""" ======================================================= Comparison of LDA and PCA 2D projection of Iris dataset ======================================================= The Iris dataset represents 3 kind of Iris flowers (Setosa, Versicolour and Virginica) with 4 attributes: sepal length, sepal width, petal length and petal width. Principal Component Analysis (PCA) applied to this data identifies the combination of attributes (principal components, or directions in the feature space) that account for the most variance in the data. Here we plot the different samples on the 2 first principal components. Linear Discriminant Analysis (LDA) tries to identify attributes that account for the most variance *between classes*. In particular, LDA, in contrast to PCA, is a supervised method, using known class labels. """ import matplotlib.pyplot as plt import gradio as gr from sklearn import datasets from sklearn.decomposition import PCA from sklearn.discriminant_analysis import LinearDiscriminantAnalysis # load data iris = datasets.load_iris() X = iris.data y = iris.target target_names = iris.target_names # fit PCA pca = PCA(n_components=2) X_r = pca.fit(X).transform(X) # fit LDA lda = LinearDiscriminantAnalysis(n_components=2) X_r2 = lda.fit(X, y).transform(X) # Percentage of variance explained for each components print( "explained variance ratio (first two components): %s" % str(pca.explained_variance_ratio_) ) # save models using skop def plot_lda_pca(): # fig = plt.figure(1, facecolor="w", figsize=(5,5)) fig, axes = plt.subplots(2,1, sharey= False, sharex=False, figsize = (8,6)) colors = ["navy", "turquoise", "darkorange"] lw = 2 for color, i, target_name in zip(colors, [0, 1, 2], target_names): axes[0].scatter( X_r[y == i, 0], X_r[y == i, 1], color=color, alpha=0.8, lw=lw, label=target_name ) axes[0].legend(loc="lower right") axes[0].set_title("PCA of IRIS dataset") for color, i, target_name in zip(colors, [0, 1, 2], target_names): axes[1].scatter( X_r2[y == i, 0], X_r2[y == i, 1], alpha=0.8, color=color, label=target_name ) plt.legend(loc="best", shadow=False, scatterpoints=1) axes[1].legend(loc="lower right") axes[1].set_title("LDA of IRIS dataset") plt.tight_layout() return fig title = "2-D projection of Iris dataset using LDA and PCA" with gr.Blocks(title=title) as demo: gr.Markdown(f"# {title}") gr.Markdown(" This example shows how one can use Prinicipal Components Analysis (PCA) and Linear Discriminant Analysis (LDA) to cluster the Iris dataset based on provided features.
" " PCA applied to this data identifies the combination of attributes (principal components, or directions in the feature space) that account for the most variance in the data. Here we plot the different samples on the 2 first principal components.
" "
" " For further details please see the sklearn docs:" ) gr.Markdown(" **[Demo is based on sklearn docs found here](https://scikit-learn.org/stable/auto_examples/decomposition/plot_pca_vs_lda.html#sphx-glr-auto-examples-decomposition-plot-pca-vs-lda-py)**
") gr.Markdown(" **Dataset** : The Iris dataset represents 3 kind of Iris flowers (Setosa, Versicolour and Virginica) with 4 attributes: sepal length, sepal width, petal length and petal width. .
") # with gr.Row(): # n_samples = gr.Slider(value=100, minimum=10, maximum=1000, step=10, label="n_samples") # n_components = gr.Slider(value=2, minimum=1, maximum=20, step=1, label="n_components") # n_features = gr.Slider(value=5, minimum=5, maximum=25, step=1, label="n_features") # options for n_components btn = gr.Button(value="Run") btn.click(plot_lda_pca, outputs= gr.Plot(label='PCA vs LDA clustering') ) # demo.launch()