ot16 commited on
Commit
172704c
1 Parent(s): b806823

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +427 -115
app.py CHANGED
@@ -3,10 +3,22 @@ import pandas as pd
3
  import numpy as np
4
  import seaborn as sns
5
  from PIL import Image
 
 
6
  import matplotlib.pyplot as plt
7
  from sklearn.model_selection import train_test_split
8
  from sklearn.linear_model import LinearRegression
 
 
9
  from sklearn import metrics
 
 
 
 
 
 
 
 
10
 
11
 
12
  st.sidebar.header("Dashboard")
@@ -17,22 +29,42 @@ df = pd.read_csv("transactions_dataset.csv")
17
  tech_df = df.loc[df['sector'] == 'TECH']
18
 
19
 
20
-
21
  if app_mode == "Introduction":
22
 
23
  st.title("Introduction")
24
  st.markdown("### Welcome to our ESG rankings Dashboard!")
25
 
26
- #st.image("veh.jpeg", use_column_width=True)
27
 
28
- st.markdown("#### Wondering what is ESG rankings relative to Investments")
29
- st.markdown("Our company is a Health insurance company who is looking to improve their revenue model by expanding into a new sector: Vehicle Insurance.")
30
- st.markdown("##### Objectives")
31
- st.markdown("- Using other variables that contribute to investment over the years")
32
- st.markdown("- Points that can be made: ESG growth over the years; correlation w Investment & social pressures")
33
- st.markdown("- Does an increase ESG lead to increase in Investment? ")
34
 
35
- num = st.number_input('No. of Rows', 5, 10)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
  head = st.radio('View from top (head) or bottom (tail)', ('Head', 'Tail'))
38
  if head == 'Head':
@@ -40,131 +72,411 @@ if app_mode == "Introduction":
40
  else:
41
  st.dataframe(df.tail(num))
42
 
43
- st.text('(Rows,Columns)')
44
- st.write(df.shape)
45
-
46
- st.markdown("##### Key Variables")
47
 
 
 
48
  st.dataframe(df.describe())
49
 
50
- st.markdown("### Missing Values")
51
- st.markdown("Null or NaN values.")
52
 
53
- dfnull = df.isnull().sum()/len(df)*100
54
- totalmiss = dfnull.sum().round(2)
55
- st.write("Percentage of total missing values:",totalmiss)
56
- st.write(dfnull)
57
- if totalmiss <= 30:
58
- st.success("We have less then 30 percent of missing values, which is good. This provides us with more accurate data as the null values will not significantly affect the outcomes of our conclusions. And no bias will steer towards misleading results. ")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
  else:
60
  st.warning("Poor data quality due to greater than 30 percent of missing value.")
61
  st.markdown(" > Theoretically, 25 to 30 percent is the maximum missing values are allowed, there's no hard and fast rule to decide this threshold. It can vary from problem to problem.")
62
 
63
- st.markdown("### Completeness")
64
- st.markdown(" The ratio of non-missing values to total records in dataset and how comprehensive the data is.")
65
-
66
- st.write("Total data length:", len(df))
67
- nonmissing = (df.notnull().sum().round(2))
68
- completeness= round(sum(nonmissing)/len(df),2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69
 
70
- st.write("Completeness ratio:",completeness)
71
- st.write(nonmissing)
72
- if completeness >= 0.80:
73
- st.success("We have completeness ratio greater than 0.85, which is good. It shows that the vast majority of the data is available for us to use and analyze. ")
74
- else:
75
- st.success("Poor data quality due to low completeness ratio( less than 0.85).")
76
 
77
- elif app_mode == "Visualization":
 
78
  st.title("Visualization")
79
 
 
 
80
 
 
 
81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82
 
83
- # DATA VISUALISATION
84
- tab1, tab2, tab3, tab4 = st.tabs(["SNS Plot", "Bar Chart", "Line Chart", "Pie Plot"])
 
85
 
86
- #SNS plot
87
- tab1.subheader("SNS plot")
88
- tech_df = tech_df.sample(n=10000)
89
- fig = sns.pairplot(tech_df)
90
- tab1.pyplot(fig)
91
-
92
- #Bar Graph
93
- # User input for x-variable
94
- columns = ['Region_Code', 'Gender', 'Vehicle_Age']
95
- x_variable = tab2.selectbox("Select x-variable:", columns)
96
- tab2.subheader(f"{x_variable} vs Price (INR)")
97
- #data_by_variable = df.groupby(x_variable)['Annual_Premium'].mean()
98
- #tab2.bar_chart(data_by_variable)
99
-
100
- #Line Graph
101
- tab3.subheader("Age vs Price")
102
- #age_by_price = df.groupby('Age')['Annual_Premium'].mean()
103
- #tab3.line_chart(age_by_price)
104
-
105
- '''
106
- tab4.subheader("Pie plot")
107
- tab4.subheader("Response distribution by Vehicle Damage")
108
- response_counts = df.groupby(['Vehicle_Damage', 'Response']).size().unstack(fill_value=0)
109
- fig, ax = plt.subplots()
110
- colors = ['#ff9999','#66b3ff']
111
- damage_counts = response_counts.loc[1]
112
- percentages = (damage_counts.values / damage_counts.sum()) * 100
113
- labels = ['Yes', 'No']
114
- ax.pie(percentages, labels=labels, colors=colors, autopct='%1.1f%%', startangle=90)
115
- ax.axis('equal')
116
- tab4.pyplot(fig)
117
-
118
- #Pie Plot2
119
- tab4.subheader("Response Distribution by Not Previously Insured")
120
- response_counts = df.groupby(['Previously_Insured', 'Response']).size().unstack(fill_value=0)
121
- fig, ax = plt.subplots()
122
- colors = ['#ff9999','#66b3ff']
123
- prev_insurance_counts = response_counts.loc[0]
124
- percentages = (prev_insurance_counts.values / prev_insurance_counts.sum()) * 100
125
- labels = ['Yes', 'No']
126
- ax.pie(percentages, labels=labels, colors=colors, autopct='%1.1f%%', startangle=90)
127
- ax.axis('equal')
128
- tab4.pyplot(fig)
129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130
 
131
- tab1, tab2, tab3, tab4 = st.tabs(["SNS Plot", "Bar Chart", "Line Chart", "Pie Plot"])
 
132
 
133
- fig = sns.pairplot(df)
134
- tab1.pyplot(fig)
135
- '''
136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
  elif app_mode == "Prediction":
138
- st.markdown("Prediction")
139
-
140
- '''
141
- # Changing "Yes" and "No" to 1 and 0
142
- df.loc[df['Vehicle_Damage'] == "Yes", 'Vehicle_Damage'] = 1
143
- df.loc[df['Vehicle_Damage'] == "No", 'Vehicle_Damage'] = 0
144
- st.title("Prediction")
145
- X = df[['Age', 'Region_Code', 'Driving_License','Vehicle_Damage', 'Previously_Insured']]
146
- y = df['Annual_Premium']
 
 
 
 
 
 
 
147
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
148
- lin_reg = LinearRegression()
149
- lin_reg.fit(X_train,y_train)
150
- pred = lin_reg.predict(X_test)
151
-
152
- plt.figure(figsize=(10,7))
153
- plt.title("Actual vs. predicted Annual Premiums",fontsize=25)
154
- plt.xlabel("Actual test set Annual Premiums",fontsize=18)
155
- plt.ylabel("Predicted Annual Premiums", fontsize=18)
156
- plt.scatter(x=y_test,y=pred)
157
- plt.savefig('prediction.png')
158
- st.image('prediction.png')
159
-
160
- # Model Evaluation
161
- st.markdown("Evaluation")
162
- coeff_df = pd.DataFrame(lin_reg.coef_, X.columns, columns=['Coefficient'])
163
- st.dataframe(coeff_df)
164
- MAE = metrics.mean_absolute_error(y_test, pred)
165
- MSE = metrics.mean_squared_error(y_test, pred)
166
- RMSE = np.sqrt(metrics.mean_squared_error(y_test, pred))
167
- st.write('MAE:', MAE)
168
- st.write('MSE:', MSE)
169
- st.write('RMSE:', RMSE)
170
- '''
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  import numpy as np
4
  import seaborn as sns
5
  from PIL import Image
6
+ import io
7
+ import mlflow
8
  import matplotlib.pyplot as plt
9
  from sklearn.model_selection import train_test_split
10
  from sklearn.linear_model import LinearRegression
11
+ from sklearn.linear_model import LogisticRegression
12
+ from matplotlib.backends.backend_agg import FigureCanvasAgg
13
  from sklearn import metrics
14
+ from sklearn.model_selection import train_test_split, GridSearchCV
15
+ from sklearn.tree import DecisionTreeClassifier, plot_tree
16
+ from sklearn.tree import DecisionTreeRegressor
17
+ from sklearn.preprocessing import LabelEncoder
18
+ import graphviz
19
+ import missingno as mno
20
+ from sklearn.tree import export_graphviz
21
+
22
 
23
 
24
  st.sidebar.header("Dashboard")
 
29
  tech_df = df.loc[df['sector'] == 'TECH']
30
 
31
 
32
+ # - - - - - - - - - - - INTRODUCTION - - - - - - - - - - -
33
  if app_mode == "Introduction":
34
 
35
  st.title("Introduction")
36
  st.markdown("### Welcome to our ESG rankings Dashboard!")
37
 
38
+ st.image("ESG_image.png", use_column_width=True)
39
 
 
 
 
 
 
 
40
 
41
+ st.markdown("## Environmental - Social - Governance")
42
+ st.markdown("##### Does ESG rankings truly effect company investment & returns?")
43
+
44
+ st.markdown("""
45
+ ##### Objective:
46
+ - Our goal is to explore a companies profit margin ratio relative to ESG Rankings to make a positive feedback loop
47
+ """)
48
+
49
+ st.markdown("##### Approach:")
50
+ st.markdown("""
51
+ 1. Data Exploration
52
+ - Shape, outliers, nulls
53
+ 2. Comprehensive Variable Analysis
54
+ - Univariate Analysis
55
+ - Bi-variate analysis
56
+ - Multi-variate analysis
57
+ 3. Modelling
58
+ - Build model that solves business problem
59
+ """)
60
+
61
+ # - - - - - - - - - - - - - - - - - -
62
+
63
+ st.markdown("<hr>", unsafe_allow_html=True)
64
+
65
+ st.markdown("### About the Data Set")
66
+
67
+ num = st.number_input('How many rows would you like to see?', 5, 10)
68
 
69
  head = st.radio('View from top (head) or bottom (tail)', ('Head', 'Tail'))
70
  if head == 'Head':
 
72
  else:
73
  st.dataframe(df.tail(num))
74
 
75
+ st.text(f'This data frame has {df.shape[0]} Rows and {df.shape[1]} columns')
 
 
 
76
 
77
+
78
+ st.markdown("\n\n##### About the Variables")
79
  st.dataframe(df.describe())
80
 
81
+ st.markdown("\n\n### Missing Values")
82
+ st.markdown("Are there any Null or NaN?")
83
 
84
+ # Calculate percentage of missing values
85
+ dfnull = tech_df.isnull().sum() / len(tech_df) * 100
86
+ total_miss = dfnull.sum().round(2)
87
+
88
+ # Display percentage of total missing values
89
+ st.write("Percentage of total missing values:", total_miss, "%")
90
+
91
+ # Create two columns layout
92
+ col1, col2 = st.columns(2)
93
+
94
+ # Display DataFrame with missing value percentages in the first column
95
+ with col1:
96
+ st.write("Percentage of Missing Values:")
97
+ st.write(dfnull)
98
+
99
+ # Display Missing Values Matrix in the second column
100
+ with col2:
101
+ st.write("Missing Values Matrix:")
102
+ fig, ax = plt.subplots(figsize=(20, 6))
103
+ mno.matrix(tech_df, ax=ax)
104
+ st.pyplot(fig)
105
+
106
+ if total_miss <= 30:
107
+ st.success("This Data set is reliable to use with small amounts of missing values, thus yielding accurate data.")
108
  else:
109
  st.warning("Poor data quality due to greater than 30 percent of missing value.")
110
  st.markdown(" > Theoretically, 25 to 30 percent is the maximum missing values are allowed, there's no hard and fast rule to decide this threshold. It can vary from problem to problem.")
111
 
112
+ # - - - - - - - - - - - VISUALIZATION - - - - - - - - - - -
113
+ elif app_mode == "Visualization":
114
+ data = {
115
+ 'ESG_ranking': tech_df['ESG_ranking'],
116
+ 'PS_ratio': tech_df['PS_ratio'],
117
+ 'PB_ratio': tech_df['PB_ratio'],
118
+ 'roa_ratio': tech_df['roa_ratio'],
119
+ }
120
+
121
+ df = pd.DataFrame(data)
122
+
123
+ # Define weights for each metric
124
+ weights = {
125
+ 'ESG_ranking': 0.3,
126
+ 'PS_ratio': 0.2,
127
+ 'PB_ratio': 0.3,
128
+ 'roa_ratio': 0.2
129
+ }
130
+
131
+ data = {
132
+ 'ESG_ranking': tech_df['ESG_ranking'],
133
+ 'PS_ratio': tech_df['PS_ratio'],
134
+ 'PB_ratio': tech_df['PB_ratio']
135
+ }
136
+
137
+ df = pd.DataFrame(data)
138
+
139
+ # Create interaction terms
140
+ tech_df['ESG_PS_interaction'] = tech_df['ESG_ranking'] * tech_df['PS_ratio']
141
+ tech_df['ESG_PB_interaction'] = tech_df['ESG_ranking'] * tech_df['PB_ratio']
142
+ tech_df['PS_PB_interaction'] = tech_df['PS_ratio'] * tech_df['PB_ratio']
143
+
144
+
145
+ # Calculate the composite score
146
+ tech_df['Composite_Score'] = sum(tech_df[col] * weights[col] for col in weights)
147
 
148
+ cols = ['ESG_ranking', 'Volatility_Buy', 'Sharpe Ratio', 'inflation','PS_ratio','NetProfitMargin_ratio', 'PB_ratio', 'roa_ratio', 'roe_ratio','EPS_ratio','Composite_Score', 'ESG_PS_interaction', 'ESG_PB_interaction', 'PS_PB_interaction' ]
 
 
 
 
 
149
 
150
+ # - - - - - - - - - - - - PAIRPLOT
151
+
152
  st.title("Visualization")
153
 
154
+ # DATA VISUALISATION
155
+ tab1, tab2, tab3 = st.tabs(["Pair Plots", "Correlation", "Feature Engineering"])
156
 
157
+ # DF defenition
158
+ tech_df = tech_df.sample(n=10000)
159
 
160
+ # - - - - - - - - - - - - - - - TAB1
161
+ image_paths = ['bigger_pairplot.png', 'Annoted_bigger_sns.png', 'smaller_pairplot.png']
162
+ messages = ["#### All variable pairplot", "#### Notable Relationships", "#### Focus Point Variables"]
163
+
164
+ # Display the initial image and message
165
+ tab1.title("PAIR PLOTS")
166
+ tab1.write(messages[0])
167
+ tab1.image(image_paths[0], use_column_width=True)
168
+
169
+ button = tab1.button("Next Pair Plot")
170
+ if button:
171
+ tab1.write(messages[1])
172
+ tab1.image(image_paths[1], use_column_width=True)
173
+ button2 = tab1.button('Next Pair Plot ')
174
+ if button2:
175
+ tab1.write(messages[2])
176
+ tab1.image(image_paths[2], use_column_width=True)
177
 
178
+ var = tab1.button('Variables')
179
+ if var:
180
+ tab1.markdown("##### 'ESG_ranking', 'Volatility_Buy', 'Sharpe Ratio', 'inflation','PS_ratio','NetProfitMargin_ratio', 'PB_ratio', 'roa_ratio', 'roe_ratio','EPS_ratio'")
181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
182
 
183
+
184
+ # - - - - - - - - - - - - - - TAB 2
185
+
186
+ tab2.title('Variable Correlation')
187
+ tab2.markdown("##### 'ESG_ranking', 'Volatility_Buy', 'Sharpe Ratio', 'inflation','PS_ratio','NetProfitMargin_ratio', 'PB_ratio', 'roa_ratio', 'roe_ratio','EPS_ratio'")
188
+
189
+ # HEAT MAP
190
+ tab2.markdown('### Heatmap Correlation')
191
+
192
+ # heat map code
193
+ cols = ['ESG_ranking', 'Volatility_Buy', 'Sharpe Ratio', 'inflation','PS_ratio','NetProfitMargin_ratio', 'PB_ratio', 'roa_ratio', 'roe_ratio','EPS_ratio'] # possible essential columns
194
+ corrMatrix = tech_df[cols].corr()
195
+
196
+ fig2, ax = plt.subplots()
197
+ sns.heatmap(corrMatrix, annot=True, cmap='coolwarm', fmt='.2f', ax=ax)
198
+
199
+ # Display the plot within the Streamlit app
200
+ tab2.pyplot(fig2)
201
+
202
+
203
+ # -- DESCRIBE TABLES --
204
+ tab2.markdown('Differences of ESG Rankings')
205
 
206
+ # Grouping based on condition
207
+ high_rank = tech_df.groupby(tech_df['ESG_ranking'] > tech_df['ESG_ranking'].mean())
208
 
209
+ # Get the group with ESG_ranking greater than the mean
210
+ high_rank_group = high_rank.get_group(True)
 
211
 
212
+ # Display summary statistics for the group
213
+ tab2.subheader("Summary statistics for high ESG ranking group:")
214
+ tab2.write(high_rank_group.describe())
215
+
216
+ # Get the group with ESG_ranking less than or equal to the mean
217
+ low_rank_group = high_rank.get_group(False)
218
+
219
+ # Display summary statistics for the group
220
+ tab2.subheader("Summary statistics for low ESG ranking group:")
221
+ tab2.write(low_rank_group.describe())
222
+
223
+ # -- HISTOGRAMS --
224
+ tab2.subheader('Histograms')
225
+
226
+ # Create subplots
227
+ fig, axes = plt.subplots(2, 2, figsize=(12, 8))
228
+
229
+ # Plot histograms
230
+ sns.histplot(tech_df['ESG_ranking'], kde=True, ax=axes[0, 0])
231
+ axes[0, 0].set_title('Histogram of ESG Ranking')
232
+
233
+ sns.histplot(tech_df['PS_ratio'], kde=True, ax=axes[0, 1])
234
+ axes[0, 1].set_title('Histogram of PS Ratio')
235
+
236
+ sns.histplot(tech_df['PB_ratio'], kde=True, ax=axes[1, 0])
237
+ axes[1, 0].set_title('Histogram of PB Ratio')
238
+
239
+ sns.histplot(tech_df['roa_ratio'], kde=True, ax=axes[1, 1])
240
+ axes[1, 1].set_title('Histogram of ROA Ratio')
241
+
242
+ # Adjust layout
243
+ plt.tight_layout()
244
+
245
+ # Display the plot in Streamlit
246
+ tab2.pyplot(fig)
247
+
248
+ # -- BAR PLOTS --
249
+ fig, axes = plt.subplots(1, 4, figsize=(16, 8))
250
+
251
+ # Plot bar charts
252
+ sns.barplot(x='ESG_ranking', y='Volatility_sell', data=tech_df, ax=axes[0])
253
+ axes[0].set_title('Average stock sell by Group')
254
+
255
+ sns.barplot(x='ESG_ranking', y='expected_return (yearly)', data=tech_df, ax=axes[1])
256
+ axes[1].set_title('Average returns by Group')
257
+
258
+ sns.barplot(x='ESG_ranking', y='NetProfitMargin_ratio', data=tech_df, ax=axes[2])
259
+ axes[2].set_title('Average profits by Group')
260
+
261
+ sns.barplot(x='ESG_ranking', y='Volatility_Buy', data=tech_df, ax=axes[3]) # Swapped 'Volatility_Buy' with 'Volatility_sell'
262
+ axes[3].set_title('Average stock buy by Group')
263
+
264
+ # Adjust layout
265
+ plt.tight_layout()
266
+
267
+ # Display the plot in Streamlit
268
+ tab2.pyplot(fig)
269
+
270
+ # Bar Charts
271
+ tab2.subheader('Bar Charts')
272
+
273
+ # Create subplots
274
+ fig, axes = plt.subplots(1, 4, figsize=(12, 6))
275
+
276
+ # Plot bar charts
277
+ sns.barplot(x='ESG_ranking', y='PS_ratio', data=tech_df, ax=axes[0])
278
+ axes[0].set_title('Average PS Ratio by Group')
279
+
280
+ sns.barplot(x='ESG_ranking', y='PB_ratio', data=tech_df, ax=axes[1])
281
+ axes[1].set_title('Average PB Ratio by Group')
282
+
283
+ sns.barplot(x='ESG_ranking', y='roa_ratio', data=tech_df, ax=axes[2])
284
+ axes[2].set_title('Average ROA Ratio by Group')
285
+
286
+ sns.barplot(x='ESG_ranking', y='Volatility_sell', data=tech_df, ax=axes[3]) # Swapped 'Volatility_Buy' with 'Volatility_sell'
287
+ axes[3].set_title('Average stock sell by Group')
288
+
289
+ # Adjust layout
290
+ plt.tight_layout()
291
+
292
+ # Display the plot in Streamlit
293
+ tab2.pyplot(fig)
294
+
295
+ # Box Plots
296
+ tab2.subheader('Box Plots')
297
+
298
+ # Create subplots
299
+ fig, axes = plt.subplots(1, 4, figsize=(12, 6))
300
+
301
+ # Plot box plots
302
+ sns.boxplot(y='ESG_ranking', data=tech_df, ax=axes[0])
303
+ axes[0].set_title('Box Plot of ESG Ranking')
304
+
305
+ sns.boxplot(y='PS_ratio', data=tech_df, ax=axes[1])
306
+ axes[1].set_title('Box Plot of PS Ratio')
307
+
308
+ sns.boxplot(y='PB_ratio', data=tech_df, ax=axes[2])
309
+ axes[2].set_title('Box Plot of PB Ratio')
310
+
311
+ sns.boxplot(y='roa_ratio', data=tech_df, ax=axes[3])
312
+ axes[3].set_title('Box Plot of ROA Ratio')
313
+
314
+ # Adjust layout
315
+ plt.tight_layout()
316
+
317
+ # Display the plot in Streamlit
318
+ tab2.pyplot(fig)
319
+
320
+
321
+ # - - - - - - - - - - - - - - TAB 3
322
+ tab3.title('Feature(Data) Engineering')
323
+ tab3.markdown(
324
+ """
325
+ ESG Ranking: This metric reflects a company's Environmental, Social, and Governance (ESG) performance. It evaluates factors such as carbon emissions, diversity policies, and board diversity. A higher ESG ranking suggests better sustainability practices.
326
+ PS Ratio (Price-to-Sales Ratio): This ratio compares a company's market capitalization to its total sales revenue. It indicates how much investors are willing to pay for each dollar of sales generated by the company. A lower PS ratio may suggest a potentially undervalued stock.
327
+ PB Ratio (Price-to-Book Ratio): The PB ratio compares a company's market value to its book value, indicating how much investors are willing to pay for each dollar of assets. It helps assess whether a stock is overvalued or undervalued relative to its assets.
328
+ ROA Ratio (Return on Assets Ratio): This ratio measures a company's profitability relative to its total assets. It indicates how efficiently a company is generating profits from its assets. A higher ROA ratio suggests better asset utilization and profitability.
329
+
330
+ Interaction Terms:
331
+
332
+ ESG-PS Interaction: The interaction between ESG ranking and PS ratio captures how a company's sustainability practices may influence its price-to-sales ratio. For example, companies with higher ESG rankings might have lower PS ratios if investors value sustainability.
333
+ ESG-PB Interaction: Similarly, this interaction captures how a company's ESG performance may impact its price-to-book ratio. It helps assess whether sustainability practices influence investors' perceptions of a company's value relative to its assets.
334
+ PS-PB Interaction: This interaction explores the relationship between price-to-sales and price-to-book ratios. It provides insights into how investors weigh sales revenue and asset value when evaluating a company's stock.
335
+ Composite Score:
336
+
337
+ The composite score combines the weighted contributions of ESG ranking, PS ratio, PB ratio, and possibly other metrics. It offers a holistic assessment of a company's overall performance and sustainability. A higher composite score indicates better overall performance based on the chosen metrics and weights. It helps investors, analysts, and stakeholders gauge a company's standing and potential investment value.
338
+ """
339
+ )
340
+
341
+ # -- new table --
342
+ tab3.write(tech_df)
343
+
344
+ # - - - - - - - - - - - PREDICTION - - - - - - - - - - -
345
  elif app_mode == "Prediction":
346
+ st.title("Predictions")
347
+
348
+ cols = ['ESG_ranking', 'Volatility_Buy', 'Sharpe Ratio', 'inflation','PS_ratio','NetProfitMargin_ratio', 'PB_ratio', 'roa_ratio', 'roe_ratio','EPS_ratio'] # possible essential columns
349
+ temp_df = df[cols]
350
+ # Get list of all variable names
351
+ label_encoder = LabelEncoder()
352
+ for name in list(cols):
353
+ temp_df[name] = label_encoder.fit_transform(temp_df[name])
354
+
355
+ # Select the target variable for prediction
356
+ y = temp_df['NetProfitMargin_ratio']
357
+
358
+ # Select predictors (all other variables except the target variable)
359
+ X = temp_df.drop(columns=['NetProfitMargin_ratio'])
360
+
361
+ # Split the data into training and testing sets
362
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
363
+
364
+ # Fit linear regression model
365
+ model = LinearRegression()
366
+ model.fit(X_train, y_train)
367
+
368
+ # Make predictions
369
+ y_pred = model.predict(X_test)
370
+ results_df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
371
+
372
+ # Display the subheader
373
+ st.subheader('Actual vs. Predicted for Net Profit Margin ratio (Linear Regression)')
374
+
375
+ # Create a new Matplotlib figure and axis
376
+ fig, ax = plt.subplots()
377
+
378
+ # Scatter plot
379
+ scatter_plot = sns.scatterplot(x='Actual', y='Predicted', data=results_df, ax=ax)
380
+ scatter_plot.set_title('Actual vs. Predicted for NetProfitMargin_ratio')
381
+ scatter_plot.set_xlabel('Actual')
382
+ scatter_plot.set_ylabel('Predicted')
383
+
384
+ # Regression line plot
385
+ sns.regplot(x='Actual', y='Predicted', data=results_df, scatter=False, color='red', ax=ax)
386
+
387
+ # Display the plot within the Streamlit app
388
+ st.pyplot(fig)
389
+
390
+ # - - - - - - - - - - - - - - DECISION TREE REGRESSOR
391
+ st.subheader('Decision Tree Regressor')
392
+
393
+ # Define columns
394
+ cols = ['ESG_ranking', 'Volatility_Buy', 'Sharpe Ratio', 'inflation', 'PS_ratio', 'NetProfitMargin_ratio',
395
+ 'PB_ratio', 'roa_ratio', 'roe_ratio', 'EPS_ratio']
396
+
397
+ # Filter dataframe based on selected columns
398
+ temp_df = tech_df[cols]
399
+
400
+ # Split features and target variable
401
+ X = temp_df.drop(["NetProfitMargin_ratio"], axis=1)
402
+ y = temp_df["NetProfitMargin_ratio"]
403
+
404
+ # Split dataset into training set and test set
405
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)
406
+
407
+ # Create Decision Tree Regressor object
408
+ clf = DecisionTreeRegressor(max_depth=3)
409
+
410
+ # Train Decision Tree Regressor
411
+ clf.fit(X_train, y_train)
412
+
413
+ # Predict the response for test dataset
414
+ y_pred = clf.predict(X_test)
415
+
416
+ # Calculate metrics
417
+ mse = metrics.mean_squared_error(y_test, y_pred)
418
+ r2_score = metrics.r2_score(y_test, y_pred)
419
+
420
+ # Display MSE and R2 score
421
+ st.write(f"MSE: {mse}")
422
+ st.write(f"R2 Score: {r2_score}")
423
+
424
+ # Plot decision tree
425
+ st.graphviz_chart(export_graphviz(clf, out_file=None, feature_names=X.columns, filled=True, rounded=True))
426
+
427
+ # - - - - - - - - - - - - - - - - - PYCARET
428
+ st.subheader('Pycaret Setup')
429
+
430
+ data = {
431
+ 'Description': ['Session id', 'Target', 'Target type', 'Original data shape', 'Transformed data shape',
432
+ 'Transformed train set shape', 'Transformed test set shape', 'Numeric features',
433
+ 'Preprocess', 'Imputation type', 'Numeric imputation', 'Categorical imputation',
434
+ 'Transform target', 'Transform target method', 'Fold Generator', 'Fold Number',
435
+ 'CPU Jobs', 'Use GPU', 'Log Experiment', 'Experiment Name', 'USI'],
436
+ 'Value': [2557, 'NetProfitMargin_ratio', 'Regression', '(92401, 10)', '(92401, 10)', '(64680, 10)',
437
+ '(27721, 10)', 9, True, 'simple', 'mean', 'mode', True, 'yeo-johnson', 'KFold', 10, -1,
438
+ False, False, 'test1', '08d7']
439
+ }
440
+
441
+ df = pd.DataFrame(data)
442
+
443
+ # Display DataFrame as a table
444
+ st.table(df)
445
+
446
+
447
+ st.subheader('Best Models - Pycaret/MLFlow')
448
+
449
+ # Create a DataFrame from the given data
450
+ data = {
451
+ 'Model': ['knn', 'rf', 'et', 'lightgbm', 'xgboost', 'dt', 'gbr', 'ada', 'br', 'ridge',
452
+ 'lr', 'huber', 'en', 'lasso', 'llar', 'par', 'omp', 'dummy', 'lar'],
453
+ 'Algorithm': ['K Neighbors Regressor', 'Random Forest Regressor', 'Extra Trees Regressor',
454
+ 'Light Gradient Boosting Machine', 'Extreme Gradient Boosting', 'Decision Tree Regressor',
455
+ 'Gradient Boosting Regressor', 'AdaBoost Regressor', 'Bayesian Ridge', 'Ridge Regression',
456
+ 'Linear Regression', 'Huber Regressor', 'Elastic Net', 'Lasso Regression',
457
+ 'Lasso Least Angle Regression', 'Passive Aggressive Regressor', 'Orthogonal Matching Pursuit',
458
+ 'Dummy Regressor', 'Least Angle Regression'],
459
+ 'MAE': [0.0000, 0.0000, 0.0000, 0.0055, 0.0003, 0.0000, 0.2143, 1.2493, 2.2450, 2.2451,
460
+ 2.2450, 2.1995, 2.3610, 2.3733, 2.3733, 3.0690, 6.3290, 8.3423, 8.7474],
461
+ 'MSE': [0.0000, 0.0000, 0.0000, 0.0002, 0.0000, 0.0000, 0.0777, 2.3647, 7.3785, 7.3784,
462
+ 7.3785, 8.0557, 9.1970, 9.4301, 9.4301, 16.9831, 68.2626, 108.6826, 147.4126],
463
+ 'RMSE': [0.0000, 0.0000, 0.0000, 0.0125, 0.0007, 0.0000, 0.2785, 1.5376, 2.7163, 2.7163,
464
+ 2.7163, 2.8372, 3.0326, 3.0708, 3.0708, 4.0527, 8.2619, 10.4250, 10.9345],
465
+ 'R2': [1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 0.9993, 0.9782, 0.9319, 0.9319,
466
+ 0.9319, 0.9257, 0.9152, 0.9130, 0.9130, 0.8435, 0.3705, -0.0023, -0.3576],
467
+ 'RMSLE': [0.0000, 0.0000, 0.0000, 0.0006, 0.0000, 0.0000, 0.0254, 0.1432, 0.2347, 0.2347,
468
+ 0.2347, 0.2184, 0.2081, 0.2166, 0.2165, 0.2905, 0.8095, 1.0236, 0.8220],
469
+ 'MAPE': [0.0000, 0.0000, 0.0000, 0.0006, 0.0000, 0.0000, 0.0309, 0.3354, 0.4365, 0.4367,
470
+ 0.4364, 0.4038, 0.4272, 0.4359, 0.4358, 0.6183, 3.0713, 6.3344, 2.9445],
471
+ 'TT (Sec)': [0.3600, 10.7310, 4.6500, 2.2730, 0.5930, 0.2650, 6.7620, 3.1140, 0.1550, 0.1480,
472
+ 0.8520, 1.1060, 0.1560, 0.1560, 0.2480, 0.2530, 0.1470, 0.1440, 0.2080]
473
+ }
474
+
475
+ df = pd.DataFrame(data)
476
+
477
+ # Display DataFrame as a table
478
+ st.table(df)
479
+
480
+ # - - - - - - - - - - - - -
481
+ st.subheader('Feature Importance')
482
+ st.image('newplot.png')