|
import os |
|
import torch |
|
import torchaudio |
|
import logging |
|
import langid |
|
import whisper |
|
langid.set_languages(['en', 'zh', 'ja']) |
|
|
|
import numpy as np |
|
from data.tokenizer import ( |
|
AudioTokenizer, |
|
tokenize_audio, |
|
) |
|
from data.collation import get_text_token_collater |
|
from utils.g2p import PhonemeBpeTokenizer |
|
|
|
from macros import * |
|
|
|
text_tokenizer = PhonemeBpeTokenizer(tokenizer_path="./utils/g2p/bpe_69.json") |
|
text_collater = get_text_token_collater() |
|
|
|
device = torch.device("cpu") |
|
if torch.cuda.is_available(): |
|
device = torch.device("cuda", 0) |
|
|
|
codec = AudioTokenizer(device) |
|
|
|
whisper_model = None |
|
|
|
@torch.no_grad() |
|
def transcribe_one(model, audio_path): |
|
|
|
audio = whisper.load_audio(audio_path) |
|
audio = whisper.pad_or_trim(audio) |
|
|
|
|
|
mel = whisper.log_mel_spectrogram(audio).to(model.device) |
|
|
|
|
|
_, probs = model.detect_language(mel) |
|
print(f"Detected language: {max(probs, key=probs.get)}") |
|
lang = max(probs, key=probs.get) |
|
|
|
options = whisper.DecodingOptions(temperature=1.0, best_of=5, fp16=False if device == torch.device("cpu") else True, sample_len=150) |
|
result = whisper.decode(model, mel, options) |
|
|
|
|
|
print(result.text) |
|
|
|
text_pr = result.text |
|
if text_pr.strip(" ")[-1] not in "?!.,。,?!。、": |
|
text_pr += "." |
|
return lang, text_pr |
|
|
|
def make_prompt(name, audio_prompt_path, transcript=None): |
|
global model, text_collater, text_tokenizer, codec |
|
wav_pr, sr = torchaudio.load(audio_prompt_path) |
|
|
|
if wav_pr.size(-1) / sr > 15: |
|
raise ValueError(f"Prompt too long, expect length below 15 seconds, got {wav_pr / sr} seconds.") |
|
if wav_pr.size(0) == 2: |
|
wav_pr = wav_pr.mean(0, keepdim=True) |
|
text_pr, lang_pr = make_transcript(name, wav_pr, sr, transcript) |
|
|
|
|
|
encoded_frames = tokenize_audio(codec, (wav_pr, sr)) |
|
audio_tokens = encoded_frames[0][0].transpose(2, 1).cpu().numpy() |
|
|
|
|
|
phonemes, langs = text_tokenizer.tokenize(text=f"{text_pr}".strip()) |
|
text_tokens, enroll_x_lens = text_collater( |
|
[ |
|
phonemes |
|
] |
|
) |
|
|
|
message = f"Detected language: {lang_pr}\n Detected text {text_pr}\n" |
|
|
|
|
|
save_path = os.path.join("./customs/", f"{name}.npz") |
|
np.savez(save_path, audio_tokens=audio_tokens, text_tokens=text_tokens, lang_code=lang2code[lang_pr]) |
|
logging.info(f"Successful. Prompt saved to {save_path}") |
|
|
|
|
|
def make_transcript(name, wav, sr, transcript=None): |
|
|
|
if not isinstance(wav, torch.FloatTensor): |
|
wav = torch.tensor(wav) |
|
if wav.abs().max() > 1: |
|
wav /= wav.abs().max() |
|
if wav.size(-1) == 2: |
|
wav = wav.mean(-1, keepdim=False) |
|
if wav.ndim == 1: |
|
wav = wav.unsqueeze(0) |
|
assert wav.ndim and wav.size(0) == 1 |
|
if transcript is None or transcript == "": |
|
logging.info("Transcript not given, using Whisper...") |
|
global whisper_model |
|
if whisper_model is None: |
|
whisper_model = whisper.load_model("medium") |
|
whisper_model.to(device) |
|
torchaudio.save(f"./prompts/{name}.wav", wav, sr) |
|
lang, text = transcribe_one(whisper_model, f"./prompts/{name}.wav") |
|
lang_token = lang2token[lang] |
|
text = lang_token + text + lang_token |
|
os.remove(f"./prompts/{name}.wav") |
|
whisper_model.cpu() |
|
else: |
|
text = transcript |
|
lang, _ = langid.classify(text) |
|
lang_token = lang2token[lang] |
|
text = lang_token + text + lang_token |
|
|
|
torch.cuda.empty_cache() |
|
return text, lang |