""" ======================================================= Comparison of LDA and PCA 2D projection of Iris dataset ======================================================= The Iris dataset represents 3 kind of Iris flowers (Setosa, Versicolour and Virginica) with 4 attributes: sepal length, sepal width, petal length and petal width. Principal Component Analysis (PCA) applied to this data identifies the combination of attributes (principal components, or directions in the feature space) that account for the most variance in the data. Here we plot the different samples on the 2 first principal components. Linear Discriminant Analysis (LDA) tries to identify attributes that account for the most variance *between classes*. In particular, LDA, in contrast to PCA, is a supervised method, using known class labels. """ import matplotlib.pyplot as plt import gradio as gr from sklearn import datasets from sklearn.decomposition import PCA from sklearn.discriminant_analysis import LinearDiscriminantAnalysis # load data iris = datasets.load_iris() X = iris.data y = iris.target target_names = iris.target_names # fit PCA pca = PCA(n_components=2) X_r = pca.fit(X).transform(X) # fit LDA lda = LinearDiscriminantAnalysis(n_components=2) X_r2 = lda.fit(X, y).transform(X) # Percentage of variance explained for each components print( "explained variance ratio (first two components): %s" % str(pca.explained_variance_ratio_) ) # save models using skop def plot_lda_pca(): fig = plt.figure(1, facecolor="w", figsize=(5,5)) colors = ["navy", "turquoise", "darkorange"] lw = 2 for color, i, target_name in zip(colors, [0, 1, 2], target_names): plt.scatter( X_r[y == i, 0], X_r[y == i, 1], color=color, alpha=0.8, lw=lw, label=target_name ) plt.legend(loc="best", shadow=False, scatterpoints=1) plt.title("PCA of IRIS dataset") for color, i, target_name in zip(colors, [0, 1, 2], target_names): plt.scatter( X_r2[y == i, 0], X_r2[y == i, 1], alpha=0.8, color=color, label=target_name ) plt.legend(loc="best", shadow=False, scatterpoints=1) plt.title("LDA of IRIS dataset") return fig title = "2-D projection of Iris dataset using LDA and PCA" with gr.Blocks(title=title) as demo: gr.Markdown(f"# {title}") gr.Markdown(" This example shows how one can use Prinicipal Components Analysis (PCA) and Factor Analysis (FA) for model selection by observing the likelihood of a held-out dataset with added noise
" " The number of samples (n_samples) will determine the number of data points to produce.
" " The number of components (n_components) will determine the number of components each method will fit to, and will affect the likelihood of the held-out set.
" " The number of features (n_components) determine the number of features the toy dataset X variable will have.
" " For further details please see the sklearn docs:" ) gr.Markdown(" **[Demo is based on sklearn docs found here](https://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_lda.html#sphx-glr-auto-examples-decomposition-plot-pca-vs-lda-py)**
") gr.Markdown(" **Dataset** : A toy dataset with corrupted with homoscedastic noise (noise variance is the same for each feature) or heteroscedastic noise (noise variance is the different for each feature) .
") gr.Markdown(" Different number of features and number of components affect how well the low rank space is recovered.
" " Larger Depth trying to overfit and learn even the finner details of the data.
" ) # with gr.Row(): # n_samples = gr.Slider(value=100, minimum=10, maximum=1000, step=10, label="n_samples") # n_components = gr.Slider(value=2, minimum=1, maximum=20, step=1, label="n_components") # n_features = gr.Slider(value=5, minimum=5, maximum=25, step=1, label="n_features") # options for n_components btn = gr.Button(value="Run") btn.click(plot_lda_pca, outputs= gr.Plot(label='PCA vs LDA clustering') ) # demo.launch()