NSC9 commited on
Commit
929fd2d
1 Parent(s): 4981123

Upload Artificial_Calc_Teacher_v7.8.ipynb

Browse files
Files changed (1) hide show
  1. Artificial_Calc_Teacher_v7.8.ipynb +340 -0
Artificial_Calc_Teacher_v7.8.ipynb ADDED
@@ -0,0 +1,340 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "id": "eefbb211",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import mercury as mr\n",
11
+ " \n",
12
+ "# set Application parameters\n",
13
+ "app = mr.App(title=\"Calculus Problem Generator\",\n",
14
+ " description=\"Generates expressions which students can apply differential and integral calculus to.\",\n",
15
+ " show_code=False,\n",
16
+ " show_prompt=False,\n",
17
+ " continuous_update=True,\n",
18
+ " static_notebook=False,\n",
19
+ " show_sidebar=True,\n",
20
+ " full_screen=True,\n",
21
+ " allow_download=False)"
22
+ ]
23
+ },
24
+ {
25
+ "cell_type": "code",
26
+ "execution_count": null,
27
+ "id": "9258ca84",
28
+ "metadata": {},
29
+ "outputs": [],
30
+ "source": [
31
+ "equation_count = 0"
32
+ ]
33
+ },
34
+ {
35
+ "cell_type": "code",
36
+ "execution_count": null,
37
+ "id": "81f9af3c",
38
+ "metadata": {},
39
+ "outputs": [],
40
+ "source": [
41
+ "generate = mr.Button(label=\"New equation\")"
42
+ ]
43
+ },
44
+ {
45
+ "cell_type": "code",
46
+ "execution_count": 1,
47
+ "id": "c5197005",
48
+ "metadata": {},
49
+ "outputs": [],
50
+ "source": [
51
+ "# changelog: updated code to work with updated Mercury. (button works again!)"
52
+ ]
53
+ },
54
+ {
55
+ "cell_type": "markdown",
56
+ "id": "6bdf2faf",
57
+ "metadata": {},
58
+ "source": [
59
+ "# Solve with pen and paper:"
60
+ ]
61
+ },
62
+ {
63
+ "cell_type": "code",
64
+ "execution_count": 28,
65
+ "id": "108761f9",
66
+ "metadata": {
67
+ "scrolled": false
68
+ },
69
+ "outputs": [
70
+ {
71
+ "data": {
72
+ "text/latex": [
73
+ "$\\displaystyle \\frac{d}{d \\theta} \\left(\\sin{\\left(\\theta \\right)} + \\tan{\\left(\\theta \\right)} + 2\\right) = ?$"
74
+ ],
75
+ "text/plain": [
76
+ "Eq(Derivative(sin(theta) + tan(theta) + 2, theta), ?)"
77
+ ]
78
+ },
79
+ "metadata": {},
80
+ "output_type": "display_data"
81
+ },
82
+ {
83
+ "data": {
84
+ "text/latex": [
85
+ "$\\displaystyle \\int \\left(- \\sqrt{y} + e^{y}\\right)\\, dy = ?$"
86
+ ],
87
+ "text/plain": [
88
+ "Eq(Integral(-sqrt(y) + exp(y), y), ?)"
89
+ ]
90
+ },
91
+ "metadata": {},
92
+ "output_type": "display_data"
93
+ },
94
+ {
95
+ "name": "stdout",
96
+ "output_type": "stream",
97
+ "text": [
98
+ "\n",
99
+ "\n",
100
+ "\n",
101
+ "\n",
102
+ "\n",
103
+ "\n",
104
+ "\n",
105
+ "\n",
106
+ "\n",
107
+ "\n",
108
+ "Possible answers:\n"
109
+ ]
110
+ },
111
+ {
112
+ "data": {
113
+ "text/latex": [
114
+ "$\\displaystyle \\frac{d}{d \\theta} \\left(\\sin{\\left(\\theta \\right)} + \\tan{\\left(\\theta \\right)} + 2\\right) = \\cos{\\left(\\theta \\right)} + \\sec^{2}{\\left(\\theta \\right)}$"
115
+ ],
116
+ "text/plain": [
117
+ "Eq(Derivative(sin(theta) + tan(theta) + 2, theta), cos(theta) + sec(theta)**2)"
118
+ ]
119
+ },
120
+ "metadata": {},
121
+ "output_type": "display_data"
122
+ },
123
+ {
124
+ "data": {
125
+ "text/latex": [
126
+ "$\\displaystyle \\int \\left(- \\sqrt{y} + e^{y}\\right)\\, dy = - \\frac{2 y^{\\frac{3}{2}}}{3} + e^{y}$"
127
+ ],
128
+ "text/plain": [
129
+ "Eq(Integral(-sqrt(y) + exp(y), y), -2*y**(3/2)/3 + exp(y))"
130
+ ]
131
+ },
132
+ "metadata": {},
133
+ "output_type": "display_data"
134
+ }
135
+ ],
136
+ "source": [
137
+ "from sympy.simplify.fu import TR22,TR2i\n",
138
+ "from sympy import *\n",
139
+ "from sympy.abc import theta\n",
140
+ "import random\n",
141
+ "f = Function('f')\n",
142
+ "g = Function('g')\n",
143
+ "h = Function('h')\n",
144
+ "theta = Symbol('theta')\n",
145
+ "i = 0\n",
146
+ "dkeywords = {\"polylog\",\"Ei\",\"gamma\",\"Piecewise\",\"li\",\"erf\",\"Si\",\"Ci\",\"hyper\",\"fresnel\",\"Li\",\"expint\",\"zoo\",\n",
147
+ "\"nan\",\"oo\",\"abs\",\"re\",\"EulerGamma\", \"sinh\",\"tanh\", \"cosh\",'sign','abs','atan','csc','asin'} \n",
148
+ "ikeywords = {\"polylog\",\"Ei\",\"gamma\",\"Piecewise\", \"li\", \"erf\", \"atan\", \"Si\", \"Ci\", \"hyper\", \"fresnel\", \"Li\", \n",
149
+ "\"expint\",\"zoo\", \"nan\", \"oo\",\"EulerGamma\",\"sinh\",\"csc\",\"asin\"}\n",
150
+ "keywords2 = {\"sin\",\"cos\",\"tan\"}\n",
151
+ "def random_variable(i):\n",
152
+ " return Symbol(random.choice([i for i in ['v','t','x','z','y']]), real=True)\n",
153
+ "def random_value(i):\n",
154
+ " return random.choice([i for i in range(-10,10) if i not in [0]])\n",
155
+ "def power(a): \n",
156
+ " return random_value(i)*a**int(random_value(i)/2)\n",
157
+ "def scalar(a): \n",
158
+ " return a*random_value(i) + random_value(i)\n",
159
+ "def addSUBTR(a): \n",
160
+ " return a+random_value(i)\n",
161
+ "def dmain(a):\n",
162
+ " def random_math(a): \n",
163
+ " funs = [power,scalar,addSUBTR,power,scalar,addSUBTR,ln,exp,sin,cos,tan,sqrt] \n",
164
+ " operations = [f(a)+g(a)+h(a),\n",
165
+ " f(a)+g(a)-h(a),\n",
166
+ " f(a)+g(a)*h(a),\n",
167
+ " f(a)+g(a)/h(a),\n",
168
+ " \n",
169
+ " f(a)-g(a)+h(a),\n",
170
+ " f(a)-g(a)-h(a),\n",
171
+ " f(a)-g(a)*h(a),\n",
172
+ " f(a)-g(a)/h(a),\n",
173
+ "\n",
174
+ " f(a)*g(a)+h(a),\n",
175
+ " f(a)*g(a)-h(a),\n",
176
+ " f(a)*g(a)*h(a),\n",
177
+ " f(a)*g(a)/h(a), \n",
178
+ " \n",
179
+ " f(a)/g(a)+h(a),\n",
180
+ " f(a)/g(a)-h(a),\n",
181
+ " f(a)/g(a)*h(a),\n",
182
+ " f(a)/g(a)/h(a), \n",
183
+ "\n",
184
+ " f(a)* ( g(a)+h(a) ),\n",
185
+ " f(a)* ( g(a)-h(a) ),\n",
186
+ " f(a)/ ( g(a)+h(a) ),\n",
187
+ " f(a)/ ( g(a)-h(a) ),\n",
188
+ " \n",
189
+ " f(g(h(a))),\n",
190
+ " f(h(a))+g(a),\n",
191
+ " f(h(a))-g(a),\n",
192
+ " f(h(a))*g(a),\n",
193
+ " f(h(a))/g(a),\n",
194
+ " f(a)/g(h(a))]\n",
195
+ " operation = operations[random.randrange(0,len(operations))]\n",
196
+ " return [[[operation.replace(f, i) for i in funs][random.randrange(0,len(funs))].replace(g, i) for i in funs]\\\n",
197
+ " [random.randrange(0,len(funs))].replace(h, i) for i in funs][random.randrange(0,len(funs))]\n",
198
+ " return random_math(a)\n",
199
+ "def imain(a):\n",
200
+ " def random_math2(a): \n",
201
+ " funs = [power,scalar,addSUBTR,power,scalar,addSUBTR,ln,exp,sin,cos,tan,sqrt] \n",
202
+ " operations = [f(g(a)),f(a)+g(a),f(a)-g(a),f(a)/g(a),f(a)*g(a)]\n",
203
+ " operation = operations[random.randrange(0,len(operations))]\n",
204
+ " return [[operation.replace(f, i) for i in funs][random.randrange(0,len(funs))].replace(g, i) for i in funs]\\\n",
205
+ " [random.randrange(0,len(funs))]\n",
206
+ " return random_math2(a)\n",
207
+ "derror = True\n",
208
+ "def dtest():\n",
209
+ " global setup1\n",
210
+ " global derror\n",
211
+ " global practice1\n",
212
+ " a = random_variable(i)\n",
213
+ " setup1 = dmain(a)\n",
214
+ " practice1 = Derivative(setup1,a) \n",
215
+ " p1eq = TR22(Eq(practice1,practice1.doit(),evaluate=False))\n",
216
+ " if any(kw in str(setup1) for kw in keywords2):\n",
217
+ " setup1 = setup1.replace(a,theta)\n",
218
+ " practice1 = Derivative(setup1,theta) \n",
219
+ " p1eq = TR22(Eq(practice1,practice1.doit(),evaluate=False))\n",
220
+ " if p1eq.rhs != 0 and not any(kw in str(p1eq) for kw in dkeywords):\n",
221
+ " derror = False\n",
222
+ " return p1eq\n",
223
+ "while derror == True: \n",
224
+ " output1 = dtest()\n",
225
+ "ierror = True\n",
226
+ "def itest():\n",
227
+ " global ierror\n",
228
+ " global practice2\n",
229
+ " global setup2\n",
230
+ " a = random_variable(i)\n",
231
+ " setup2 = imain(a)\n",
232
+ " practice2 = Integral(setup2,a) \n",
233
+ " p2eq = TR22(Eq(practice2,practice2.doit(),evaluate=False))\n",
234
+ " if str(factor_terms(p2eq.lhs)) != str(factor_terms(p2eq.rhs)) and not any(kw in str(p2eq) for kw in ikeywords)\\\n",
235
+ " and str(p2eq.lhs) != str(-p2eq.rhs): \n",
236
+ " if any(kw in str(setup2) for kw in keywords2):\n",
237
+ " setup2 = setup2.replace(a,theta)\n",
238
+ " practice2 = Integral(setup2,theta) \n",
239
+ " p2eq = TR22(Eq(practice2,practice2.doit(),evaluate=False))\n",
240
+ " ierror = False\n",
241
+ " return p2eq\n",
242
+ "while ierror == True:\n",
243
+ " output2 = itest()\n",
244
+ "questionmark = Symbol('?')\n",
245
+ "def lhs():\n",
246
+ " return display(Eq(nsimplify(output1.lhs),questionmark),Eq(nsimplify(output2.lhs),questionmark)) \n",
247
+ "def rhs():\n",
248
+ " return display(Eq(nsimplify(output1.lhs),nsimplify(output1.rhs)),Eq(nsimplify(output2.lhs),nsimplify(output2.rhs)))\n",
249
+ "lhs()\n",
250
+ "print(\"\\n\")\n",
251
+ "print(\"\\n\")\n",
252
+ "print(\"\\n\")\n",
253
+ "print(\"\\n\")\n",
254
+ "print(\"\\n\")\n",
255
+ "print(\"Possible answers:\")\n",
256
+ "rhs()\n",
257
+ "if generate.clicked:\n",
258
+ " equation_count += 1\n",
259
+ " print(f\"Equation count {equation_count}\")"
260
+ ]
261
+ },
262
+ {
263
+ "cell_type": "markdown",
264
+ "id": "2393180e",
265
+ "metadata": {},
266
+ "source": [
267
+ "# Donate Bitcoin (BTC) to address: **bc1qtrjmtsfxhmjmu4wwdh03u92gpy662rnt3drlm7**\n",
268
+ "\n",
269
+ "**Created by https://github.com/NSC9 - Live @ https://nsc9.github.io/ - MIT License - v7.8**\n",
270
+ "\n",
271
+ "**Powered by https://huggingface.co & https://runmercury.com/**\n",
272
+ "\n",
273
+ "Latest version source code: https://github.com/NSC9/Sample_of_Work/tree/Main/Artificial_Calculus_Teacher\n",
274
+ "\n",
275
+ "**Below are the expressions in plain text format for easy copy/pasting into these calculus calculator websites if you get stuck:**"
276
+ ]
277
+ },
278
+ {
279
+ "cell_type": "code",
280
+ "execution_count": 30,
281
+ "id": "15c3f34f",
282
+ "metadata": {},
283
+ "outputs": [
284
+ {
285
+ "name": "stdout",
286
+ "output_type": "stream",
287
+ "text": [
288
+ "Differentiate: sin(theta) + tan(theta) + 2\n",
289
+ "Integrate: -sqrt(y) + exp(y)\n"
290
+ ]
291
+ }
292
+ ],
293
+ "source": [
294
+ "keywords3 = {\"theta\"}\n",
295
+ "if any(kw in str(nsimplify(output1.lhs)) for kw in keywords3):\n",
296
+ " print(\"Differentiate:\",str(nsimplify(output1.lhs))[11:-8])\n",
297
+ " p1 = \" \"+str(nsimplify(output1.lhs))[11:-8]\n",
298
+ "else:\n",
299
+ " print(\"Differentiate:\",str(nsimplify(output1.lhs))[11:-4])\n",
300
+ " p1 = \" \"+str(nsimplify(output1.lhs))[11:-4]\n",
301
+ " \n",
302
+ "if any(kw in str(nsimplify(output2.lhs)) for kw in keywords3):\n",
303
+ " print(\"Integrate:\",str(nsimplify(output2.lhs))[9:-8])\n",
304
+ " p2 = \" \"+str(nsimplify(output2.lhs))[9:-8]\n",
305
+ "else:\n",
306
+ " print(\"Integrate:\",str(nsimplify(output2.lhs))[9:-4]) \n",
307
+ " p2 = \" \"+str(nsimplify(output2.lhs))[9:-4]\n"
308
+ ]
309
+ },
310
+ {
311
+ "cell_type": "markdown",
312
+ "id": "30b55c90",
313
+ "metadata": {},
314
+ "source": [
315
+ "**https://www.derivative-calculator.net/ -- https://www.integral-calculator.com/**"
316
+ ]
317
+ }
318
+ ],
319
+ "metadata": {
320
+ "kernelspec": {
321
+ "display_name": "Python 3 (ipykernel)",
322
+ "language": "python",
323
+ "name": "python3"
324
+ },
325
+ "language_info": {
326
+ "codemirror_mode": {
327
+ "name": "ipython",
328
+ "version": 3
329
+ },
330
+ "file_extension": ".py",
331
+ "mimetype": "text/x-python",
332
+ "name": "python",
333
+ "nbconvert_exporter": "python",
334
+ "pygments_lexer": "ipython3",
335
+ "version": "3.10.6"
336
+ }
337
+ },
338
+ "nbformat": 4,
339
+ "nbformat_minor": 5
340
+ }