|
114 |
-
'value': value,
|
115 |
-
'label': 'background'
|
116 |
-
}]
|
117 |
-
for label, box in zip(label_list, box_list):
|
118 |
-
value += 1
|
119 |
-
name, logit = label.split('(')
|
120 |
-
logit = logit[:-1] # the last is ')'
|
121 |
-
json_data.append({
|
122 |
-
'value': value,
|
123 |
-
'label': name,
|
124 |
-
'logit': float(logit),
|
125 |
-
'box': box.numpy().tolist(),
|
126 |
-
})
|
127 |
-
with open(os.path.join(output_dir, 'mask.json'), 'w') as f:
|
128 |
-
json.dump(json_data, f)
|
129 |
-
|
130 |
-
|
131 |
-
if __name__ == "__main__":
|
132 |
-
|
133 |
-
parser = argparse.ArgumentParser("Grounded-Segment-Anything Demo", add_help=True)
|
134 |
-
parser.add_argument("--config", type=str, required=True, help="path to config file")
|
135 |
-
parser.add_argument(
|
136 |
-
"--grounded_checkpoint", type=str, required=True, help="path to checkpoint file"
|
137 |
-
)
|
138 |
-
parser.add_argument(
|
139 |
-
"--sam_checkpoint", type=str, required=True, help="path to checkpoint file"
|
140 |
-
)
|
141 |
-
parser.add_argument("--input_image", type=str, required=True, help="path to image file")
|
142 |
-
parser.add_argument("--text_prompt", type=str, required=True, help="text prompt")
|
143 |
-
parser.add_argument(
|
144 |
-
"--output_dir", "-o", type=str, default="outputs", required=True, help="output directory"
|
145 |
-
)
|
146 |
-
|
147 |
-
parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold")
|
148 |
-
parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold")
|
149 |
-
|
150 |
-
parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False")
|
151 |
-
args = parser.parse_args()
|
152 |
-
|
153 |
-
# cfg
|
154 |
-
config_file = args.config # change the path of the model config file
|
155 |
-
grounded_checkpoint = args.grounded_checkpoint # change the path of the model
|
156 |
-
sam_checkpoint = args.sam_checkpoint
|
157 |
-
image_path = args.input_image
|
158 |
-
text_prompt = args.text_prompt
|
159 |
-
output_dir = args.output_dir
|
160 |
-
box_threshold = args.box_threshold
|
161 |
-
text_threshold = args.box_threshold
|
162 |
-
device = args.device
|
163 |
-
|
164 |
-
# make dir
|
165 |
-
os.makedirs(output_dir, exist_ok=True)
|
166 |
-
# load image
|
167 |
-
image_pil, image = load_image(image_path)
|
168 |
-
# load model
|
169 |
-
model = load_model(config_file, grounded_checkpoint, device=device)
|
170 |
-
|
171 |
-
# visualize raw image
|
172 |
-
image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
|
173 |
-
|
174 |
-
# run grounding dino model
|
175 |
-
boxes_filt, pred_phrases = get_grounding_output(
|
176 |
-
model, image, text_prompt, box_threshold, text_threshold, device=device
|
177 |
-
)
|
178 |
-
|
179 |
-
# initialize SAM
|
180 |
-
predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint))
|
181 |
-
image = cv2.imread(image_path)
|
182 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
183 |
-
predictor.set_image(image)
|
184 |
-
|
185 |
-
size = image_pil.size
|
186 |
-
H, W = size[1], size[0]
|
187 |
-
for i in range(boxes_filt.size(0)):
|
188 |
-
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
|
189 |
-
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
|
190 |
-
boxes_filt[i][2:] += boxes_filt[i][:2]
|
191 |
-
|
192 |
-
boxes_filt = boxes_filt.cpu()
|
193 |
-
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2])
|
194 |
-
|
195 |
-
masks, _, _ = predictor.predict_torch(
|
196 |
-
point_coords = None,
|
197 |
-
point_labels = None,
|
198 |
-
boxes = transformed_boxes,
|
199 |
-
multimask_output = False,
|
200 |
-
)
|
201 |
-
|
202 |
-
# draw output image
|
203 |
-
plt.figure(figsize=(10, 10))
|
204 |
-
plt.imshow(image)
|
205 |
-
for mask in masks:
|
206 |
-
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
|
207 |
-
for box, label in zip(boxes_filt, pred_phrases):
|
208 |
-
show_box(box.numpy(), plt.gca(), label)
|
209 |
-
|
210 |
-
plt.axis('off')
|
211 |
-
plt.savefig(
|
212 |
-
os.path.join(output_dir, "grounded_sam_output.jpg"),
|
213 |
-
bbox_inches="tight", dpi=300, pad_inches=0.0
|
214 |
-
)
|
215 |
-
|
216 |
-
save_mask_data(output_dir, masks, boxes_filt, pred_phrases)
|
217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
grounded_sam_inpainting_demo.py
DELETED
@@ -1,215 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import os
|
3 |
-
import copy
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import torch
|
7 |
-
from PIL import Image, ImageDraw, ImageFont
|
8 |
-
|
9 |
-
# Grounding DINO
|
10 |
-
import GroundingDINO.groundingdino.datasets.transforms as T
|
11 |
-
from GroundingDINO.groundingdino.models import build_model
|
12 |
-
from GroundingDINO.groundingdino.util import box_ops
|
13 |
-
from GroundingDINO.groundingdino.util.slconfig import SLConfig
|
14 |
-
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
|
15 |
-
|
16 |
-
# segment anything
|
17 |
-
from segment_anything import build_sam, SamPredictor
|
18 |
-
import cv2
|
19 |
-
import numpy as np
|
20 |
-
import matplotlib.pyplot as plt
|
21 |
-
|
22 |
-
|
23 |
-
# diffusers
|
24 |
-
import PIL
|
25 |
-
import requests
|
26 |
-
import torch
|
27 |
-
from io import BytesIO
|
28 |
-
from diffusers import StableDiffusionInpaintPipeline
|
29 |
-
|
30 |
-
|
31 |
-
def load_image(image_path):
|
32 |
-
# load image
|
33 |
-
image_pil = Image.open(image_path).convert("RGB") # load image
|
34 |
-
|
35 |
-
transform = T.Compose(
|
36 |
-
[
|
37 |
-
T.RandomResize([800], max_size=1333),
|
38 |
-
T.ToTensor(),
|
39 |
-
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
40 |
-
]
|
41 |
-
)
|
42 |
-
image, _ = transform(image_pil, None) # 3, h, w
|
43 |
-
return image_pil, image
|
44 |
-
|
45 |
-
|
46 |
-
def load_model(model_config_path, model_checkpoint_path, device):
|
47 |
-
args = SLConfig.fromfile(model_config_path)
|
48 |
-
args.device = device
|
49 |
-
model = build_model(args)
|
50 |
-
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
|
51 |
-
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
|
52 |
-
print(load_res)
|
53 |
-
_ = model.eval()
|
54 |
-
return model
|
55 |
-
|
56 |
-
|
57 |
-
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"):
|
58 |
-
caption = caption.lower()
|
59 |
-
caption = caption.strip()
|
60 |
-
if not caption.endswith("."):
|
61 |
-
caption = caption + "."
|
62 |
-
model = model.to(device)
|
63 |
-
image = image.to(device)
|
64 |
-
with torch.no_grad():
|
65 |
-
outputs = model(image[None], captions=[caption])
|
66 |
-
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
|
67 |
-
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
|
68 |
-
logits.shape[0]
|
69 |
-
|
70 |
-
# filter output
|
71 |
-
logits_filt = logits.clone()
|
72 |
-
boxes_filt = boxes.clone()
|
73 |
-
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
|
74 |
-
logits_filt = logits_filt[filt_mask] # num_filt, 256
|
75 |
-
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
|
76 |
-
logits_filt.shape[0]
|
77 |
-
|
78 |
-
# get phrase
|
79 |
-
tokenlizer = model.tokenizer
|
80 |
-
tokenized = tokenlizer(caption)
|
81 |
-
# build pred
|
82 |
-
pred_phrases = []
|
83 |
-
for logit, box in zip(logits_filt, boxes_filt):
|
84 |
-
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
|
85 |
-
if with_logits:
|
86 |
-
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
|
87 |
-
else:
|
88 |
-
pred_phrases.append(pred_phrase)
|
89 |
-
|
90 |
-
return boxes_filt, pred_phrases
|
91 |
-
|
92 |
-
def show_mask(mask, ax, random_color=False):
|
93 |
-
if random_color:
|
94 |
-
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
95 |
-
else:
|
96 |
-
color = np.array([30/255, 144/255, 255/255, 0.6])
|
97 |
-
h, w = mask.shape[-2:]
|
98 |
-
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
99 |
-
ax.imshow(mask_image)
|
100 |
-
|
101 |
-
|
102 |
-
def show_box(box, ax, label):
|
103 |
-
x0, y0 = box[0], box[1]
|
104 |
-
w, h = box[2] - box[0], box[3] - box[1]
|
105 |
-
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
|
106 |
-
ax.text(x0, y0, label)
|
107 |
-
|
108 |
-
|
109 |
-
if __name__ == "__main__":
|
110 |
-
|
111 |
-
parser = argparse.ArgumentParser("Grounded-Segment-Anything Demo", add_help=True)
|
112 |
-
parser.add_argument("--config", type=str, required=True, help="path to config file")
|
113 |
-
parser.add_argument(
|
114 |
-
"--grounded_checkpoint", type=str, required=True, help="path to checkpoint file"
|
115 |
-
)
|
116 |
-
parser.add_argument(
|
117 |
-
"--sam_checkpoint", type=str, required=True, help="path to checkpoint file"
|
118 |
-
)
|
119 |
-
parser.add_argument("--input_image", type=str, required=True, help="path to image file")
|
120 |
-
parser.add_argument("--det_prompt", type=str, required=True, help="text prompt")
|
121 |
-
parser.add_argument("--inpaint_prompt", type=str, required=True, help="inpaint prompt")
|
122 |
-
parser.add_argument(
|
123 |
-
"--output_dir", "-o", type=str, default="outputs", required=True, help="output directory"
|
124 |
-
)
|
125 |
-
|
126 |
-
parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold")
|
127 |
-
parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold")
|
128 |
-
parser.add_argument("--inpaint_mode", type=str, default="first", help="inpaint mode")
|
129 |
-
parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False")
|
130 |
-
args = parser.parse_args()
|
131 |
-
|
132 |
-
# cfg
|
133 |
-
config_file = args.config # change the path of the model config file
|
134 |
-
grounded_checkpoint = args.grounded_checkpoint # change the path of the model
|
135 |
-
sam_checkpoint = args.sam_checkpoint
|
136 |
-
image_path = args.input_image
|
137 |
-
det_prompt = args.det_prompt
|
138 |
-
inpaint_prompt = args.inpaint_prompt
|
139 |
-
output_dir = args.output_dir
|
140 |
-
box_threshold = args.box_threshold
|
141 |
-
text_threshold = args.box_threshold
|
142 |
-
inpaint_mode = args.inpaint_mode
|
143 |
-
device = args.device
|
144 |
-
|
145 |
-
# make dir
|
146 |
-
os.makedirs(output_dir, exist_ok=True)
|
147 |
-
# load image
|
148 |
-
image_pil, image = load_image(image_path)
|
149 |
-
# load model
|
150 |
-
model = load_model(config_file, grounded_checkpoint, device=device)
|
151 |
-
|
152 |
-
# visualize raw image
|
153 |
-
image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
|
154 |
-
|
155 |
-
# run grounding dino model
|
156 |
-
boxes_filt, pred_phrases = get_grounding_output(
|
157 |
-
model, image, det_prompt, box_threshold, text_threshold, device=device
|
158 |
-
)
|
159 |
-
|
160 |
-
# initialize SAM
|
161 |
-
predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint))
|
162 |
-
image = cv2.imread(image_path)
|
163 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
164 |
-
predictor.set_image(image)
|
165 |
-
|
166 |
-
size = image_pil.size
|
167 |
-
H, W = size[1], size[0]
|
168 |
-
for i in range(boxes_filt.size(0)):
|
169 |
-
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
|
170 |
-
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
|
171 |
-
boxes_filt[i][2:] += boxes_filt[i][:2]
|
172 |
-
|
173 |
-
boxes_filt = boxes_filt.cpu()
|
174 |
-
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2])
|
175 |
-
|
176 |
-
masks, _, _ = predictor.predict_torch(
|
177 |
-
point_coords = None,
|
178 |
-
point_labels = None,
|
179 |
-
boxes = transformed_boxes,
|
180 |
-
multimask_output = False,
|
181 |
-
)
|
182 |
-
|
183 |
-
# masks: [1, 1, 512, 512]
|
184 |
-
|
185 |
-
# inpainting pipeline
|
186 |
-
if inpaint_mode == 'merge':
|
187 |
-
masks = torch.sum(masks, dim=0).unsqueeze(0)
|
188 |
-
masks = torch.where(masks > 0, True, False)
|
189 |
-
else:
|
190 |
-
mask = masks[0][0].cpu().numpy() # simply choose the first mask, which will be refine in the future release
|
191 |
-
mask_pil = Image.fromarray(mask)
|
192 |
-
image_pil = Image.fromarray(image)
|
193 |
-
|
194 |
-
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
195 |
-
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16
|
196 |
-
)
|
197 |
-
pipe = pipe.to("cuda")
|
198 |
-
|
199 |
-
image_pil = image_pil.resize((512, 512))
|
200 |
-
mask_pil = mask_pil.resize((512, 512))
|
201 |
-
# prompt = "A sofa, high quality, detailed"
|
202 |
-
image = pipe(prompt=inpaint_prompt, image=image_pil, mask_image=mask_pil).images[0]
|
203 |
-
image = image.resize(size)
|
204 |
-
image.save(os.path.join(output_dir, "grounded_sam_inpainting_output.jpg"))
|
205 |
-
|
206 |
-
# draw output image
|
207 |
-
# plt.figure(figsize=(10, 10))
|
208 |
-
# plt.imshow(image)
|
209 |
-
# for mask in masks:
|
210 |
-
# show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
|
211 |
-
# for box, label in zip(boxes_filt, pred_phrases):
|
212 |
-
# show_box(box.numpy(), plt.gca(), label)
|
213 |
-
# plt.axis('off')
|
214 |
-
# plt.savefig(os.path.join(output_dir, "grounded_sam_output.jpg"), bbox_inches="tight")
|
215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
grounded_sam_whisper_demo.py
DELETED
@@ -1,258 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import os
|
3 |
-
import copy
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import json
|
7 |
-
import torch
|
8 |
-
import torchvision
|
9 |
-
from PIL import Image, ImageDraw, ImageFont
|
10 |
-
|
11 |
-
# Grounding DINO
|
12 |
-
import GroundingDINO.groundingdino.datasets.transforms as T
|
13 |
-
from GroundingDINO.groundingdino.models import build_model
|
14 |
-
from GroundingDINO.groundingdino.util import box_ops
|
15 |
-
from GroundingDINO.groundingdino.util.slconfig import SLConfig
|
16 |
-
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
|
17 |
-
|
18 |
-
# segment anything
|
19 |
-
from segment_anything import build_sam, SamPredictor
|
20 |
-
import cv2
|
21 |
-
import numpy as np
|
22 |
-
import matplotlib.pyplot as plt
|
23 |
-
|
24 |
-
# whisper
|
25 |
-
import whisper
|
26 |
-
|
27 |
-
|
28 |
-
def load_image(image_path):
|
29 |
-
# load image
|
30 |
-
image_pil = Image.open(image_path).convert("RGB") # load image
|
31 |
-
|
32 |
-
transform = T.Compose(
|
33 |
-
[
|
34 |
-
T.RandomResize([800], max_size=1333),
|
35 |
-
T.ToTensor(),
|
36 |
-
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
37 |
-
]
|
38 |
-
)
|
39 |
-
image, _ = transform(image_pil, None) # 3, h, w
|
40 |
-
return image_pil, image
|
41 |
-
|
42 |
-
|
43 |
-
def load_model(model_config_path, model_checkpoint_path, device):
|
44 |
-
args = SLConfig.fromfile(model_config_path)
|
45 |
-
args.device = device
|
46 |
-
model = build_model(args)
|
47 |
-
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
|
48 |
-
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
|
49 |
-
print(load_res)
|
50 |
-
_ = model.eval()
|
51 |
-
return model
|
52 |
-
|
53 |
-
|
54 |
-
def get_grounding_output(model, image, caption, box_threshold, text_threshold,device="cpu"):
|
55 |
-
caption = caption.lower()
|
56 |
-
caption = caption.strip()
|
57 |
-
if not caption.endswith("."):
|
58 |
-
caption = caption + "."
|
59 |
-
model = model.to(device)
|
60 |
-
image = image.to(device)
|
61 |
-
with torch.no_grad():
|
62 |
-
outputs = model(image[None], captions=[caption])
|
63 |
-
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
|
64 |
-
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
|
65 |
-
logits.shape[0]
|
66 |
-
|
67 |
-
# filter output
|
68 |
-
logits_filt = logits.clone()
|
69 |
-
boxes_filt = boxes.clone()
|
70 |
-
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
|
71 |
-
logits_filt = logits_filt[filt_mask] # num_filt, 256
|
72 |
-
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
|
73 |
-
logits_filt.shape[0]
|
74 |
-
|
75 |
-
# get phrase
|
76 |
-
tokenlizer = model.tokenizer
|
77 |
-
tokenized = tokenlizer(caption)
|
78 |
-
# build pred
|
79 |
-
pred_phrases = []
|
80 |
-
scores = []
|
81 |
-
for logit, box in zip(logits_filt, boxes_filt):
|
82 |
-
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
|
83 |
-
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
|
84 |
-
scores.append(logit.max().item())
|
85 |
-
|
86 |
-
return boxes_filt, torch.Tensor(scores), pred_phrases
|
87 |
-
|
88 |
-
def show_mask(mask, ax, random_color=False):
|
89 |
-
if random_color:
|
90 |
-
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
91 |
-
else:
|
92 |
-
color = np.array([30/255, 144/255, 255/255, 0.6])
|
93 |
-
h, w = mask.shape[-2:]
|
94 |
-
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
95 |
-
ax.imshow(mask_image)
|
96 |
-
|
97 |
-
|
98 |
-
def show_box(box, ax, label):
|
99 |
-
x0, y0 = box[0], box[1]
|
100 |
-
w, h = box[2] - box[0], box[3] - box[1]
|
101 |
-
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
|
102 |
-
ax.text(x0, y0, label)
|
103 |
-
|
104 |
-
|
105 |
-
def save_mask_data(output_dir, mask_list, box_list, label_list):
|
106 |
-
value = 0 # 0 for background
|
107 |
-
|
108 |
-
mask_img = torch.zeros(mask_list.shape[-2:])
|
109 |
-
for idx, mask in enumerate(mask_list):
|
110 |
-
mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1
|
111 |
-
plt.figure(figsize=(10, 10))
|
112 |
-
plt.imshow(mask_img.numpy())
|
113 |
-
plt.axis('off')
|
114 |
-
plt.savefig(os.path.join(output_dir, 'mask.jpg'), bbox_inches="tight", dpi=300, pad_inches=0.0)
|
115 |
-
|
116 |
-
json_data = [{
|
117 |
-
'value': value,
|
118 |
-
'label': 'background'
|
119 |
-
}]
|
120 |
-
for label, box in zip(label_list, box_list):
|
121 |
-
value += 1
|
122 |
-
name, logit = label.split('(')
|
123 |
-
logit = logit[:-1] # the last is ')'
|
124 |
-
json_data.append({
|
125 |
-
'value': value,
|
126 |
-
'label': name,
|
127 |
-
'logit': float(logit),
|
128 |
-
'box': box.numpy().tolist(),
|
129 |
-
})
|
130 |
-
with open(os.path.join(output_dir, 'mask.json'), 'w') as f:
|
131 |
-
json.dump(json_data, f)
|
132 |
-
|
133 |
-
|
134 |
-
def speech_recognition(speech_file, model):
|
135 |
-
# whisper
|
136 |
-
# load audio and pad/trim it to fit 30 seconds
|
137 |
-
audio = whisper.load_audio(speech_file)
|
138 |
-
audio = whisper.pad_or_trim(audio)
|
139 |
-
|
140 |
-
# make log-Mel spectrogram and move to the same device as the model
|
141 |
-
mel = whisper.log_mel_spectrogram(audio).to(model.device)
|
142 |
-
|
143 |
-
# detect the spoken language
|
144 |
-
_, probs = model.detect_language(mel)
|
145 |
-
speech_language = max(probs, key=probs.get)
|
146 |
-
|
147 |
-
# decode the audio
|
148 |
-
options = whisper.DecodingOptions()
|
149 |
-
result = whisper.decode(model, mel, options)
|
150 |
-
|
151 |
-
# print the recognized text
|
152 |
-
speech_text = result.text
|
153 |
-
return speech_text, speech_language
|
154 |
-
|
155 |
-
if __name__ == "__main__":
|
156 |
-
|
157 |
-
parser = argparse.ArgumentParser("Grounded-Segment-Anything Demo", add_help=True)
|
158 |
-
parser.add_argument("--config", type=str, required=True, help="path to config file")
|
159 |
-
parser.add_argument(
|
160 |
-
"--grounded_checkpoint", type=str, required=True, help="path to checkpoint file"
|
161 |
-
)
|
162 |
-
parser.add_argument(
|
163 |
-
"--sam_checkpoint", type=str, required=True, help="path to checkpoint file"
|
164 |
-
)
|
165 |
-
parser.add_argument("--input_image", type=str, required=True, help="path to image file")
|
166 |
-
parser.add_argument("--speech_file", type=str, required=True, help="speech file")
|
167 |
-
parser.add_argument(
|
168 |
-
"--output_dir", "-o", type=str, default="outputs", required=True, help="output directory"
|
169 |
-
)
|
170 |
-
|
171 |
-
parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold")
|
172 |
-
parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold")
|
173 |
-
parser.add_argument("--iou_threshold", type=float, default=0.5, help="iou threshold")
|
174 |
-
|
175 |
-
parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False")
|
176 |
-
args = parser.parse_args()
|
177 |
-
|
178 |
-
# cfg
|
179 |
-
config_file = args.config # change the path of the model config file
|
180 |
-
grounded_checkpoint = args.grounded_checkpoint # change the path of the model
|
181 |
-
sam_checkpoint = args.sam_checkpoint
|
182 |
-
image_path = args.input_image
|
183 |
-
output_dir = args.output_dir
|
184 |
-
box_threshold = args.box_threshold
|
185 |
-
text_threshold = args.text_threshold
|
186 |
-
iou_threshold = args.iou_threshold
|
187 |
-
device = args.device
|
188 |
-
|
189 |
-
# load speech
|
190 |
-
whisper_model = whisper.load_model("base")
|
191 |
-
speech_text, speech_language = speech_recognition(args.speech_file, whisper_model)
|
192 |
-
print(f"speech_text: {speech_text}")
|
193 |
-
print(f"speech_language: {speech_language}")
|
194 |
-
|
195 |
-
# make dir
|
196 |
-
os.makedirs(output_dir, exist_ok=True)
|
197 |
-
# load image
|
198 |
-
image_pil, image = load_image(image_path)
|
199 |
-
# load model
|
200 |
-
model = load_model(config_file, grounded_checkpoint, device=device)
|
201 |
-
|
202 |
-
# visualize raw image
|
203 |
-
image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
|
204 |
-
|
205 |
-
# run grounding dino model
|
206 |
-
text_prompt = speech_text
|
207 |
-
boxes_filt, scores, pred_phrases = get_grounding_output(
|
208 |
-
model, image, text_prompt, box_threshold, text_threshold, device=device
|
209 |
-
)
|
210 |
-
|
211 |
-
# initialize SAM
|
212 |
-
predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint).to(args.device))
|
213 |
-
image = cv2.imread(image_path)
|
214 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
215 |
-
predictor.set_image(image)
|
216 |
-
|
217 |
-
size = image_pil.size
|
218 |
-
H, W = size[1], size[0]
|
219 |
-
for i in range(boxes_filt.size(0)):
|
220 |
-
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
|
221 |
-
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
|
222 |
-
boxes_filt[i][2:] += boxes_filt[i][:2]
|
223 |
-
|
224 |
-
boxes_filt = boxes_filt.cpu()
|
225 |
-
# use NMS to handle overlapped boxes
|
226 |
-
print(f"Before NMS: {boxes_filt.shape[0]} boxes")
|
227 |
-
nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist()
|
228 |
-
boxes_filt = boxes_filt[nms_idx]
|
229 |
-
pred_phrases = [pred_phrases[idx] for idx in nms_idx]
|
230 |
-
print(f"After NMS: {boxes_filt.shape[0]} boxes")
|
231 |
-
|
232 |
-
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2])
|
233 |
-
|
234 |
-
masks, _, _ = predictor.predict_torch(
|
235 |
-
point_coords = None,
|
236 |
-
point_labels = None,
|
237 |
-
boxes = transformed_boxes.to(args.device),
|
238 |
-
multimask_output = False,
|
239 |
-
)
|
240 |
-
|
241 |
-
# draw output image
|
242 |
-
plt.figure(figsize=(10, 10))
|
243 |
-
plt.imshow(image)
|
244 |
-
for mask in masks:
|
245 |
-
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
|
246 |
-
for box, label in zip(boxes_filt, pred_phrases):
|
247 |
-
show_box(box.numpy(), plt.gca(), label)
|
248 |
-
|
249 |
-
plt.title(speech_text)
|
250 |
-
plt.axis('off')
|
251 |
-
plt.savefig(
|
252 |
-
os.path.join(output_dir, "grounded_sam_whisper_output.jpg"),
|
253 |
-
bbox_inches="tight", dpi=300, pad_inches=0.0
|
254 |
-
)
|
255 |
-
|
256 |
-
|
257 |
-
save_mask_data(output_dir, masks, boxes_filt, pred_phrases)
|
258 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
grounded_sam_whisper_inpainting_demo.py
DELETED
@@ -1,281 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import os
|
3 |
-
from warnings import warn
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
import torch
|
7 |
-
from PIL import Image, ImageDraw, ImageFont
|
8 |
-
|
9 |
-
# Grounding DINO
|
10 |
-
import GroundingDINO.groundingdino.datasets.transforms as T
|
11 |
-
from GroundingDINO.groundingdino.models import build_model
|
12 |
-
from GroundingDINO.groundingdino.util import box_ops
|
13 |
-
from GroundingDINO.groundingdino.util.slconfig import SLConfig
|
14 |
-
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
|
15 |
-
|
16 |
-
# segment anything
|
17 |
-
from segment_anything import build_sam, SamPredictor
|
18 |
-
import cv2
|
19 |
-
import numpy as np
|
20 |
-
import matplotlib.pyplot as plt
|
21 |
-
|
22 |
-
|
23 |
-
# diffusers
|
24 |
-
import PIL
|
25 |
-
import requests
|
26 |
-
import torch
|
27 |
-
from io import BytesIO
|
28 |
-
from diffusers import StableDiffusionInpaintPipeline
|
29 |
-
|
30 |
-
# whisper
|
31 |
-
import whisper
|
32 |
-
|
33 |
-
# ChatGPT
|
34 |
-
import openai
|
35 |
-
|
36 |
-
|
37 |
-
def load_image(image_path):
|
38 |
-
# load image
|
39 |
-
image_pil = Image.open(image_path).convert("RGB") # load image
|
40 |
-
|
41 |
-
transform = T.Compose(
|
42 |
-
[
|
43 |
-
T.RandomResize([800], max_size=1333),
|
44 |
-
T.ToTensor(),
|
45 |
-
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
46 |
-
]
|
47 |
-
)
|
48 |
-
image, _ = transform(image_pil, None) # 3, h, w
|
49 |
-
return image_pil, image
|
50 |
-
|
51 |
-
|
52 |
-
def load_model(model_config_path, model_checkpoint_path, device):
|
53 |
-
args = SLConfig.fromfile(model_config_path)
|
54 |
-
args.device = device
|
55 |
-
model = build_model(args)
|
56 |
-
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
|
57 |
-
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
|
58 |
-
print(load_res)
|
59 |
-
_ = model.eval()
|
60 |
-
return model
|
61 |
-
|
62 |
-
|
63 |
-
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"):
|
64 |
-
caption = caption.lower()
|
65 |
-
caption = caption.strip()
|
66 |
-
if not caption.endswith("."):
|
67 |
-
caption = caption + "."
|
68 |
-
model = model.to(device)
|
69 |
-
image = image.to(device)
|
70 |
-
with torch.no_grad():
|
71 |
-
outputs = model(image[None], captions=[caption])
|
72 |
-
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
|
73 |
-
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
|
74 |
-
logits.shape[0]
|
75 |
-
|
76 |
-
# filter output
|
77 |
-
logits_filt = logits.clone()
|
78 |
-
boxes_filt = boxes.clone()
|
79 |
-
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
|
80 |
-
logits_filt = logits_filt[filt_mask] # num_filt, 256
|
81 |
-
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
|
82 |
-
logits_filt.shape[0]
|
83 |
-
|
84 |
-
# get phrase
|
85 |
-
tokenlizer = model.tokenizer
|
86 |
-
tokenized = tokenlizer(caption)
|
87 |
-
# build pred
|
88 |
-
pred_phrases = []
|
89 |
-
for logit, box in zip(logits_filt, boxes_filt):
|
90 |
-
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
|
91 |
-
if with_logits:
|
92 |
-
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
|
93 |
-
else:
|
94 |
-
pred_phrases.append(pred_phrase)
|
95 |
-
|
96 |
-
return boxes_filt, pred_phrases
|
97 |
-
|
98 |
-
def show_mask(mask, ax, random_color=False):
|
99 |
-
if random_color:
|
100 |
-
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
101 |
-
else:
|
102 |
-
color = np.array([30/255, 144/255, 255/255, 0.6])
|
103 |
-
h, w = mask.shape[-2:]
|
104 |
-
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
105 |
-
ax.imshow(mask_image)
|
106 |
-
|
107 |
-
|
108 |
-
def show_box(box, ax, label):
|
109 |
-
x0, y0 = box[0], box[1]
|
110 |
-
w, h = box[2] - box[0], box[3] - box[1]
|
111 |
-
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
|
112 |
-
ax.text(x0, y0, label)
|
113 |
-
|
114 |
-
|
115 |
-
def speech_recognition(speech_file, model):
|
116 |
-
# whisper
|
117 |
-
# load audio and pad/trim it to fit 30 seconds
|
118 |
-
audio = whisper.load_audio(speech_file)
|
119 |
-
audio = whisper.pad_or_trim(audio)
|
120 |
-
|
121 |
-
# make log-Mel spectrogram and move to the same device as the model
|
122 |
-
mel = whisper.log_mel_spectrogram(audio).to(model.device)
|
123 |
-
|
124 |
-
# detect the spoken language
|
125 |
-
_, probs = model.detect_language(mel)
|
126 |
-
speech_language = max(probs, key=probs.get)
|
127 |
-
|
128 |
-
# decode the audio
|
129 |
-
options = whisper.DecodingOptions()
|
130 |
-
result = whisper.decode(model, mel, options)
|
131 |
-
|
132 |
-
# print the recognized text
|
133 |
-
speech_text = result.text
|
134 |
-
return speech_text, speech_language
|
135 |
-
|
136 |
-
|
137 |
-
def filter_prompts_with_chatgpt(caption, max_tokens=100, model="gpt-3.5-turbo"):
|
138 |
-
prompt = [
|
139 |
-
{
|
140 |
-
'role': 'system',
|
141 |
-
'content': f"Extract the main object to be replaced and marked it as 'main_object', " + \
|
142 |
-
f"Extract the remaining part as 'other prompt' " + \
|
143 |
-
f"Return (main_object, other prompt)" + \
|
144 |
-
f'Given caption: {caption}.'
|
145 |
-
}
|
146 |
-
]
|
147 |
-
response = openai.ChatCompletion.create(model=model, messages=prompt, temperature=0.6, max_tokens=max_tokens)
|
148 |
-
reply = response['choices'][0]['message']['content']
|
149 |
-
try:
|
150 |
-
det_prompt, inpaint_prompt = reply.split('\n')[0].split(':')[-1].strip(), reply.split('\n')[1].split(':')[-1].strip()
|
151 |
-
except:
|
152 |
-
warn(f"Failed to extract tags from caption") # use caption as det_prompt, inpaint_prompt
|
153 |
-
det_prompt, inpaint_prompt = caption, caption
|
154 |
-
return det_prompt, inpaint_prompt
|
155 |
-
|
156 |
-
|
157 |
-
if __name__ == "__main__":
|
158 |
-
|
159 |
-
parser = argparse.ArgumentParser("Grounded-Segment-Anything Demo", add_help=True)
|
160 |
-
parser.add_argument("--config", type=str, required=True, help="path to config file")
|
161 |
-
parser.add_argument(
|
162 |
-
"--grounded_checkpoint", type=str, required=True, help="path to checkpoint file"
|
163 |
-
)
|
164 |
-
parser.add_argument(
|
165 |
-
"--sam_checkpoint", type=str, required=True, help="path to checkpoint file"
|
166 |
-
)
|
167 |
-
parser.add_argument("--input_image", type=str, required=True, help="path to image file")
|
168 |
-
parser.add_argument(
|
169 |
-
"--output_dir", "-o", type=str, default="outputs", required=True, help="output directory"
|
170 |
-
)
|
171 |
-
parser.add_argument("--det_speech_file", type=str, help="grounding speech file")
|
172 |
-
parser.add_argument("--inpaint_speech_file", type=str, help="inpaint speech file")
|
173 |
-
parser.add_argument("--prompt_speech_file", type=str, help="prompt speech file, no need to provide det_speech_file")
|
174 |
-
parser.add_argument("--enable_chatgpt", action="store_true", help="enable chatgpt")
|
175 |
-
parser.add_argument("--openai_key", type=str, help="key for chatgpt")
|
176 |
-
parser.add_argument("--openai_proxy", default=None, type=str, help="proxy for chatgpt")
|
177 |
-
parser.add_argument("--whisper_model", type=str, default="small", help="whisper model version: tiny, base, small, medium, large")
|
178 |
-
parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold")
|
179 |
-
parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold")
|
180 |
-
parser.add_argument("--inpaint_mode", type=str, default="first", help="inpaint mode")
|
181 |
-
parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False")
|
182 |
-
parser.add_argument("--prompt_extra", type=str, default=" high resolution, real scene", help="extra prompt for inpaint")
|
183 |
-
args = parser.parse_args()
|
184 |
-
|
185 |
-
# cfg
|
186 |
-
config_file = args.config # change the path of the model config file
|
187 |
-
grounded_checkpoint = args.grounded_checkpoint # change the path of the model
|
188 |
-
sam_checkpoint = args.sam_checkpoint
|
189 |
-
image_path = args.input_image
|
190 |
-
|
191 |
-
output_dir = args.output_dir
|
192 |
-
box_threshold = args.box_threshold
|
193 |
-
text_threshold = args.box_threshold
|
194 |
-
inpaint_mode = args.inpaint_mode
|
195 |
-
device = args.device
|
196 |
-
|
197 |
-
# make dir
|
198 |
-
os.makedirs(output_dir, exist_ok=True)
|
199 |
-
# load image
|
200 |
-
image_pil, image = load_image(image_path)
|
201 |
-
# load model
|
202 |
-
model = load_model(config_file, grounded_checkpoint, device=device)
|
203 |
-
|
204 |
-
# visualize raw image
|
205 |
-
image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
|
206 |
-
|
207 |
-
# recognize speech
|
208 |
-
whisper_model = whisper.load_model(args.whisper_model)
|
209 |
-
|
210 |
-
if args.enable_chatgpt:
|
211 |
-
openai.api_key = args.openai_key
|
212 |
-
if args.openai_proxy:
|
213 |
-
openai.proxy = {"http": args.openai_proxy, "https": args.openai_proxy}
|
214 |
-
speech_text, _ = speech_recognition(args.prompt_speech_file, whisper_model)
|
215 |
-
det_prompt, inpaint_prompt = filter_prompts_with_chatgpt(speech_text)
|
216 |
-
inpaint_prompt += args.prompt_extra
|
217 |
-
print(f"det_prompt: {det_prompt}, inpaint_prompt: {inpaint_prompt}")
|
218 |
-
else:
|
219 |
-
det_prompt, det_speech_language = speech_recognition(args.det_speech_file, whisper_model)
|
220 |
-
inpaint_prompt, inpaint_speech_language = speech_recognition(args.inpaint_speech_file, whisper_model)
|
221 |
-
print(f"det_prompt: {det_prompt}, using language: {det_speech_language}")
|
222 |
-
print(f"inpaint_prompt: {inpaint_prompt}, using language: {inpaint_speech_language}")
|
223 |
-
|
224 |
-
# run grounding dino model
|
225 |
-
boxes_filt, pred_phrases = get_grounding_output(
|
226 |
-
model, image, det_prompt, box_threshold, text_threshold, device=device
|
227 |
-
)
|
228 |
-
|
229 |
-
# initialize SAM
|
230 |
-
predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint))
|
231 |
-
image = cv2.imread(image_path)
|
232 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
233 |
-
predictor.set_image(image)
|
234 |
-
|
235 |
-
size = image_pil.size
|
236 |
-
H, W = size[1], size[0]
|
237 |
-
for i in range(boxes_filt.size(0)):
|
238 |
-
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
|
239 |
-
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
|
240 |
-
boxes_filt[i][2:] += boxes_filt[i][:2]
|
241 |
-
|
242 |
-
boxes_filt = boxes_filt.cpu()
|
243 |
-
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2])
|
244 |
-
|
245 |
-
masks, _, _ = predictor.predict_torch(
|
246 |
-
point_coords = None,
|
247 |
-
point_labels = None,
|
248 |
-
boxes = transformed_boxes,
|
249 |
-
multimask_output = False,
|
250 |
-
)
|
251 |
-
|
252 |
-
# masks: [1, 1, 512, 512]
|
253 |
-
|
254 |
-
# inpainting pipeline
|
255 |
-
if inpaint_mode == 'merge':
|
256 |
-
masks = torch.sum(masks, dim=0).unsqueeze(0)
|
257 |
-
masks = torch.where(masks > 0, True, False)
|
258 |
-
else:
|
259 |
-
mask = masks[0][0].cpu().numpy() # simply choose the first mask, which will be refine in the future release
|
260 |
-
mask_pil = Image.fromarray(mask)
|
261 |
-
image_pil = Image.fromarray(image)
|
262 |
-
|
263 |
-
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
264 |
-
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16
|
265 |
-
)
|
266 |
-
pipe = pipe.to("cuda")
|
267 |
-
|
268 |
-
# prompt = "A sofa, high quality, detailed"
|
269 |
-
image = pipe(prompt=inpaint_prompt, image=image_pil, mask_image=mask_pil).images[0]
|
270 |
-
image.save(os.path.join(output_dir, "grounded_sam_inpainting_output.jpg"))
|
271 |
-
|
272 |
-
# draw output image
|
273 |
-
# plt.figure(figsize=(10, 10))
|
274 |
-
# plt.imshow(image)
|
275 |
-
# for mask in masks:
|
276 |
-
# show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
|
277 |
-
# for box, label in zip(boxes_filt, pred_phrases):
|
278 |
-
# show_box(box.numpy(), plt.gca(), label)
|
279 |
-
# plt.axis('off')
|
280 |
-
# plt.savefig(os.path.join(output_dir, "grounded_sam_output.jpg"), bbox_inches="tight")
|
281 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -21,3 +21,12 @@ transformers
|
|
21 |
yapf
|
22 |
numba
|
23 |
segment_anything
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
yapf
|
22 |
numba
|
23 |
segment_anything
|
24 |
+
|
25 |
+
# ftfy
|
26 |
+
# uuid
|
27 |
+
# psutil
|
28 |
+
# facexlib
|
29 |
+
lama-cleaner==0.25.0
|
30 |
+
# tensorflow
|
31 |
+
# easydict
|
32 |
+
|