{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "eefbb211", "metadata": {}, "outputs": [], "source": [ "import mercury as mr\n", " \n", "# set Application parameters\n", "app = mr.App(title=\"Calculus Problem Generator\",\n", " description=\"Generates expressions which students can apply differential and integral calculus to.\",\n", " show_code=False,\n", " show_prompt=False,\n", " continuous_update=True,\n", " static_notebook=False,\n", " show_sidebar=True,\n", " full_screen=True,\n", " allow_download=False)" ] }, { "cell_type": "code", "execution_count": null, "id": "9258ca84", "metadata": {}, "outputs": [], "source": [ "equation_count = 0" ] }, { "cell_type": "code", "execution_count": null, "id": "81f9af3c", "metadata": {}, "outputs": [], "source": [ "generate = mr.Button(label=\"New equation\")" ] }, { "cell_type": "code", "execution_count": 1, "id": "c5197005", "metadata": {}, "outputs": [], "source": [ "# changelog: updated code to work with updated Mercury. (button works again!)" ] }, { "cell_type": "markdown", "id": "6bdf2faf", "metadata": {}, "source": [ "# Solve With Pen and Paper:" ] }, { "cell_type": "code", "execution_count": 28, "id": "108761f9", "metadata": { "scrolled": false }, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle \\frac{d}{d \\theta} \\left(\\sin{\\left(\\theta \\right)} + \\tan{\\left(\\theta \\right)} + 2\\right) = ?$" ], "text/plain": [ "Eq(Derivative(sin(theta) + tan(theta) + 2, theta), ?)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$\\displaystyle \\int \\left(- \\sqrt{y} + e^{y}\\right)\\, dy = ?$" ], "text/plain": [ "Eq(Integral(-sqrt(y) + exp(y), y), ?)" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "Possible answers:\n" ] }, { "data": { "text/latex": [ "$\\displaystyle \\frac{d}{d \\theta} \\left(\\sin{\\left(\\theta \\right)} + \\tan{\\left(\\theta \\right)} + 2\\right) = \\cos{\\left(\\theta \\right)} + \\sec^{2}{\\left(\\theta \\right)}$" ], "text/plain": [ "Eq(Derivative(sin(theta) + tan(theta) + 2, theta), cos(theta) + sec(theta)**2)" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/latex": [ "$\\displaystyle \\int \\left(- \\sqrt{y} + e^{y}\\right)\\, dy = - \\frac{2 y^{\\frac{3}{2}}}{3} + e^{y}$" ], "text/plain": [ "Eq(Integral(-sqrt(y) + exp(y), y), -2*y**(3/2)/3 + exp(y))" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from sympy.simplify.fu import TR22,TR2i\n", "from sympy import *\n", "from sympy.abc import theta\n", "import random\n", "f = Function('f')\n", "g = Function('g')\n", "h = Function('h')\n", "theta = Symbol('theta')\n", "i = 0\n", "dkeywords = {\"polylog\",\"Ei\",\"gamma\",\"Piecewise\",\"li\",\"erf\",\"Si\",\"Ci\",\"hyper\",\"fresnel\",\"Li\",\"expint\",\"zoo\",\n", "\"nan\",\"oo\",\"abs\",\"re\",\"EulerGamma\", \"sinh\",\"tanh\", \"cosh\",'sign','abs','atan','csc','asin'} \n", "ikeywords = {\"polylog\",\"Ei\",\"gamma\",\"Piecewise\", \"li\", \"erf\", \"atan\", \"Si\", \"Ci\", \"hyper\", \"fresnel\", \"Li\", \n", "\"expint\",\"zoo\", \"nan\", \"oo\",\"EulerGamma\",\"sinh\",\"csc\",\"asin\"}\n", "keywords2 = {\"sin\",\"cos\",\"tan\"}\n", "def random_variable(i):\n", " return Symbol(random.choice([i for i in ['v','t','x','z','y']]), real=True)\n", "def random_value(i):\n", " return random.choice([i for i in range(-10,10) if i not in [0]])\n", "def power(a): \n", " return random_value(i)*a**int(random_value(i)/2)\n", "def scalar(a): \n", " return a*random_value(i) + random_value(i)\n", "def addSUBTR(a): \n", " return a+random_value(i)\n", "def dmain(a):\n", " def random_math(a): \n", " funs = [power,scalar,addSUBTR,power,scalar,addSUBTR,ln,exp,sin,cos,tan,sqrt] \n", " operations = [f(a)+g(a)+h(a),\n", " f(a)+g(a)-h(a),\n", " f(a)+g(a)*h(a),\n", " f(a)+g(a)/h(a),\n", " \n", " f(a)-g(a)+h(a),\n", " f(a)-g(a)-h(a),\n", " f(a)-g(a)*h(a),\n", " f(a)-g(a)/h(a),\n", "\n", " f(a)*g(a)+h(a),\n", " f(a)*g(a)-h(a),\n", " f(a)*g(a)*h(a),\n", " f(a)*g(a)/h(a), \n", " \n", " f(a)/g(a)+h(a),\n", " f(a)/g(a)-h(a),\n", " f(a)/g(a)*h(a),\n", " f(a)/g(a)/h(a), \n", "\n", " f(a)* ( g(a)+h(a) ),\n", " f(a)* ( g(a)-h(a) ),\n", " f(a)/ ( g(a)+h(a) ),\n", " f(a)/ ( g(a)-h(a) ),\n", " \n", " f(g(h(a))),\n", " f(h(a))+g(a),\n", " f(h(a))-g(a),\n", " f(h(a))*g(a),\n", " f(h(a))/g(a),\n", " f(a)/g(h(a))]\n", " operation = operations[random.randrange(0,len(operations))]\n", " return [[[operation.replace(f, i) for i in funs][random.randrange(0,len(funs))].replace(g, i) for i in funs]\\\n", " [random.randrange(0,len(funs))].replace(h, i) for i in funs][random.randrange(0,len(funs))]\n", " return random_math(a)\n", "def imain(a):\n", " def random_math2(a): \n", " funs = [power,scalar,addSUBTR,power,scalar,addSUBTR,ln,exp,sin,cos,tan,sqrt] \n", " operations = [f(g(a)),f(a)+g(a),f(a)-g(a),f(a)/g(a),f(a)*g(a)]\n", " operation = operations[random.randrange(0,len(operations))]\n", " return [[operation.replace(f, i) for i in funs][random.randrange(0,len(funs))].replace(g, i) for i in funs]\\\n", " [random.randrange(0,len(funs))]\n", " return random_math2(a)\n", "derror = True\n", "def dtest():\n", " global setup1\n", " global derror\n", " global practice1\n", " a = random_variable(i)\n", " setup1 = dmain(a)\n", " practice1 = Derivative(setup1,a) \n", " p1eq = TR22(Eq(practice1,practice1.doit(),evaluate=False))\n", " if any(kw in str(setup1) for kw in keywords2):\n", " setup1 = setup1.replace(a,theta)\n", " practice1 = Derivative(setup1,theta) \n", " p1eq = TR22(Eq(practice1,practice1.doit(),evaluate=False))\n", " if p1eq.rhs != 0 and not any(kw in str(p1eq) for kw in dkeywords):\n", " derror = False\n", " return p1eq\n", "while derror == True: \n", " output1 = dtest()\n", "ierror = True\n", "def itest():\n", " global ierror\n", " global practice2\n", " global setup2\n", " a = random_variable(i)\n", " setup2 = imain(a)\n", " practice2 = Integral(setup2,a) \n", " p2eq = TR22(Eq(practice2,practice2.doit(),evaluate=False))\n", " if str(factor_terms(p2eq.lhs)) != str(factor_terms(p2eq.rhs)) and not any(kw in str(p2eq) for kw in ikeywords)\\\n", " and str(p2eq.lhs) != str(-p2eq.rhs): \n", " if any(kw in str(setup2) for kw in keywords2):\n", " setup2 = setup2.replace(a,theta)\n", " practice2 = Integral(setup2,theta) \n", " p2eq = TR22(Eq(practice2,practice2.doit(),evaluate=False))\n", " ierror = False\n", " return p2eq\n", "while ierror == True:\n", " output2 = itest()\n", "questionmark = Symbol('?')\n", "def lhs():\n", " return display(Eq(nsimplify(output1.lhs),questionmark),Eq(nsimplify(output2.lhs),questionmark)) \n", "def rhs():\n", " return display(Eq(nsimplify(output1.lhs),nsimplify(output1.rhs)),Eq(nsimplify(output2.lhs),nsimplify(output2.rhs)))\n", "lhs()\n", "print(\"\\n\")\n", "print(\"\\n\")\n", "print(\"\\n\")\n", "print(\"\\n\")\n", "print(\"\\n\")\n", "print(\"Possible answers:\")\n", "rhs()\n", "if generate.clicked:\n", " equation_count += 1\n", " print(f\"Equation count {equation_count}\")" ] }, { "cell_type": "markdown", "id": "2393180e", "metadata": {}, "source": [ "# Donate With Crypto: \n", "Bitcoin (BTC): **bc1qtrjmtsfxhmjmu4wwdh03u92gpy662rnt3drlm7**\n", "\n", "Ethereum (ETH): **0x8B20704BB59E985Ad85D2477A9aB85a6F499F9E8**\n", "\n", "Binance (BNB/BEP20): **0x8B20704BB59E985Ad85D2477A9aB85a6F499F9E8**\n", "\n", "\n", "**Created by https://github.com/NSC9 - Live @ https://nsc9.github.io/ - MIT License - v7.8**\n", "\n", "**Powered by https://huggingface.co & https://runmercury.com/**\n", "\n", "Latest version source code: https://github.com/NSC9/Sample_of_Work/tree/Main/Artificial_Calculus_Teacher\n", "\n", "**Below are the expressions in plain text format for easy copy/pasting into these calculus calculator websites if you get stuck:**" ] }, { "cell_type": "code", "execution_count": 30, "id": "15c3f34f", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Differentiate: sin(theta) + tan(theta) + 2\n", "Integrate: -sqrt(y) + exp(y)\n" ] } ], "source": [ "keywords3 = {\"theta\"}\n", "if any(kw in str(nsimplify(output1.lhs)) for kw in keywords3):\n", " print(\"Differentiate:\",str(nsimplify(output1.lhs))[11:-8])\n", " p1 = \" \"+str(nsimplify(output1.lhs))[11:-8]\n", "else:\n", " print(\"Differentiate:\",str(nsimplify(output1.lhs))[11:-4])\n", " p1 = \" \"+str(nsimplify(output1.lhs))[11:-4]\n", " \n", "if any(kw in str(nsimplify(output2.lhs)) for kw in keywords3):\n", " print(\"Integrate:\",str(nsimplify(output2.lhs))[9:-8])\n", " p2 = \" \"+str(nsimplify(output2.lhs))[9:-8]\n", "else:\n", " print(\"Integrate:\",str(nsimplify(output2.lhs))[9:-4]) \n", " p2 = \" \"+str(nsimplify(output2.lhs))[9:-4]\n" ] }, { "cell_type": "markdown", "id": "30b55c90", "metadata": {}, "source": [ "**https://www.derivative-calculator.net/ -- https://www.integral-calculator.com/**" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" } }, "nbformat": 4, "nbformat_minor": 5 }