Spaces:
Sleeping
Sleeping
NadaAljohani
commited on
Commit
•
169e0c3
1
Parent(s):
7df626b
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from transformers import pipeline
|
2 |
from datasets import load_dataset
|
3 |
import gradio as gr
|
4 |
import torch
|
@@ -11,10 +11,12 @@ Generate a poetry in Arabic.
|
|
11 |
pipe_ar = pipeline('text-generation', framework='pt', model='akhooli/ap2023', tokenizer='akhooli/ap2023')
|
12 |
|
13 |
"""### **English: Text-Generation:**
|
14 |
-
Generate a poetry in English.
|
15 |
"""
|
16 |
|
17 |
-
|
|
|
|
|
18 |
|
19 |
"""### **Arabic and English: Text-To-Speech:**
|
20 |
Convert the Arabic/English poetry to speech.
|
@@ -54,149 +56,14 @@ This function will receive 2 inputs from the Gradio interface, and execute the f
|
|
54 |
def generate_poem(selected_language, text):
|
55 |
try:
|
56 |
if selected_language == "English":
|
57 |
-
poem = generate_poem_english(text)
|
58 |
-
sampling_rate, audio_data = text_to_speech_english(poem)
|
59 |
-
image = generate_image_from_poem(
|
60 |
elif selected_language == "Arabic":
|
61 |
-
poem = generate_poem_arabic(text)
|
62 |
-
sampling_rate, audio_data = text_to_speech_arabic(poem)
|
63 |
-
translated_text = translate_arabic_to_english(
|
64 |
-
image = generate_image_from_poem(translated_text)
|
65 |
|
66 |
return poem, (sampling_rate, audio_data), image
|
67 |
-
except
|
68 |
-
return f"Error: {str(e)}", None, None
|
69 |
-
|
70 |
-
"""### **Poem Generation Function:**
|
71 |
-
This function is responsible for generating a poem (text) in Arabic or English, based on the provided text.
|
72 |
-
"""
|
73 |
-
|
74 |
-
# Poem generation for Arabic
|
75 |
-
def generate_poem_arabic(text):
|
76 |
-
temp = 1.0
|
77 |
-
topk = 50
|
78 |
-
topp = 0.9
|
79 |
-
penalty = 1.2
|
80 |
-
generated_text = pipe_ar(text, max_length=96, do_sample=True, temperature=temp, top_k=topk, top_p=topp, repetition_penalty=penalty,
|
81 |
-
min_length=64, no_repeat_ngram_size=3, return_full_text=True,
|
82 |
-
num_beams=5, num_return_sequences=1)[0]["generated_text"]
|
83 |
-
clean_text = generated_text.replace("-", "") # To get rid of the dashes generated by the model.
|
84 |
-
return clean_text
|
85 |
-
|
86 |
-
# Poem generation for English
|
87 |
-
def generate_poem_english(text):
|
88 |
-
generated_text = pipe_en(text, do_sample=True, max_length=100, top_k=50, top_p=0.9, temperature=1.0, num_return_sequences=3)[0]['generated_text']
|
89 |
-
clean_text = generated_text.replace("</s>", "") # To get rid of the </s> generated by the model.
|
90 |
-
return clean_text
|
91 |
-
|
92 |
-
"""### **Audio Function:**
|
93 |
-
This function is responsible for generating audio in Arabic or English, based on the provided text.
|
94 |
-
"""
|
95 |
-
|
96 |
-
# Text-to-speech conversion for Arabic
|
97 |
-
def text_to_speech_arabic(text):
|
98 |
-
speech = synthesiser_arabic(text, forward_params={"speaker_embeddings": speaker_embedding_arabic})
|
99 |
-
audio_data = speech["audio"]
|
100 |
-
sampling_rate = speech["sampling_rate"]
|
101 |
-
return (sampling_rate, audio_data)
|
102 |
-
|
103 |
-
# Text-to-speech conversion for English
|
104 |
-
def text_to_speech_english(text):
|
105 |
-
speech = synthesiser_english(text, forward_params={"speaker_embeddings": speaker_embedding_english})
|
106 |
-
audio_data = speech["audio"]
|
107 |
-
sampling_rate = speech["sampling_rate"]
|
108 |
-
return (sampling_rate, audio_data)
|
109 |
-
|
110 |
-
"""### **Image Function:**
|
111 |
-
This function is responsible for generating an image based on the provided text.
|
112 |
-
"""
|
113 |
-
|
114 |
-
# Image generation function
|
115 |
-
def generate_image_from_poem(poem_text):
|
116 |
-
image = pipe_image(poem_text).images[0]
|
117 |
-
return image
|
118 |
-
|
119 |
-
"""### **Translation Function:**
|
120 |
-
This function is responsible for translating Arabic input to English, to be used for the image function, which accepts only English inputs.
|
121 |
-
"""
|
122 |
-
|
123 |
-
# Translation function from Arabic to English
|
124 |
-
def translate_arabic_to_english(text):
|
125 |
-
translated_text = pipe_translator(text)[0]['translation_text']
|
126 |
-
return translated_text
|
127 |
-
|
128 |
-
"""### **CSS Styling:**"""
|
129 |
-
|
130 |
-
custom_css = """
|
131 |
-
body {
|
132 |
-
background-color: #f4f4f9;
|
133 |
-
color: #333;
|
134 |
-
}
|
135 |
-
.gradio-container {
|
136 |
-
border-radius: 10px;
|
137 |
-
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
|
138 |
-
background-color: #fff;
|
139 |
-
}
|
140 |
-
label {
|
141 |
-
color: #4A90E2;
|
142 |
-
font-weight: bold;
|
143 |
-
}
|
144 |
-
|
145 |
-
input[type="text"],
|
146 |
-
textarea {
|
147 |
-
border: 1px solid #4A90E2;
|
148 |
-
}
|
149 |
-
textarea {
|
150 |
-
height: 150px;
|
151 |
-
}
|
152 |
-
|
153 |
-
button {
|
154 |
-
background-color: #4A90E2;
|
155 |
-
color: #fff;
|
156 |
-
border-radius: 5px;
|
157 |
-
cursor: pointer;
|
158 |
-
}
|
159 |
-
button:hover {
|
160 |
-
background-color: #357ABD;
|
161 |
-
}
|
162 |
-
|
163 |
-
.dropdown {
|
164 |
-
border: 1px solid #4A90E2;
|
165 |
-
border-radius: 4px;
|
166 |
-
}
|
167 |
-
|
168 |
-
"""
|
169 |
-
|
170 |
-
"""### **Examples for Gradio:**
|
171 |
-
Provide 4 predefined inputs to demonstrate how the interface works.
|
172 |
-
"""
|
173 |
-
|
174 |
-
examples = [
|
175 |
-
# First parameter is for the dropdown menu, and the second parameter is for the starter of the poem
|
176 |
-
["English", "The shining sun rises over the calm ocean"],
|
177 |
-
["Arabic", "الورود تتفتح في الربيع"],
|
178 |
-
["English", "The night sky is filled with stars and dreams"],
|
179 |
-
["Arabic", "اشعة الشمس المشرقة"]
|
180 |
-
]
|
181 |
-
|
182 |
-
"""### **Gradio Interface:**
|
183 |
-
Creating a Gradio interface to generate a poem, read the poem, and generate an image based on that poem.
|
184 |
-
"""
|
185 |
-
|
186 |
-
my_model = gr.Interface(
|
187 |
-
fn=generate_poem, # The primary function that will receive the inputs (language and the starter of the poem)
|
188 |
-
inputs=[
|
189 |
-
gr.Dropdown(["English", "Arabic"], label="Select Language"), # Dropdown menu to select the language, either "English" or "Arabic"
|
190 |
-
gr.Textbox(label="Enter a sentence") # Textbox where the user will input a sentence or phrase to generate the poem
|
191 |
-
],
|
192 |
-
|
193 |
-
outputs=[
|
194 |
-
gr.Textbox(label="Generated Poem", lines=10), # Textbox to display the generated poem
|
195 |
-
gr.Audio(label="Generated Audio", type="numpy"), # Audio output for the generated poem
|
196 |
-
gr.Image(label="Generated Image") # Image output for the generated image
|
197 |
-
],
|
198 |
-
|
199 |
-
examples=examples, # Predefined examples to guide the user
|
200 |
-
css=custom_css # Applying custom CSS
|
201 |
-
)
|
202 |
-
my_model.launch()
|
|
|
1 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
2 |
from datasets import load_dataset
|
3 |
import gradio as gr
|
4 |
import torch
|
|
|
11 |
pipe_ar = pipeline('text-generation', framework='pt', model='akhooli/ap2023', tokenizer='akhooli/ap2023')
|
12 |
|
13 |
"""### **English: Text-Generation:**
|
14 |
+
Generate a poetry in English using GPT-2 Poet model with AutoTokenizer and AutoModelForCausalLM.
|
15 |
"""
|
16 |
|
17 |
+
# Load the tokenizer and model for the GPT-2 poetry model
|
18 |
+
tokenizer_en = AutoTokenizer.from_pretrained("ashiqabdulkhader/GPT2-Poet")
|
19 |
+
model_en = AutoModelForCausalLM.from_pretrained("ashiqabdulkhader/GPT2-Poet")
|
20 |
|
21 |
"""### **Arabic and English: Text-To-Speech:**
|
22 |
Convert the Arabic/English poetry to speech.
|
|
|
56 |
def generate_poem(selected_language, text):
|
57 |
try:
|
58 |
if selected_language == "English":
|
59 |
+
poem = generate_poem_english(text) # Return the generated poem from the generate_poem_english function
|
60 |
+
sampling_rate, audio_data = text_to_speech_english(poem) # Return the audio from the text_to_speech_english function
|
61 |
+
image = generate_image_from_poem(poem) # Return the image from the generate_image_from_poem function
|
62 |
elif selected_language == "Arabic":
|
63 |
+
poem = generate_poem_arabic(text) # Return the generated poem from the generate_poem_arabic function
|
64 |
+
sampling_rate, audio_data = text_to_speech_arabic(poem) # Return the audio from the text_to_speech_arabic function
|
65 |
+
translated_text = translate_arabic_to_english(poem) # Return the translated poem from Arabic to English
|
66 |
+
image = generate_image_from_poem(translated_text) # Return the image from the generate_image_from_poem function
|
67 |
|
68 |
return poem, (sampling_rate, audio_data), image
|
69 |
+
except Exc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|