Spaces:
Configuration error
Configuration error
liuyizhang
commited on
Commit
•
a71406a
1
Parent(s):
9403943
update files
Browse files- automatic_label_demo.py +18 -8
- gradio_app.py +65 -15
- gradio_auto_label.py +392 -0
- grounded_sam.ipynb +12 -3
- grounded_sam_inpainting_demo.py +10 -1
- grounded_sam_whisper_demo.py +258 -0
- grounded_dino_sam_inpainting_demo.py → grounded_sam_whisper_inpainting_demo.py +127 -124
automatic_label_demo.py
CHANGED
@@ -43,20 +43,23 @@ def load_image(image_path):
|
|
43 |
return image_pil, image
|
44 |
|
45 |
|
46 |
-
def generate_caption(raw_image):
|
47 |
# unconditional image captioning
|
48 |
-
|
|
|
|
|
|
|
49 |
out = blip_model.generate(**inputs)
|
50 |
caption = processor.decode(out[0], skip_special_tokens=True)
|
51 |
return caption
|
52 |
|
53 |
|
54 |
-
def generate_tags(caption, max_tokens=100, model="gpt-3.5-turbo"):
|
55 |
prompt = [
|
56 |
{
|
57 |
'role': 'system',
|
58 |
-
'content': '
|
59 |
-
'List the nouns in singular form. Split them by "
|
60 |
f'Caption: {caption}.'
|
61 |
}
|
62 |
]
|
@@ -197,6 +200,7 @@ if __name__ == "__main__":
|
|
197 |
"--sam_checkpoint", type=str, required=True, help="path to checkpoint file"
|
198 |
)
|
199 |
parser.add_argument("--input_image", type=str, required=True, help="path to image file")
|
|
|
200 |
parser.add_argument("--openai_key", type=str, required=True, help="key for chatgpt")
|
201 |
parser.add_argument("--openai_proxy", default=None, type=str, help="proxy for chatgpt")
|
202 |
parser.add_argument(
|
@@ -215,6 +219,7 @@ if __name__ == "__main__":
|
|
215 |
grounded_checkpoint = args.grounded_checkpoint # change the path of the model
|
216 |
sam_checkpoint = args.sam_checkpoint
|
217 |
image_path = args.input_image
|
|
|
218 |
openai_key = args.openai_key
|
219 |
openai_proxy = args.openai_proxy
|
220 |
output_dir = args.output_dir
|
@@ -242,9 +247,14 @@ if __name__ == "__main__":
|
|
242 |
# https://huggingface.co/spaces/xinyu1205/Tag2Text
|
243 |
# but there are some bugs...
|
244 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
245 |
-
|
246 |
-
|
247 |
-
|
|
|
|
|
|
|
|
|
|
|
248 |
print(f"Caption: {caption}")
|
249 |
print(f"Tags: {text_prompt}")
|
250 |
|
|
|
43 |
return image_pil, image
|
44 |
|
45 |
|
46 |
+
def generate_caption(raw_image, device):
|
47 |
# unconditional image captioning
|
48 |
+
if device == "cuda":
|
49 |
+
inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
|
50 |
+
else:
|
51 |
+
inputs = processor(raw_image, return_tensors="pt")
|
52 |
out = blip_model.generate(**inputs)
|
53 |
caption = processor.decode(out[0], skip_special_tokens=True)
|
54 |
return caption
|
55 |
|
56 |
|
57 |
+
def generate_tags(caption, split=',', max_tokens=100, model="gpt-3.5-turbo"):
|
58 |
prompt = [
|
59 |
{
|
60 |
'role': 'system',
|
61 |
+
'content': 'Extract the unique nouns in the caption. Remove all the adjectives. ' + \
|
62 |
+
f'List the nouns in singular form. Split them by "{split} ". ' + \
|
63 |
f'Caption: {caption}.'
|
64 |
}
|
65 |
]
|
|
|
200 |
"--sam_checkpoint", type=str, required=True, help="path to checkpoint file"
|
201 |
)
|
202 |
parser.add_argument("--input_image", type=str, required=True, help="path to image file")
|
203 |
+
parser.add_argument("--split", default=",", type=str, help="split for text prompt")
|
204 |
parser.add_argument("--openai_key", type=str, required=True, help="key for chatgpt")
|
205 |
parser.add_argument("--openai_proxy", default=None, type=str, help="proxy for chatgpt")
|
206 |
parser.add_argument(
|
|
|
219 |
grounded_checkpoint = args.grounded_checkpoint # change the path of the model
|
220 |
sam_checkpoint = args.sam_checkpoint
|
221 |
image_path = args.input_image
|
222 |
+
split = args.split
|
223 |
openai_key = args.openai_key
|
224 |
openai_proxy = args.openai_proxy
|
225 |
output_dir = args.output_dir
|
|
|
247 |
# https://huggingface.co/spaces/xinyu1205/Tag2Text
|
248 |
# but there are some bugs...
|
249 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
250 |
+
if device == "cuda":
|
251 |
+
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda")
|
252 |
+
else:
|
253 |
+
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
254 |
+
caption = generate_caption(image_pil, device=device)
|
255 |
+
# Currently ", " is better for detecting single tags
|
256 |
+
# while ". " is a little worse in some case
|
257 |
+
text_prompt = generate_tags(caption, split=split)
|
258 |
print(f"Caption: {caption}")
|
259 |
print(f"Tags: {text_prompt}")
|
260 |
|
gradio_app.py
CHANGED
@@ -1,11 +1,13 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
import argparse
|
4 |
-
import os
|
5 |
import copy
|
6 |
|
7 |
import numpy as np
|
8 |
import torch
|
|
|
9 |
from PIL import Image, ImageDraw, ImageFont
|
10 |
|
11 |
# Grounding DINO
|
@@ -30,6 +32,10 @@ from io import BytesIO
|
|
30 |
from diffusers import StableDiffusionInpaintPipeline
|
31 |
from huggingface_hub import hf_hub_download
|
32 |
|
|
|
|
|
|
|
|
|
33 |
def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
|
34 |
args = SLConfig.fromfile(model_config_path)
|
35 |
model = build_model(args)
|
@@ -42,6 +48,13 @@ def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
|
|
42 |
_ = model.eval()
|
43 |
return model
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
def plot_boxes_to_image(image_pil, tgt):
|
46 |
H, W = tgt["size"]
|
47 |
boxes = tgt["boxes"]
|
@@ -135,14 +148,16 @@ def get_grounding_output(model, image, caption, box_threshold, text_threshold, w
|
|
135 |
tokenized = tokenlizer(caption)
|
136 |
# build pred
|
137 |
pred_phrases = []
|
|
|
138 |
for logit, box in zip(logits_filt, boxes_filt):
|
139 |
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
|
140 |
if with_logits:
|
141 |
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
|
142 |
else:
|
143 |
pred_phrases.append(pred_phrase)
|
|
|
144 |
|
145 |
-
return boxes_filt, pred_phrases
|
146 |
|
147 |
def show_mask(mask, ax, random_color=False):
|
148 |
if random_color:
|
@@ -164,12 +179,11 @@ def show_box(box, ax, label):
|
|
164 |
config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
|
165 |
ckpt_repo_id = "ShilongLiu/GroundingDINO"
|
166 |
ckpt_filenmae = "groundingdino_swint_ogc.pth"
|
167 |
-
sam_checkpoint='
|
168 |
output_dir="outputs"
|
169 |
device="cuda"
|
170 |
|
171 |
-
def run_grounded_sam(image_path, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold):
|
172 |
-
assert text_prompt, 'text_prompt is not found!'
|
173 |
|
174 |
# make dir
|
175 |
os.makedirs(output_dir, exist_ok=True)
|
@@ -177,18 +191,29 @@ def run_grounded_sam(image_path, text_prompt, task_type, inpaint_prompt, box_thr
|
|
177 |
image_pil, image = load_image(image_path.convert("RGB"))
|
178 |
# load model
|
179 |
model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae)
|
|
|
180 |
|
181 |
# visualize raw image
|
182 |
image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
|
183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
# run grounding dino model
|
185 |
-
boxes_filt, pred_phrases = get_grounding_output(
|
186 |
model, image, text_prompt, box_threshold, text_threshold, device=device
|
187 |
)
|
188 |
|
189 |
size = image_pil.size
|
190 |
|
191 |
-
if task_type == 'seg' or task_type == 'inpainting':
|
192 |
# initialize SAM
|
193 |
predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint))
|
194 |
image = np.array(image_path)
|
@@ -201,6 +226,16 @@ def run_grounded_sam(image_path, text_prompt, task_type, inpaint_prompt, box_thr
|
|
201 |
boxes_filt[i][2:] += boxes_filt[i][:2]
|
202 |
|
203 |
boxes_filt = boxes_filt.cpu()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2])
|
205 |
|
206 |
masks, _, _ = predictor.predict_torch(
|
@@ -224,7 +259,7 @@ def run_grounded_sam(image_path, text_prompt, task_type, inpaint_prompt, box_thr
|
|
224 |
image_with_box.save(image_path)
|
225 |
image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
|
226 |
return image_result
|
227 |
-
elif task_type == 'seg':
|
228 |
assert sam_checkpoint, 'sam_checkpoint is not found!'
|
229 |
|
230 |
# draw output image
|
@@ -234,6 +269,8 @@ def run_grounded_sam(image_path, text_prompt, task_type, inpaint_prompt, box_thr
|
|
234 |
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
|
235 |
for box, label in zip(boxes_filt, pred_phrases):
|
236 |
show_box(box.numpy(), plt.gca(), label)
|
|
|
|
|
237 |
plt.axis('off')
|
238 |
image_path = os.path.join(output_dir, "grounding_dino_output.jpg")
|
239 |
plt.savefig(image_path, bbox_inches="tight")
|
@@ -242,16 +279,24 @@ def run_grounded_sam(image_path, text_prompt, task_type, inpaint_prompt, box_thr
|
|
242 |
elif task_type == 'inpainting':
|
243 |
assert inpaint_prompt, 'inpaint_prompt is not found!'
|
244 |
# inpainting pipeline
|
245 |
-
|
|
|
|
|
|
|
|
|
246 |
mask_pil = Image.fromarray(mask)
|
247 |
-
image_pil = Image.fromarray(image)
|
248 |
|
249 |
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
250 |
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16
|
251 |
)
|
252 |
pipe = pipe.to("cuda")
|
253 |
|
|
|
|
|
|
|
254 |
image = pipe(prompt=inpaint_prompt, image=image_pil, mask_image=mask_pil).images[0]
|
|
|
|
|
255 |
image_path = os.path.join(output_dir, "grounded_sam_inpainting_output.jpg")
|
256 |
image.save(image_path)
|
257 |
image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
|
@@ -264,15 +309,16 @@ if __name__ == "__main__":
|
|
264 |
parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True)
|
265 |
parser.add_argument("--debug", action="store_true", help="using debug mode")
|
266 |
parser.add_argument("--share", action="store_true", help="share the app")
|
|
|
267 |
args = parser.parse_args()
|
268 |
|
269 |
block = gr.Blocks().queue()
|
270 |
with block:
|
271 |
with gr.Row():
|
272 |
with gr.Column():
|
273 |
-
input_image = gr.Image(source='upload', type="pil")
|
274 |
-
|
275 |
-
|
276 |
inpaint_prompt = gr.Textbox(label="Inpaint Prompt")
|
277 |
run_button = gr.Button(label="Run")
|
278 |
with gr.Accordion("Advanced options", open=False):
|
@@ -282,6 +328,10 @@ if __name__ == "__main__":
|
|
282 |
text_threshold = gr.Slider(
|
283 |
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
|
284 |
)
|
|
|
|
|
|
|
|
|
285 |
|
286 |
with gr.Column():
|
287 |
gallery = gr.outputs.Image(
|
@@ -289,7 +339,7 @@ if __name__ == "__main__":
|
|
289 |
).style(full_width=True, full_height=True)
|
290 |
|
291 |
run_button.click(fn=run_grounded_sam, inputs=[
|
292 |
-
input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold], outputs=[gallery])
|
293 |
|
294 |
|
295 |
-
block.launch(server_name='0.0.0.0', server_port=
|
|
|
1 |
+
import os
|
2 |
+
# os.system('pip install v0.1.0-alpha2.tar.gz')
|
3 |
import gradio as gr
|
4 |
|
5 |
import argparse
|
|
|
6 |
import copy
|
7 |
|
8 |
import numpy as np
|
9 |
import torch
|
10 |
+
import torchvision
|
11 |
from PIL import Image, ImageDraw, ImageFont
|
12 |
|
13 |
# Grounding DINO
|
|
|
32 |
from diffusers import StableDiffusionInpaintPipeline
|
33 |
from huggingface_hub import hf_hub_download
|
34 |
|
35 |
+
# BLIP
|
36 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
37 |
+
|
38 |
+
|
39 |
def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
|
40 |
args = SLConfig.fromfile(model_config_path)
|
41 |
model = build_model(args)
|
|
|
48 |
_ = model.eval()
|
49 |
return model
|
50 |
|
51 |
+
def generate_caption(processor, blip_model, raw_image):
|
52 |
+
# unconditional image captioning
|
53 |
+
inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
|
54 |
+
out = blip_model.generate(**inputs)
|
55 |
+
caption = processor.decode(out[0], skip_special_tokens=True)
|
56 |
+
return caption
|
57 |
+
|
58 |
def plot_boxes_to_image(image_pil, tgt):
|
59 |
H, W = tgt["size"]
|
60 |
boxes = tgt["boxes"]
|
|
|
148 |
tokenized = tokenlizer(caption)
|
149 |
# build pred
|
150 |
pred_phrases = []
|
151 |
+
scores = []
|
152 |
for logit, box in zip(logits_filt, boxes_filt):
|
153 |
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
|
154 |
if with_logits:
|
155 |
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
|
156 |
else:
|
157 |
pred_phrases.append(pred_phrase)
|
158 |
+
scores.append(logit.max().item())
|
159 |
|
160 |
+
return boxes_filt, torch.Tensor(scores), pred_phrases
|
161 |
|
162 |
def show_mask(mask, ax, random_color=False):
|
163 |
if random_color:
|
|
|
179 |
config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
|
180 |
ckpt_repo_id = "ShilongLiu/GroundingDINO"
|
181 |
ckpt_filenmae = "groundingdino_swint_ogc.pth"
|
182 |
+
sam_checkpoint='sam_vit_h_4b8939.pth'
|
183 |
output_dir="outputs"
|
184 |
device="cuda"
|
185 |
|
186 |
+
def run_grounded_sam(image_path, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold, iou_threshold, inpaint_mode):
|
|
|
187 |
|
188 |
# make dir
|
189 |
os.makedirs(output_dir, exist_ok=True)
|
|
|
191 |
image_pil, image = load_image(image_path.convert("RGB"))
|
192 |
# load model
|
193 |
model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae)
|
194 |
+
# model = load_model(config_file, ckpt_filenmae, device=device)
|
195 |
|
196 |
# visualize raw image
|
197 |
image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
|
198 |
|
199 |
+
if task_type == 'automatic':
|
200 |
+
# generate caption and tags
|
201 |
+
# use Tag2Text can generate better captions
|
202 |
+
# https://huggingface.co/spaces/xinyu1205/Tag2Text
|
203 |
+
# but there are some bugs...
|
204 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
205 |
+
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda")
|
206 |
+
text_prompt = generate_caption(processor, blip_model, image_pil)
|
207 |
+
print(f"Caption: {text_prompt}")
|
208 |
+
|
209 |
# run grounding dino model
|
210 |
+
boxes_filt, scores, pred_phrases = get_grounding_output(
|
211 |
model, image, text_prompt, box_threshold, text_threshold, device=device
|
212 |
)
|
213 |
|
214 |
size = image_pil.size
|
215 |
|
216 |
+
if task_type == 'seg' or task_type == 'inpainting' or task_type == 'automatic':
|
217 |
# initialize SAM
|
218 |
predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint))
|
219 |
image = np.array(image_path)
|
|
|
226 |
boxes_filt[i][2:] += boxes_filt[i][:2]
|
227 |
|
228 |
boxes_filt = boxes_filt.cpu()
|
229 |
+
|
230 |
+
if task_type == 'automatic':
|
231 |
+
# use NMS to handle overlapped boxes
|
232 |
+
print(f"Before NMS: {boxes_filt.shape[0]} boxes")
|
233 |
+
nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist()
|
234 |
+
boxes_filt = boxes_filt[nms_idx]
|
235 |
+
pred_phrases = [pred_phrases[idx] for idx in nms_idx]
|
236 |
+
print(f"After NMS: {boxes_filt.shape[0]} boxes")
|
237 |
+
print(f"Revise caption with number: {text_prompt}")
|
238 |
+
|
239 |
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2])
|
240 |
|
241 |
masks, _, _ = predictor.predict_torch(
|
|
|
259 |
image_with_box.save(image_path)
|
260 |
image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
|
261 |
return image_result
|
262 |
+
elif task_type == 'seg' or task_type == 'automatic':
|
263 |
assert sam_checkpoint, 'sam_checkpoint is not found!'
|
264 |
|
265 |
# draw output image
|
|
|
269 |
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
|
270 |
for box, label in zip(boxes_filt, pred_phrases):
|
271 |
show_box(box.numpy(), plt.gca(), label)
|
272 |
+
if task_type == 'automatic':
|
273 |
+
plt.title(text_prompt)
|
274 |
plt.axis('off')
|
275 |
image_path = os.path.join(output_dir, "grounding_dino_output.jpg")
|
276 |
plt.savefig(image_path, bbox_inches="tight")
|
|
|
279 |
elif task_type == 'inpainting':
|
280 |
assert inpaint_prompt, 'inpaint_prompt is not found!'
|
281 |
# inpainting pipeline
|
282 |
+
if inpaint_mode == 'merge':
|
283 |
+
masks = torch.sum(masks, dim=0).unsqueeze(0)
|
284 |
+
masks = torch.where(masks > 0, True, False)
|
285 |
+
else:
|
286 |
+
mask = masks[0][0].cpu().numpy() # simply choose the first mask, which will be refine in the future release
|
287 |
mask_pil = Image.fromarray(mask)
|
|
|
288 |
|
289 |
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
290 |
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16
|
291 |
)
|
292 |
pipe = pipe.to("cuda")
|
293 |
|
294 |
+
image_pil = image_pil.resize((512, 512))
|
295 |
+
mask_pil = mask_pil.resize((512, 512))
|
296 |
+
|
297 |
image = pipe(prompt=inpaint_prompt, image=image_pil, mask_image=mask_pil).images[0]
|
298 |
+
image = image.resize(size)
|
299 |
+
|
300 |
image_path = os.path.join(output_dir, "grounded_sam_inpainting_output.jpg")
|
301 |
image.save(image_path)
|
302 |
image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
|
|
|
309 |
parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True)
|
310 |
parser.add_argument("--debug", action="store_true", help="using debug mode")
|
311 |
parser.add_argument("--share", action="store_true", help="share the app")
|
312 |
+
parser.add_argument('--port', type=int, default=7589, help='port to run the server')
|
313 |
args = parser.parse_args()
|
314 |
|
315 |
block = gr.Blocks().queue()
|
316 |
with block:
|
317 |
with gr.Row():
|
318 |
with gr.Column():
|
319 |
+
input_image = gr.Image(source='upload', type="pil", value="assets/demo1.jpg")
|
320 |
+
task_type = gr.Dropdown(["det", "seg", "inpainting", "automatic"], value="automatic", label="task_type")
|
321 |
+
text_prompt = gr.Textbox(label="Text Prompt")
|
322 |
inpaint_prompt = gr.Textbox(label="Inpaint Prompt")
|
323 |
run_button = gr.Button(label="Run")
|
324 |
with gr.Accordion("Advanced options", open=False):
|
|
|
328 |
text_threshold = gr.Slider(
|
329 |
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
|
330 |
)
|
331 |
+
iou_threshold = gr.Slider(
|
332 |
+
label="IOU Threshold", minimum=0.0, maximum=1.0, value=0.5, step=0.001
|
333 |
+
)
|
334 |
+
inpaint_mode = gr.Dropdown(["merge", "first"], value="merge", label="inpaint_mode")
|
335 |
|
336 |
with gr.Column():
|
337 |
gallery = gr.outputs.Image(
|
|
|
339 |
).style(full_width=True, full_height=True)
|
340 |
|
341 |
run_button.click(fn=run_grounded_sam, inputs=[
|
342 |
+
input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold, iou_threshold, inpaint_mode], outputs=[gallery])
|
343 |
|
344 |
|
345 |
+
block.launch(server_name='0.0.0.0', server_port=args.port, debug=args.debug, share=args.share)
|
gradio_auto_label.py
ADDED
@@ -0,0 +1,392 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import json
|
3 |
+
import argparse
|
4 |
+
import os
|
5 |
+
import copy
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torchvision
|
10 |
+
from PIL import Image, ImageDraw, ImageFont
|
11 |
+
import openai
|
12 |
+
# Grounding DINO
|
13 |
+
import GroundingDINO.groundingdino.datasets.transforms as T
|
14 |
+
from GroundingDINO.groundingdino.models import build_model
|
15 |
+
from GroundingDINO.groundingdino.util import box_ops
|
16 |
+
from GroundingDINO.groundingdino.util.slconfig import SLConfig
|
17 |
+
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
|
18 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
19 |
+
# segment anything
|
20 |
+
from segment_anything import build_sam, SamPredictor
|
21 |
+
from segment_anything.utils.amg import remove_small_regions
|
22 |
+
import cv2
|
23 |
+
import numpy as np
|
24 |
+
import matplotlib.pyplot as plt
|
25 |
+
|
26 |
+
|
27 |
+
# diffusers
|
28 |
+
import PIL
|
29 |
+
import requests
|
30 |
+
import torch
|
31 |
+
from io import BytesIO
|
32 |
+
from huggingface_hub import hf_hub_download
|
33 |
+
from sys import platform
|
34 |
+
|
35 |
+
#macos
|
36 |
+
if platform == 'darwin':
|
37 |
+
import matplotlib
|
38 |
+
matplotlib.use('agg')
|
39 |
+
|
40 |
+
def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
|
41 |
+
args = SLConfig.fromfile(model_config_path)
|
42 |
+
model = build_model(args)
|
43 |
+
args.device = device
|
44 |
+
|
45 |
+
cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
|
46 |
+
checkpoint = torch.load(cache_file, map_location='cpu')
|
47 |
+
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
|
48 |
+
print("Model loaded from {} \n => {}".format(cache_file, log))
|
49 |
+
_ = model.eval()
|
50 |
+
return model
|
51 |
+
|
52 |
+
def plot_boxes_to_image(image_pil, tgt):
|
53 |
+
H, W = tgt["size"]
|
54 |
+
boxes = tgt["boxes"]
|
55 |
+
labels = tgt["labels"]
|
56 |
+
assert len(boxes) == len(labels), "boxes and labels must have same length"
|
57 |
+
|
58 |
+
draw = ImageDraw.Draw(image_pil)
|
59 |
+
mask = Image.new("L", image_pil.size, 0)
|
60 |
+
mask_draw = ImageDraw.Draw(mask)
|
61 |
+
|
62 |
+
# draw boxes and masks
|
63 |
+
for box, label in zip(boxes, labels):
|
64 |
+
# from 0..1 to 0..W, 0..H
|
65 |
+
box = box * torch.Tensor([W, H, W, H])
|
66 |
+
# from xywh to xyxy
|
67 |
+
box[:2] -= box[2:] / 2
|
68 |
+
box[2:] += box[:2]
|
69 |
+
# random color
|
70 |
+
color = tuple(np.random.randint(0, 255, size=3).tolist())
|
71 |
+
# draw
|
72 |
+
x0, y0, x1, y1 = box
|
73 |
+
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
|
74 |
+
|
75 |
+
draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
|
76 |
+
# draw.text((x0, y0), str(label), fill=color)
|
77 |
+
|
78 |
+
font = ImageFont.load_default()
|
79 |
+
if hasattr(font, "getbbox"):
|
80 |
+
bbox = draw.textbbox((x0, y0), str(label), font)
|
81 |
+
else:
|
82 |
+
w, h = draw.textsize(str(label), font)
|
83 |
+
bbox = (x0, y0, w + x0, y0 + h)
|
84 |
+
# bbox = draw.textbbox((x0, y0), str(label))
|
85 |
+
draw.rectangle(bbox, fill=color)
|
86 |
+
draw.text((x0, y0), str(label), fill="white")
|
87 |
+
|
88 |
+
mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6)
|
89 |
+
|
90 |
+
return image_pil, mask
|
91 |
+
|
92 |
+
def load_image(image_path):
|
93 |
+
# # load image
|
94 |
+
# image_pil = Image.open(image_path).convert("RGB") # load image
|
95 |
+
image_pil = image_path
|
96 |
+
|
97 |
+
transform = T.Compose(
|
98 |
+
[
|
99 |
+
T.RandomResize([800], max_size=1333),
|
100 |
+
T.ToTensor(),
|
101 |
+
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
102 |
+
]
|
103 |
+
)
|
104 |
+
image, _ = transform(image_pil, None) # 3, h, w
|
105 |
+
return image_pil, image
|
106 |
+
|
107 |
+
|
108 |
+
def load_model(model_config_path, model_checkpoint_path, device):
|
109 |
+
args = SLConfig.fromfile(model_config_path)
|
110 |
+
args.device = device
|
111 |
+
model = build_model(args)
|
112 |
+
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
|
113 |
+
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
|
114 |
+
_ = model.eval()
|
115 |
+
return model
|
116 |
+
|
117 |
+
|
118 |
+
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"):
|
119 |
+
caption = caption.lower()
|
120 |
+
caption = caption.strip()
|
121 |
+
if not caption.endswith("."):
|
122 |
+
caption = caption + "."
|
123 |
+
model = model.to(device)
|
124 |
+
image = image.to(device)
|
125 |
+
with torch.no_grad():
|
126 |
+
outputs = model(image[None], captions=[caption])
|
127 |
+
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
|
128 |
+
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
|
129 |
+
logits.shape[0]
|
130 |
+
|
131 |
+
# filter output
|
132 |
+
logits_filt = logits.clone()
|
133 |
+
boxes_filt = boxes.clone()
|
134 |
+
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
|
135 |
+
logits_filt = logits_filt[filt_mask] # num_filt, 256
|
136 |
+
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
|
137 |
+
logits_filt.shape[0]
|
138 |
+
|
139 |
+
# get phrase
|
140 |
+
tokenlizer = model.tokenizer
|
141 |
+
tokenized = tokenlizer(caption)
|
142 |
+
# build pred
|
143 |
+
pred_phrases = []
|
144 |
+
scores = []
|
145 |
+
for logit, box in zip(logits_filt, boxes_filt):
|
146 |
+
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
|
147 |
+
if with_logits:
|
148 |
+
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
|
149 |
+
else:
|
150 |
+
pred_phrases.append(pred_phrase)
|
151 |
+
scores.append(logit.max().item())
|
152 |
+
|
153 |
+
return boxes_filt, torch.Tensor(scores), pred_phrases
|
154 |
+
|
155 |
+
def show_mask(mask, ax, random_color=False):
|
156 |
+
if random_color:
|
157 |
+
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
158 |
+
else:
|
159 |
+
color = np.array([30/255, 144/255, 255/255, 0.6])
|
160 |
+
h, w = mask.shape[-2:]
|
161 |
+
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
162 |
+
ax.imshow(mask_image)
|
163 |
+
|
164 |
+
def save_mask_data(output_dir, mask_list, box_list, label_list):
|
165 |
+
value = 0 # 0 for background
|
166 |
+
|
167 |
+
mask_img = torch.zeros(mask_list.shape[-2:])
|
168 |
+
for idx, mask in enumerate(mask_list):
|
169 |
+
mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1
|
170 |
+
plt.figure(figsize=(10, 10))
|
171 |
+
plt.imshow(mask_img.numpy())
|
172 |
+
plt.axis('off')
|
173 |
+
mask_img_path = os.path.join(output_dir, 'mask.jpg')
|
174 |
+
plt.savefig(mask_img_path, bbox_inches="tight", dpi=300, pad_inches=0.0)
|
175 |
+
|
176 |
+
json_data = [{
|
177 |
+
'value': value,
|
178 |
+
'label': 'background'
|
179 |
+
}]
|
180 |
+
for label, box in zip(label_list, box_list):
|
181 |
+
value += 1
|
182 |
+
name, logit = label.split('(')
|
183 |
+
logit = logit[:-1] # the last is ')'
|
184 |
+
json_data.append({
|
185 |
+
'value': value,
|
186 |
+
'label': name,
|
187 |
+
'logit': float(logit),
|
188 |
+
'box': box.numpy().tolist(),
|
189 |
+
})
|
190 |
+
|
191 |
+
mask_json_path = os.path.join(output_dir, 'mask.json')
|
192 |
+
with open(mask_json_path, 'w') as f:
|
193 |
+
json.dump(json_data, f)
|
194 |
+
|
195 |
+
return mask_img_path, mask_json_path
|
196 |
+
|
197 |
+
def show_box(box, ax, label):
|
198 |
+
x0, y0 = box[0], box[1]
|
199 |
+
w, h = box[2] - box[0], box[3] - box[1]
|
200 |
+
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
|
201 |
+
ax.text(x0, y0, label)
|
202 |
+
|
203 |
+
config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
|
204 |
+
ckpt_repo_id = "ShilongLiu/GroundingDINO"
|
205 |
+
ckpt_filenmae = "groundingdino_swint_ogc.pth"
|
206 |
+
sam_checkpoint='sam_vit_h_4b8939.pth'
|
207 |
+
output_dir="outputs"
|
208 |
+
device="cpu"
|
209 |
+
|
210 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
|
211 |
+
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
|
212 |
+
|
213 |
+
def generate_caption(raw_image):
|
214 |
+
# unconditional image captioning
|
215 |
+
inputs = processor(raw_image, return_tensors="pt")
|
216 |
+
out = blip_model.generate(**inputs)
|
217 |
+
caption = processor.decode(out[0], skip_special_tokens=True)
|
218 |
+
return caption
|
219 |
+
|
220 |
+
|
221 |
+
def generate_tags(caption, split=',', max_tokens=100, model="gpt-3.5-turbo", openai_key=''):
|
222 |
+
openai.api_key = openai_key
|
223 |
+
prompt = [
|
224 |
+
{
|
225 |
+
'role': 'system',
|
226 |
+
'content': 'Extract the unique nouns in the caption. Remove all the adjectives. ' + \
|
227 |
+
f'List the nouns in singular form. Split them by "{split} ". ' + \
|
228 |
+
f'Caption: {caption}.'
|
229 |
+
}
|
230 |
+
]
|
231 |
+
response = openai.ChatCompletion.create(model=model, messages=prompt, temperature=0.6, max_tokens=max_tokens)
|
232 |
+
reply = response['choices'][0]['message']['content']
|
233 |
+
# sometimes return with "noun: xxx, xxx, xxx"
|
234 |
+
tags = reply.split(':')[-1].strip()
|
235 |
+
return tags
|
236 |
+
|
237 |
+
def check_caption(caption, pred_phrases, max_tokens=100, model="gpt-3.5-turbo"):
|
238 |
+
object_list = [obj.split('(')[0] for obj in pred_phrases]
|
239 |
+
object_num = []
|
240 |
+
for obj in set(object_list):
|
241 |
+
object_num.append(f'{object_list.count(obj)} {obj}')
|
242 |
+
object_num = ', '.join(object_num)
|
243 |
+
print(f"Correct object number: {object_num}")
|
244 |
+
|
245 |
+
prompt = [
|
246 |
+
{
|
247 |
+
'role': 'system',
|
248 |
+
'content': 'Revise the number in the caption if it is wrong. ' + \
|
249 |
+
f'Caption: {caption}. ' + \
|
250 |
+
f'True object number: {object_num}. ' + \
|
251 |
+
'Only give the revised caption: '
|
252 |
+
}
|
253 |
+
]
|
254 |
+
response = openai.ChatCompletion.create(model=model, messages=prompt, temperature=0.6, max_tokens=max_tokens)
|
255 |
+
reply = response['choices'][0]['message']['content']
|
256 |
+
# sometimes return with "Caption: xxx, xxx, xxx"
|
257 |
+
caption = reply.split(':')[-1].strip()
|
258 |
+
return caption
|
259 |
+
|
260 |
+
def run_grounded_sam(image_path, openai_key, box_threshold, text_threshold, iou_threshold, area_threshold):
|
261 |
+
assert openai_key, 'Openai key is not found!'
|
262 |
+
|
263 |
+
# make dir
|
264 |
+
os.makedirs(output_dir, exist_ok=True)
|
265 |
+
# load image
|
266 |
+
image_pil, image = load_image(image_path.convert("RGB"))
|
267 |
+
# load model
|
268 |
+
model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae)
|
269 |
+
|
270 |
+
# visualize raw image
|
271 |
+
image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
|
272 |
+
|
273 |
+
caption = generate_caption(image_pil)
|
274 |
+
# Currently ", " is better for detecting single tags
|
275 |
+
# while ". " is a little worse in some case
|
276 |
+
split = ','
|
277 |
+
tags = generate_tags(caption, split=split, openai_key=openai_key)
|
278 |
+
|
279 |
+
# run grounding dino model
|
280 |
+
boxes_filt, scores, pred_phrases = get_grounding_output(
|
281 |
+
model, image, tags, box_threshold, text_threshold, device=device
|
282 |
+
)
|
283 |
+
|
284 |
+
size = image_pil.size
|
285 |
+
|
286 |
+
# initialize SAM
|
287 |
+
predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint))
|
288 |
+
image = np.array(image_path)
|
289 |
+
predictor.set_image(image)
|
290 |
+
|
291 |
+
H, W = size[1], size[0]
|
292 |
+
for i in range(boxes_filt.size(0)):
|
293 |
+
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
|
294 |
+
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
|
295 |
+
boxes_filt[i][2:] += boxes_filt[i][:2]
|
296 |
+
|
297 |
+
boxes_filt = boxes_filt.cpu()
|
298 |
+
# use NMS to handle overlapped boxes
|
299 |
+
print(f"Before NMS: {boxes_filt.shape[0]} boxes")
|
300 |
+
nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist()
|
301 |
+
boxes_filt = boxes_filt[nms_idx]
|
302 |
+
pred_phrases = [pred_phrases[idx] for idx in nms_idx]
|
303 |
+
print(f"After NMS: {boxes_filt.shape[0]} boxes")
|
304 |
+
caption = check_caption(caption, pred_phrases)
|
305 |
+
print(f"Revise caption with number: {caption}")
|
306 |
+
|
307 |
+
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2])
|
308 |
+
|
309 |
+
masks, _, _ = predictor.predict_torch(
|
310 |
+
point_coords = None,
|
311 |
+
point_labels = None,
|
312 |
+
boxes = transformed_boxes,
|
313 |
+
multimask_output = False,
|
314 |
+
)
|
315 |
+
# area threshold: remove the mask when area < area_thresh (in pixels)
|
316 |
+
new_masks = []
|
317 |
+
for mask in masks:
|
318 |
+
# reshape to be used in remove_small_regions()
|
319 |
+
mask = mask.cpu().numpy().squeeze()
|
320 |
+
mask, _ = remove_small_regions(mask, area_threshold, mode="holes")
|
321 |
+
mask, _ = remove_small_regions(mask, area_threshold, mode="islands")
|
322 |
+
new_masks.append(torch.as_tensor(mask).unsqueeze(0))
|
323 |
+
|
324 |
+
masks = torch.stack(new_masks, dim=0)
|
325 |
+
# masks: [1, 1, 512, 512]
|
326 |
+
assert sam_checkpoint, 'sam_checkpoint is not found!'
|
327 |
+
|
328 |
+
# draw output image
|
329 |
+
plt.figure(figsize=(10, 10))
|
330 |
+
plt.imshow(image)
|
331 |
+
for mask in masks:
|
332 |
+
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
|
333 |
+
for box, label in zip(boxes_filt, pred_phrases):
|
334 |
+
show_box(box.numpy(), plt.gca(), label)
|
335 |
+
plt.axis('off')
|
336 |
+
image_path = os.path.join(output_dir, "grounding_dino_output.jpg")
|
337 |
+
plt.savefig(image_path, bbox_inches="tight")
|
338 |
+
image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
|
339 |
+
|
340 |
+
mask_img_path, _ = save_mask_data('./outputs', masks, boxes_filt, pred_phrases)
|
341 |
+
|
342 |
+
mask_img = cv2.cvtColor(cv2.imread(mask_img_path), cv2.COLOR_BGR2RGB)
|
343 |
+
|
344 |
+
return image_result, mask_img, caption, tags
|
345 |
+
|
346 |
+
if __name__ == "__main__":
|
347 |
+
|
348 |
+
parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True)
|
349 |
+
parser.add_argument("--debug", action="store_true", help="using debug mode")
|
350 |
+
parser.add_argument("--share", action="store_true", help="share the app")
|
351 |
+
args = parser.parse_args()
|
352 |
+
|
353 |
+
block = gr.Blocks().queue()
|
354 |
+
with block:
|
355 |
+
with gr.Row():
|
356 |
+
with gr.Column():
|
357 |
+
input_image = gr.Image(source='upload', type="pil")
|
358 |
+
openai_key = gr.Textbox(label="OpenAI key")
|
359 |
+
|
360 |
+
run_button = gr.Button(label="Run")
|
361 |
+
with gr.Accordion("Advanced options", open=False):
|
362 |
+
box_threshold = gr.Slider(
|
363 |
+
label="Box Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.001
|
364 |
+
)
|
365 |
+
text_threshold = gr.Slider(
|
366 |
+
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
|
367 |
+
)
|
368 |
+
iou_threshold = gr.Slider(
|
369 |
+
label="IoU Threshold", minimum=0.0, maximum=1.0, value=0.5, step=0.001
|
370 |
+
)
|
371 |
+
area_threshold = gr.Slider(
|
372 |
+
label="Area Threshold", minimum=0.0, maximum=2500, value=100, step=10
|
373 |
+
)
|
374 |
+
|
375 |
+
with gr.Column():
|
376 |
+
image_caption = gr.Textbox(label="Image Caption")
|
377 |
+
identified_labels = gr.Textbox(label="Key objects extracted by ChatGPT")
|
378 |
+
gallery = gr.outputs.Image(
|
379 |
+
type="pil",
|
380 |
+
).style(full_width=True, full_height=True)
|
381 |
+
|
382 |
+
mask_gallary = gr.outputs.Image(
|
383 |
+
type="pil",
|
384 |
+
).style(full_width=True, full_height=True)
|
385 |
+
|
386 |
+
|
387 |
+
run_button.click(fn=run_grounded_sam, inputs=[
|
388 |
+
input_image, openai_key, box_threshold, text_threshold, iou_threshold, area_threshold],
|
389 |
+
outputs=[gallery, mask_gallary, image_caption, identified_labels])
|
390 |
+
|
391 |
+
|
392 |
+
block.launch(server_name='0.0.0.0', server_port=7589, debug=args.debug, share=args.share)
|
grounded_sam.ipynb
CHANGED
@@ -53,12 +53,21 @@
|
|
53 |
},
|
54 |
{
|
55 |
"cell_type": "code",
|
56 |
-
"execution_count":
|
57 |
"metadata": {},
|
58 |
"outputs": [],
|
59 |
"source": [
|
60 |
-
"import os\n",
|
61 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
"# If you have multiple GPUs, you can set the GPU to use here.\n",
|
63 |
"# The default is to use the first GPU, which is usually GPU 0.\n",
|
64 |
"os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\""
|
@@ -85,7 +94,7 @@
|
|
85 |
"from GroundingDINO.groundingdino.util import box_ops\n",
|
86 |
"from GroundingDINO.groundingdino.util.slconfig import SLConfig\n",
|
87 |
"from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap\n",
|
88 |
-
"from groundingdino.util.inference import annotate, load_image, predict\n",
|
89 |
"\n",
|
90 |
"import supervision as sv\n",
|
91 |
"\n",
|
|
|
53 |
},
|
54 |
{
|
55 |
"cell_type": "code",
|
56 |
+
"execution_count": null,
|
57 |
"metadata": {},
|
58 |
"outputs": [],
|
59 |
"source": [
|
60 |
+
"import os, sys\n",
|
61 |
"\n",
|
62 |
+
"sys.path.append(os.path.join(os.getcwd(), \"GroundingDINO\"))"
|
63 |
+
]
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"cell_type": "code",
|
67 |
+
"execution_count": 187,
|
68 |
+
"metadata": {},
|
69 |
+
"outputs": [],
|
70 |
+
"source": [
|
71 |
"# If you have multiple GPUs, you can set the GPU to use here.\n",
|
72 |
"# The default is to use the first GPU, which is usually GPU 0.\n",
|
73 |
"os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\""
|
|
|
94 |
"from GroundingDINO.groundingdino.util import box_ops\n",
|
95 |
"from GroundingDINO.groundingdino.util.slconfig import SLConfig\n",
|
96 |
"from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap\n",
|
97 |
+
"from GroundingDINO.groundingdino.util.inference import annotate, load_image, predict\n",
|
98 |
"\n",
|
99 |
"import supervision as sv\n",
|
100 |
"\n",
|
grounded_sam_inpainting_demo.py
CHANGED
@@ -125,6 +125,7 @@ if __name__ == "__main__":
|
|
125 |
|
126 |
parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold")
|
127 |
parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold")
|
|
|
128 |
parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False")
|
129 |
args = parser.parse_args()
|
130 |
|
@@ -138,6 +139,7 @@ if __name__ == "__main__":
|
|
138 |
output_dir = args.output_dir
|
139 |
box_threshold = args.box_threshold
|
140 |
text_threshold = args.box_threshold
|
|
|
141 |
device = args.device
|
142 |
|
143 |
# make dir
|
@@ -181,7 +183,11 @@ if __name__ == "__main__":
|
|
181 |
# masks: [1, 1, 512, 512]
|
182 |
|
183 |
# inpainting pipeline
|
184 |
-
|
|
|
|
|
|
|
|
|
185 |
mask_pil = Image.fromarray(mask)
|
186 |
image_pil = Image.fromarray(image)
|
187 |
|
@@ -190,8 +196,11 @@ if __name__ == "__main__":
|
|
190 |
)
|
191 |
pipe = pipe.to("cuda")
|
192 |
|
|
|
|
|
193 |
# prompt = "A sofa, high quality, detailed"
|
194 |
image = pipe(prompt=inpaint_prompt, image=image_pil, mask_image=mask_pil).images[0]
|
|
|
195 |
image.save(os.path.join(output_dir, "grounded_sam_inpainting_output.jpg"))
|
196 |
|
197 |
# draw output image
|
|
|
125 |
|
126 |
parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold")
|
127 |
parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold")
|
128 |
+
parser.add_argument("--inpaint_mode", type=str, default="first", help="inpaint mode")
|
129 |
parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False")
|
130 |
args = parser.parse_args()
|
131 |
|
|
|
139 |
output_dir = args.output_dir
|
140 |
box_threshold = args.box_threshold
|
141 |
text_threshold = args.box_threshold
|
142 |
+
inpaint_mode = args.inpaint_mode
|
143 |
device = args.device
|
144 |
|
145 |
# make dir
|
|
|
183 |
# masks: [1, 1, 512, 512]
|
184 |
|
185 |
# inpainting pipeline
|
186 |
+
if inpaint_mode == 'merge':
|
187 |
+
masks = torch.sum(masks, dim=0).unsqueeze(0)
|
188 |
+
masks = torch.where(masks > 0, True, False)
|
189 |
+
else:
|
190 |
+
mask = masks[0][0].cpu().numpy() # simply choose the first mask, which will be refine in the future release
|
191 |
mask_pil = Image.fromarray(mask)
|
192 |
image_pil = Image.fromarray(image)
|
193 |
|
|
|
196 |
)
|
197 |
pipe = pipe.to("cuda")
|
198 |
|
199 |
+
image_pil = image_pil.resize((512, 512))
|
200 |
+
mask_pil = mask_pil.resize((512, 512))
|
201 |
# prompt = "A sofa, high quality, detailed"
|
202 |
image = pipe(prompt=inpaint_prompt, image=image_pil, mask_image=mask_pil).images[0]
|
203 |
+
image = image.resize(size)
|
204 |
image.save(os.path.join(output_dir, "grounded_sam_inpainting_output.jpg"))
|
205 |
|
206 |
# draw output image
|
grounded_sam_whisper_demo.py
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import copy
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import json
|
7 |
+
import torch
|
8 |
+
import torchvision
|
9 |
+
from PIL import Image, ImageDraw, ImageFont
|
10 |
+
|
11 |
+
# Grounding DINO
|
12 |
+
import GroundingDINO.groundingdino.datasets.transforms as T
|
13 |
+
from GroundingDINO.groundingdino.models import build_model
|
14 |
+
from GroundingDINO.groundingdino.util import box_ops
|
15 |
+
from GroundingDINO.groundingdino.util.slconfig import SLConfig
|
16 |
+
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
|
17 |
+
|
18 |
+
# segment anything
|
19 |
+
from segment_anything import build_sam, SamPredictor
|
20 |
+
import cv2
|
21 |
+
import numpy as np
|
22 |
+
import matplotlib.pyplot as plt
|
23 |
+
|
24 |
+
# whisper
|
25 |
+
import whisper
|
26 |
+
|
27 |
+
|
28 |
+
def load_image(image_path):
|
29 |
+
# load image
|
30 |
+
image_pil = Image.open(image_path).convert("RGB") # load image
|
31 |
+
|
32 |
+
transform = T.Compose(
|
33 |
+
[
|
34 |
+
T.RandomResize([800], max_size=1333),
|
35 |
+
T.ToTensor(),
|
36 |
+
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
37 |
+
]
|
38 |
+
)
|
39 |
+
image, _ = transform(image_pil, None) # 3, h, w
|
40 |
+
return image_pil, image
|
41 |
+
|
42 |
+
|
43 |
+
def load_model(model_config_path, model_checkpoint_path, device):
|
44 |
+
args = SLConfig.fromfile(model_config_path)
|
45 |
+
args.device = device
|
46 |
+
model = build_model(args)
|
47 |
+
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
|
48 |
+
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
|
49 |
+
print(load_res)
|
50 |
+
_ = model.eval()
|
51 |
+
return model
|
52 |
+
|
53 |
+
|
54 |
+
def get_grounding_output(model, image, caption, box_threshold, text_threshold,device="cpu"):
|
55 |
+
caption = caption.lower()
|
56 |
+
caption = caption.strip()
|
57 |
+
if not caption.endswith("."):
|
58 |
+
caption = caption + "."
|
59 |
+
model = model.to(device)
|
60 |
+
image = image.to(device)
|
61 |
+
with torch.no_grad():
|
62 |
+
outputs = model(image[None], captions=[caption])
|
63 |
+
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
|
64 |
+
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
|
65 |
+
logits.shape[0]
|
66 |
+
|
67 |
+
# filter output
|
68 |
+
logits_filt = logits.clone()
|
69 |
+
boxes_filt = boxes.clone()
|
70 |
+
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
|
71 |
+
logits_filt = logits_filt[filt_mask] # num_filt, 256
|
72 |
+
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
|
73 |
+
logits_filt.shape[0]
|
74 |
+
|
75 |
+
# get phrase
|
76 |
+
tokenlizer = model.tokenizer
|
77 |
+
tokenized = tokenlizer(caption)
|
78 |
+
# build pred
|
79 |
+
pred_phrases = []
|
80 |
+
scores = []
|
81 |
+
for logit, box in zip(logits_filt, boxes_filt):
|
82 |
+
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
|
83 |
+
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
|
84 |
+
scores.append(logit.max().item())
|
85 |
+
|
86 |
+
return boxes_filt, torch.Tensor(scores), pred_phrases
|
87 |
+
|
88 |
+
def show_mask(mask, ax, random_color=False):
|
89 |
+
if random_color:
|
90 |
+
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
91 |
+
else:
|
92 |
+
color = np.array([30/255, 144/255, 255/255, 0.6])
|
93 |
+
h, w = mask.shape[-2:]
|
94 |
+
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
95 |
+
ax.imshow(mask_image)
|
96 |
+
|
97 |
+
|
98 |
+
def show_box(box, ax, label):
|
99 |
+
x0, y0 = box[0], box[1]
|
100 |
+
w, h = box[2] - box[0], box[3] - box[1]
|
101 |
+
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
|
102 |
+
ax.text(x0, y0, label)
|
103 |
+
|
104 |
+
|
105 |
+
def save_mask_data(output_dir, mask_list, box_list, label_list):
|
106 |
+
value = 0 # 0 for background
|
107 |
+
|
108 |
+
mask_img = torch.zeros(mask_list.shape[-2:])
|
109 |
+
for idx, mask in enumerate(mask_list):
|
110 |
+
mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1
|
111 |
+
plt.figure(figsize=(10, 10))
|
112 |
+
plt.imshow(mask_img.numpy())
|
113 |
+
plt.axis('off')
|
114 |
+
plt.savefig(os.path.join(output_dir, 'mask.jpg'), bbox_inches="tight", dpi=300, pad_inches=0.0)
|
115 |
+
|
116 |
+
json_data = [{
|
117 |
+
'value': value,
|
118 |
+
'label': 'background'
|
119 |
+
}]
|
120 |
+
for label, box in zip(label_list, box_list):
|
121 |
+
value += 1
|
122 |
+
name, logit = label.split('(')
|
123 |
+
logit = logit[:-1] # the last is ')'
|
124 |
+
json_data.append({
|
125 |
+
'value': value,
|
126 |
+
'label': name,
|
127 |
+
'logit': float(logit),
|
128 |
+
'box': box.numpy().tolist(),
|
129 |
+
})
|
130 |
+
with open(os.path.join(output_dir, 'mask.json'), 'w') as f:
|
131 |
+
json.dump(json_data, f)
|
132 |
+
|
133 |
+
|
134 |
+
def speech_recognition(speech_file, model):
|
135 |
+
# whisper
|
136 |
+
# load audio and pad/trim it to fit 30 seconds
|
137 |
+
audio = whisper.load_audio(speech_file)
|
138 |
+
audio = whisper.pad_or_trim(audio)
|
139 |
+
|
140 |
+
# make log-Mel spectrogram and move to the same device as the model
|
141 |
+
mel = whisper.log_mel_spectrogram(audio).to(model.device)
|
142 |
+
|
143 |
+
# detect the spoken language
|
144 |
+
_, probs = model.detect_language(mel)
|
145 |
+
speech_language = max(probs, key=probs.get)
|
146 |
+
|
147 |
+
# decode the audio
|
148 |
+
options = whisper.DecodingOptions()
|
149 |
+
result = whisper.decode(model, mel, options)
|
150 |
+
|
151 |
+
# print the recognized text
|
152 |
+
speech_text = result.text
|
153 |
+
return speech_text, speech_language
|
154 |
+
|
155 |
+
if __name__ == "__main__":
|
156 |
+
|
157 |
+
parser = argparse.ArgumentParser("Grounded-Segment-Anything Demo", add_help=True)
|
158 |
+
parser.add_argument("--config", type=str, required=True, help="path to config file")
|
159 |
+
parser.add_argument(
|
160 |
+
"--grounded_checkpoint", type=str, required=True, help="path to checkpoint file"
|
161 |
+
)
|
162 |
+
parser.add_argument(
|
163 |
+
"--sam_checkpoint", type=str, required=True, help="path to checkpoint file"
|
164 |
+
)
|
165 |
+
parser.add_argument("--input_image", type=str, required=True, help="path to image file")
|
166 |
+
parser.add_argument("--speech_file", type=str, required=True, help="speech file")
|
167 |
+
parser.add_argument(
|
168 |
+
"--output_dir", "-o", type=str, default="outputs", required=True, help="output directory"
|
169 |
+
)
|
170 |
+
|
171 |
+
parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold")
|
172 |
+
parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold")
|
173 |
+
parser.add_argument("--iou_threshold", type=float, default=0.5, help="iou threshold")
|
174 |
+
|
175 |
+
parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False")
|
176 |
+
args = parser.parse_args()
|
177 |
+
|
178 |
+
# cfg
|
179 |
+
config_file = args.config # change the path of the model config file
|
180 |
+
grounded_checkpoint = args.grounded_checkpoint # change the path of the model
|
181 |
+
sam_checkpoint = args.sam_checkpoint
|
182 |
+
image_path = args.input_image
|
183 |
+
output_dir = args.output_dir
|
184 |
+
box_threshold = args.box_threshold
|
185 |
+
text_threshold = args.text_threshold
|
186 |
+
iou_threshold = args.iou_threshold
|
187 |
+
device = args.device
|
188 |
+
|
189 |
+
# load speech
|
190 |
+
whisper_model = whisper.load_model("base")
|
191 |
+
speech_text, speech_language = speech_recognition(args.speech_file, whisper_model)
|
192 |
+
print(f"speech_text: {speech_text}")
|
193 |
+
print(f"speech_language: {speech_language}")
|
194 |
+
|
195 |
+
# make dir
|
196 |
+
os.makedirs(output_dir, exist_ok=True)
|
197 |
+
# load image
|
198 |
+
image_pil, image = load_image(image_path)
|
199 |
+
# load model
|
200 |
+
model = load_model(config_file, grounded_checkpoint, device=device)
|
201 |
+
|
202 |
+
# visualize raw image
|
203 |
+
image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
|
204 |
+
|
205 |
+
# run grounding dino model
|
206 |
+
text_prompt = speech_text
|
207 |
+
boxes_filt, scores, pred_phrases = get_grounding_output(
|
208 |
+
model, image, text_prompt, box_threshold, text_threshold, device=device
|
209 |
+
)
|
210 |
+
|
211 |
+
# initialize SAM
|
212 |
+
predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint).to(args.device))
|
213 |
+
image = cv2.imread(image_path)
|
214 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
215 |
+
predictor.set_image(image)
|
216 |
+
|
217 |
+
size = image_pil.size
|
218 |
+
H, W = size[1], size[0]
|
219 |
+
for i in range(boxes_filt.size(0)):
|
220 |
+
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
|
221 |
+
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
|
222 |
+
boxes_filt[i][2:] += boxes_filt[i][:2]
|
223 |
+
|
224 |
+
boxes_filt = boxes_filt.cpu()
|
225 |
+
# use NMS to handle overlapped boxes
|
226 |
+
print(f"Before NMS: {boxes_filt.shape[0]} boxes")
|
227 |
+
nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist()
|
228 |
+
boxes_filt = boxes_filt[nms_idx]
|
229 |
+
pred_phrases = [pred_phrases[idx] for idx in nms_idx]
|
230 |
+
print(f"After NMS: {boxes_filt.shape[0]} boxes")
|
231 |
+
|
232 |
+
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2])
|
233 |
+
|
234 |
+
masks, _, _ = predictor.predict_torch(
|
235 |
+
point_coords = None,
|
236 |
+
point_labels = None,
|
237 |
+
boxes = transformed_boxes.to(args.device),
|
238 |
+
multimask_output = False,
|
239 |
+
)
|
240 |
+
|
241 |
+
# draw output image
|
242 |
+
plt.figure(figsize=(10, 10))
|
243 |
+
plt.imshow(image)
|
244 |
+
for mask in masks:
|
245 |
+
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
|
246 |
+
for box, label in zip(boxes_filt, pred_phrases):
|
247 |
+
show_box(box.numpy(), plt.gca(), label)
|
248 |
+
|
249 |
+
plt.title(speech_text)
|
250 |
+
plt.axis('off')
|
251 |
+
plt.savefig(
|
252 |
+
os.path.join(output_dir, "grounded_sam_whisper_output.jpg"),
|
253 |
+
bbox_inches="tight", dpi=300, pad_inches=0.0
|
254 |
+
)
|
255 |
+
|
256 |
+
|
257 |
+
save_mask_data(output_dir, masks, boxes_filt, pred_phrases)
|
258 |
+
|
grounded_dino_sam_inpainting_demo.py → grounded_sam_whisper_inpainting_demo.py
RENAMED
@@ -1,6 +1,6 @@
|
|
1 |
import argparse
|
2 |
import os
|
3 |
-
import
|
4 |
|
5 |
import numpy as np
|
6 |
import torch
|
@@ -27,45 +27,12 @@ import torch
|
|
27 |
from io import BytesIO
|
28 |
from diffusers import StableDiffusionInpaintPipeline
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
boxes = tgt["boxes"]
|
33 |
-
labels = tgt["labels"]
|
34 |
-
assert len(boxes) == len(labels), "boxes and labels must have same length"
|
35 |
-
|
36 |
-
draw = ImageDraw.Draw(image_pil)
|
37 |
-
mask = Image.new("L", image_pil.size, 0)
|
38 |
-
mask_draw = ImageDraw.Draw(mask)
|
39 |
-
|
40 |
-
# draw boxes and masks
|
41 |
-
for box, label in zip(boxes, labels):
|
42 |
-
# from 0..1 to 0..W, 0..H
|
43 |
-
box = box * torch.Tensor([W, H, W, H])
|
44 |
-
# from xywh to xyxy
|
45 |
-
box[:2] -= box[2:] / 2
|
46 |
-
box[2:] += box[:2]
|
47 |
-
# random color
|
48 |
-
color = tuple(np.random.randint(0, 255, size=3).tolist())
|
49 |
-
# draw
|
50 |
-
x0, y0, x1, y1 = box
|
51 |
-
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
|
52 |
-
|
53 |
-
draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
|
54 |
-
# draw.text((x0, y0), str(label), fill=color)
|
55 |
-
|
56 |
-
font = ImageFont.load_default()
|
57 |
-
if hasattr(font, "getbbox"):
|
58 |
-
bbox = draw.textbbox((x0, y0), str(label), font)
|
59 |
-
else:
|
60 |
-
w, h = draw.textsize(str(label), font)
|
61 |
-
bbox = (x0, y0, w + x0, y0 + h)
|
62 |
-
# bbox = draw.textbbox((x0, y0), str(label))
|
63 |
-
draw.rectangle(bbox, fill=color)
|
64 |
-
draw.text((x0, y0), str(label), fill="white")
|
65 |
|
66 |
-
|
|
|
67 |
|
68 |
-
return image_pil, mask
|
69 |
|
70 |
def load_image(image_path):
|
71 |
# load image
|
@@ -143,6 +110,48 @@ def show_box(box, ax, label):
|
|
143 |
w, h = box[2] - box[0], box[3] - box[1]
|
144 |
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
|
145 |
ax.text(x0, y0, label)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
|
148 |
if __name__ == "__main__":
|
@@ -153,36 +162,38 @@ if __name__ == "__main__":
|
|
153 |
"--grounded_checkpoint", type=str, required=True, help="path to checkpoint file"
|
154 |
)
|
155 |
parser.add_argument(
|
156 |
-
"--sam_checkpoint", type=str, required=
|
157 |
)
|
158 |
-
parser.add_argument("--task_type", type=str, required=True, help="select task")
|
159 |
parser.add_argument("--input_image", type=str, required=True, help="path to image file")
|
160 |
-
parser.add_argument("--text_prompt", type=str, required=True, help="text prompt")
|
161 |
-
parser.add_argument("--inpaint_prompt", type=str, required=False, help="inpaint prompt")
|
162 |
parser.add_argument(
|
163 |
"--output_dir", "-o", type=str, default="outputs", required=True, help="output directory"
|
164 |
)
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold")
|
167 |
parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold")
|
|
|
168 |
parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False")
|
|
|
169 |
args = parser.parse_args()
|
170 |
|
171 |
# cfg
|
172 |
config_file = args.config # change the path of the model config file
|
173 |
grounded_checkpoint = args.grounded_checkpoint # change the path of the model
|
174 |
sam_checkpoint = args.sam_checkpoint
|
175 |
-
task_type = args.task_type
|
176 |
image_path = args.input_image
|
177 |
-
|
178 |
-
inpaint_prompt = args.inpaint_prompt
|
179 |
output_dir = args.output_dir
|
180 |
box_threshold = args.box_threshold
|
181 |
text_threshold = args.box_threshold
|
|
|
182 |
device = args.device
|
183 |
|
184 |
-
assert text_prompt, 'text_prompt is not found!'
|
185 |
-
|
186 |
# make dir
|
187 |
os.makedirs(output_dir, exist_ok=True)
|
188 |
# load image
|
@@ -192,87 +203,79 @@ if __name__ == "__main__":
|
|
192 |
|
193 |
# visualize raw image
|
194 |
image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
# run grounding dino model
|
197 |
boxes_filt, pred_phrases = get_grounding_output(
|
198 |
-
model, image,
|
199 |
)
|
200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
size = image_pil.size
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
H, W = size[1], size[0]
|
211 |
-
for i in range(boxes_filt.size(0)):
|
212 |
-
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
|
213 |
-
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
|
214 |
-
boxes_filt[i][2:] += boxes_filt[i][:2]
|
215 |
-
|
216 |
-
boxes_filt = boxes_filt.cpu()
|
217 |
-
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2])
|
218 |
-
|
219 |
-
masks, _, _ = predictor.predict_torch(
|
220 |
-
point_coords = None,
|
221 |
-
point_labels = None,
|
222 |
-
boxes = transformed_boxes,
|
223 |
-
multimask_output = False,
|
224 |
-
)
|
225 |
-
|
226 |
-
# masks: [1, 1, 512, 512]
|
227 |
-
|
228 |
-
if task_type == 'det':
|
229 |
-
assert grounded_checkpoint, 'grounded_checkpoint is not found!'
|
230 |
-
pred_dict = {
|
231 |
-
"boxes": boxes_filt,
|
232 |
-
"size": [size[1], size[0]], # H,W
|
233 |
-
"labels": pred_phrases,
|
234 |
-
}
|
235 |
-
# import ipdb; ipdb.set_trace()
|
236 |
-
image_with_box = plot_boxes_to_image(image_pil, pred_dict)[0]
|
237 |
-
image_with_box.save(os.path.join(output_dir, "grounding_dino_output.jpg"))
|
238 |
-
elif task_type == 'seg':
|
239 |
-
assert sam_checkpoint, 'sam_checkpoint is not found!'
|
240 |
-
|
241 |
-
# draw output image
|
242 |
-
plt.figure(figsize=(10, 10))
|
243 |
-
plt.imshow(image)
|
244 |
-
for mask in masks:
|
245 |
-
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
|
246 |
-
for box, label in zip(boxes_filt, pred_phrases):
|
247 |
-
show_box(box.numpy(), plt.gca(), label)
|
248 |
-
plt.axis('off')
|
249 |
-
plt.savefig(os.path.join(output_dir, "grounded_sam_output.jpg"), bbox_inches="tight")
|
250 |
-
|
251 |
-
elif task_type == 'inpainting':
|
252 |
-
assert inpaint_prompt, 'inpaint_prompt is not found!'
|
253 |
-
# inpainting pipeline
|
254 |
-
mask = masks[0][0].cpu().numpy() # simply choose the first mask, which will be refine in the future release
|
255 |
-
mask_pil = Image.fromarray(mask)
|
256 |
-
image_pil = Image.fromarray(image)
|
257 |
-
|
258 |
-
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
259 |
-
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16
|
260 |
-
)
|
261 |
-
pipe = pipe.to("cuda")
|
262 |
-
|
263 |
-
# prompt = "A sofa, high quality, detailed"
|
264 |
-
image = pipe(prompt=inpaint_prompt, image=image_pil, mask_image=mask_pil).images[0]
|
265 |
-
image.save(os.path.join(output_dir, "grounded_sam_inpainting_output.jpg"))
|
266 |
-
|
267 |
-
# draw output image
|
268 |
-
# plt.figure(figsize=(10, 10))
|
269 |
-
# plt.imshow(image)
|
270 |
-
# for mask in masks:
|
271 |
-
# show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
|
272 |
-
# for box, label in zip(boxes_filt, pred_phrases):
|
273 |
-
# show_box(box.numpy(), plt.gca(), label)
|
274 |
-
# plt.axis('off')
|
275 |
-
# plt.savefig(os.path.join(output_dir, "grounded_sam_output.jpg"), bbox_inches="tight")
|
276 |
else:
|
277 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
|
|
|
1 |
import argparse
|
2 |
import os
|
3 |
+
from warnings import warn
|
4 |
|
5 |
import numpy as np
|
6 |
import torch
|
|
|
27 |
from io import BytesIO
|
28 |
from diffusers import StableDiffusionInpaintPipeline
|
29 |
|
30 |
+
# whisper
|
31 |
+
import whisper
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
# ChatGPT
|
34 |
+
import openai
|
35 |
|
|
|
36 |
|
37 |
def load_image(image_path):
|
38 |
# load image
|
|
|
110 |
w, h = box[2] - box[0], box[3] - box[1]
|
111 |
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
|
112 |
ax.text(x0, y0, label)
|
113 |
+
|
114 |
+
|
115 |
+
def speech_recognition(speech_file, model):
|
116 |
+
# whisper
|
117 |
+
# load audio and pad/trim it to fit 30 seconds
|
118 |
+
audio = whisper.load_audio(speech_file)
|
119 |
+
audio = whisper.pad_or_trim(audio)
|
120 |
+
|
121 |
+
# make log-Mel spectrogram and move to the same device as the model
|
122 |
+
mel = whisper.log_mel_spectrogram(audio).to(model.device)
|
123 |
+
|
124 |
+
# detect the spoken language
|
125 |
+
_, probs = model.detect_language(mel)
|
126 |
+
speech_language = max(probs, key=probs.get)
|
127 |
+
|
128 |
+
# decode the audio
|
129 |
+
options = whisper.DecodingOptions()
|
130 |
+
result = whisper.decode(model, mel, options)
|
131 |
+
|
132 |
+
# print the recognized text
|
133 |
+
speech_text = result.text
|
134 |
+
return speech_text, speech_language
|
135 |
+
|
136 |
+
|
137 |
+
def filter_prompts_with_chatgpt(caption, max_tokens=100, model="gpt-3.5-turbo"):
|
138 |
+
prompt = [
|
139 |
+
{
|
140 |
+
'role': 'system',
|
141 |
+
'content': f"Extract the main object to be replaced and marked it as 'main_object', " + \
|
142 |
+
f"Extract the remaining part as 'other prompt' " + \
|
143 |
+
f"Return (main_object, other prompt)" + \
|
144 |
+
f'Given caption: {caption}.'
|
145 |
+
}
|
146 |
+
]
|
147 |
+
response = openai.ChatCompletion.create(model=model, messages=prompt, temperature=0.6, max_tokens=max_tokens)
|
148 |
+
reply = response['choices'][0]['message']['content']
|
149 |
+
try:
|
150 |
+
det_prompt, inpaint_prompt = reply.split('\n')[0].split(':')[-1].strip(), reply.split('\n')[1].split(':')[-1].strip()
|
151 |
+
except:
|
152 |
+
warn(f"Failed to extract tags from caption") # use caption as det_prompt, inpaint_prompt
|
153 |
+
det_prompt, inpaint_prompt = caption, caption
|
154 |
+
return det_prompt, inpaint_prompt
|
155 |
|
156 |
|
157 |
if __name__ == "__main__":
|
|
|
162 |
"--grounded_checkpoint", type=str, required=True, help="path to checkpoint file"
|
163 |
)
|
164 |
parser.add_argument(
|
165 |
+
"--sam_checkpoint", type=str, required=True, help="path to checkpoint file"
|
166 |
)
|
|
|
167 |
parser.add_argument("--input_image", type=str, required=True, help="path to image file")
|
|
|
|
|
168 |
parser.add_argument(
|
169 |
"--output_dir", "-o", type=str, default="outputs", required=True, help="output directory"
|
170 |
)
|
171 |
+
parser.add_argument("--det_speech_file", type=str, help="grounding speech file")
|
172 |
+
parser.add_argument("--inpaint_speech_file", type=str, help="inpaint speech file")
|
173 |
+
parser.add_argument("--prompt_speech_file", type=str, help="prompt speech file, no need to provide det_speech_file")
|
174 |
+
parser.add_argument("--enable_chatgpt", action="store_true", help="enable chatgpt")
|
175 |
+
parser.add_argument("--openai_key", type=str, help="key for chatgpt")
|
176 |
+
parser.add_argument("--openai_proxy", default=None, type=str, help="proxy for chatgpt")
|
177 |
+
parser.add_argument("--whisper_model", type=str, default="small", help="whisper model version: tiny, base, small, medium, large")
|
178 |
parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold")
|
179 |
parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold")
|
180 |
+
parser.add_argument("--inpaint_mode", type=str, default="first", help="inpaint mode")
|
181 |
parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False")
|
182 |
+
parser.add_argument("--prompt_extra", type=str, default=" high resolution, real scene", help="extra prompt for inpaint")
|
183 |
args = parser.parse_args()
|
184 |
|
185 |
# cfg
|
186 |
config_file = args.config # change the path of the model config file
|
187 |
grounded_checkpoint = args.grounded_checkpoint # change the path of the model
|
188 |
sam_checkpoint = args.sam_checkpoint
|
|
|
189 |
image_path = args.input_image
|
190 |
+
|
|
|
191 |
output_dir = args.output_dir
|
192 |
box_threshold = args.box_threshold
|
193 |
text_threshold = args.box_threshold
|
194 |
+
inpaint_mode = args.inpaint_mode
|
195 |
device = args.device
|
196 |
|
|
|
|
|
197 |
# make dir
|
198 |
os.makedirs(output_dir, exist_ok=True)
|
199 |
# load image
|
|
|
203 |
|
204 |
# visualize raw image
|
205 |
image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
|
206 |
+
|
207 |
+
# recognize speech
|
208 |
+
whisper_model = whisper.load_model(args.whisper_model)
|
209 |
+
|
210 |
+
if args.enable_chatgpt:
|
211 |
+
openai.api_key = args.openai_key
|
212 |
+
if args.openai_proxy:
|
213 |
+
openai.proxy = {"http": args.openai_proxy, "https": args.openai_proxy}
|
214 |
+
speech_text, _ = speech_recognition(args.prompt_speech_file, whisper_model)
|
215 |
+
det_prompt, inpaint_prompt = filter_prompts_with_chatgpt(speech_text)
|
216 |
+
inpaint_prompt += args.prompt_extra
|
217 |
+
print(f"det_prompt: {det_prompt}, inpaint_prompt: {inpaint_prompt}")
|
218 |
+
else:
|
219 |
+
det_prompt, det_speech_language = speech_recognition(args.det_speech_file, whisper_model)
|
220 |
+
inpaint_prompt, inpaint_speech_language = speech_recognition(args.inpaint_speech_file, whisper_model)
|
221 |
+
print(f"det_prompt: {det_prompt}, using language: {det_speech_language}")
|
222 |
+
print(f"inpaint_prompt: {inpaint_prompt}, using language: {inpaint_speech_language}")
|
223 |
+
|
224 |
# run grounding dino model
|
225 |
boxes_filt, pred_phrases = get_grounding_output(
|
226 |
+
model, image, det_prompt, box_threshold, text_threshold, device=device
|
227 |
)
|
228 |
|
229 |
+
# initialize SAM
|
230 |
+
predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint))
|
231 |
+
image = cv2.imread(image_path)
|
232 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
233 |
+
predictor.set_image(image)
|
234 |
+
|
235 |
size = image_pil.size
|
236 |
+
H, W = size[1], size[0]
|
237 |
+
for i in range(boxes_filt.size(0)):
|
238 |
+
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
|
239 |
+
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
|
240 |
+
boxes_filt[i][2:] += boxes_filt[i][:2]
|
241 |
+
|
242 |
+
boxes_filt = boxes_filt.cpu()
|
243 |
+
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2])
|
244 |
+
|
245 |
+
masks, _, _ = predictor.predict_torch(
|
246 |
+
point_coords = None,
|
247 |
+
point_labels = None,
|
248 |
+
boxes = transformed_boxes,
|
249 |
+
multimask_output = False,
|
250 |
+
)
|
251 |
|
252 |
+
# masks: [1, 1, 512, 512]
|
253 |
+
|
254 |
+
# inpainting pipeline
|
255 |
+
if inpaint_mode == 'merge':
|
256 |
+
masks = torch.sum(masks, dim=0).unsqueeze(0)
|
257 |
+
masks = torch.where(masks > 0, True, False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
else:
|
259 |
+
mask = masks[0][0].cpu().numpy() # simply choose the first mask, which will be refine in the future release
|
260 |
+
mask_pil = Image.fromarray(mask)
|
261 |
+
image_pil = Image.fromarray(image)
|
262 |
+
|
263 |
+
pipe = StableDiffusionInpaintPipeline.from_pretrained(
|
264 |
+
"runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16
|
265 |
+
)
|
266 |
+
pipe = pipe.to("cuda")
|
267 |
+
|
268 |
+
# prompt = "A sofa, high quality, detailed"
|
269 |
+
image = pipe(prompt=inpaint_prompt, image=image_pil, mask_image=mask_pil).images[0]
|
270 |
+
image.save(os.path.join(output_dir, "grounded_sam_inpainting_output.jpg"))
|
271 |
+
|
272 |
+
# draw output image
|
273 |
+
# plt.figure(figsize=(10, 10))
|
274 |
+
# plt.imshow(image)
|
275 |
+
# for mask in masks:
|
276 |
+
# show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
|
277 |
+
# for box, label in zip(boxes_filt, pred_phrases):
|
278 |
+
# show_box(box.numpy(), plt.gca(), label)
|
279 |
+
# plt.axis('off')
|
280 |
+
# plt.savefig(os.path.join(output_dir, "grounded_sam_output.jpg"), bbox_inches="tight")
|
281 |
|