File size: 18,122 Bytes
76a12b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
import math
import torch
import transformers
from transformers import LogitsWarper, is_torch_xpu_available
from transformers.generation.logits_process import (
LogitNormalization,
LogitsProcessor,
LogitsProcessorList,
TemperatureLogitsWarper
)
from modules import shared
global_scores = None
class TemperatureLogitsWarperWithDynatemp(LogitsWarper):
def __init__(self, temperature: float, dynamic_temperature: bool, dynatemp_low: float, dynatemp_high: float, dynatemp_exponent: float):
if not isinstance(temperature, float) or not (temperature > 0):
except_msg = (
f"`temperature` (={temperature}) has to be a strictly positive float, otherwise your next token "
"scores will be invalid."
)
if isinstance(temperature, float) and temperature == 0.0:
except_msg += " If you're looking for greedy decoding strategies, set `do_sample=False`."
raise ValueError(except_msg)
self.temperature = temperature
self.dynamic_temperature = dynamic_temperature
self.dynatemp_low = dynatemp_low
self.dynatemp_high = dynatemp_high
self.dynatemp_exponent = dynatemp_exponent
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
# Regular temperature
if not self.dynamic_temperature:
scores = scores / self.temperature
return scores
# Dynamic temperature
else:
min_temp = self.dynatemp_low
max_temp = self.dynatemp_high
exponent_val = self.dynatemp_exponent
# Convert logits to probabilities
probs = torch.softmax(scores, dim=-1)
# Calculate entropy of the softmax probabilities
entropy = -1.0 * torch.where(probs > 0, probs * torch.log(probs), torch.zeros_like(probs)).sum()
# Guard against future possible division by zero
entropy = max(entropy, torch.tensor(1e-10)) # Ensures entropy is slightly greater than 0
# Any logits which are not -Infinity will be considered for calculating max entropy.
num_valid_tokens = torch.sum(scores > -float('inf')).item()
# Now, calculate the max entropy by using only the valid tokens' count
max_entropy = math.log(num_valid_tokens)
# Guard against future possible division by zero
max_entropy = max_entropy if max_entropy > 0.0 else 1e-10
# Normalize the entropy
normalized_entropy = entropy / max_entropy
# Map the normalized entropy to the desired temperature range using the power function
dyn_temp = min_temp + (max_temp - min_temp) * (normalized_entropy.pow(exponent_val))
# Apply the dynamically calculated temperature scaling
scores = scores / dyn_temp
# print("----------------------\nTemperature from generation_config:", self.temperature)
# print("min_temp:", min_temp)
# print("max_temp:", max_temp)
# print("Entropy:", entropy.item())
# print("Max Possible Entropy considering valid tokens only:", max_entropy)
# print("Normalized Entropy:", normalized_entropy.item())
# print("Dynamic Temperature (dyn_temp):", dyn_temp.item())
# print("----------------------")
# max_prob_token_id = torch.argmax(scores, dim=-1) # Get the token ID with the highest probability
# max_prob_token = shared.tokenizer.convert_ids_to_tokens(int(max_prob_token_id)) # Convert ID to token
# print("--- T=", float(dyn_temp), "token=", max_prob_token, "min=", min_temp, "max=", max_temp, "exponent=", exponent_val)
return scores
class MinPLogitsWarper(LogitsWarper):
def __init__(self, min_p: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
if min_p < 0 or min_p > 1.0:
raise ValueError(f"`min_p` has to be a float >= 0 and <= 1, but is {min_p}")
self.min_p = min_p
self.filter_value = filter_value
self.min_tokens_to_keep = min_tokens_to_keep
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
# Convert logits to probabilities
probs = torch.softmax(scores, dim=-1)
# Get the probability of the top token for each sequence in the batch
top_probs, _ = probs.max(dim=-1, keepdim=True)
# Calculate the actual min_p threshold by scaling min_p with the top token's probability
scaled_min_p = self.min_p * top_probs
# Create a mask for tokens that have a probability less than the scaled min_p
tokens_to_remove = probs < scaled_min_p
sorted_indices = torch.argsort(scores, descending=True, dim=-1)
sorted_indices_to_remove = torch.gather(tokens_to_remove, dim=-1, index=sorted_indices)
if self.min_tokens_to_keep > 1:
# Keep at least min_tokens_to_keep
sorted_indices_to_remove[..., : self.min_tokens_to_keep] = False
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
scores = scores.masked_fill(indices_to_remove, self.filter_value)
return scores
class TailFreeLogitsWarper(LogitsWarper):
def __init__(self, tfs: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
tfs = float(tfs)
if tfs < 0 or tfs > 1.0:
raise ValueError(f"`tfs` has to be a float >= 0 and <= 1, but is {tfs}")
self.tfs = tfs
self.filter_value = filter_value
self.min_tokens_to_keep = min_tokens_to_keep
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
sorted_logits, sorted_indices = torch.sort(scores, descending=True)
probs = sorted_logits.softmax(dim=-1)
# Compute second derivative normalized CDF
d2 = probs.diff().diff().abs()
normalized_d2 = d2 / d2.sum(dim=-1, keepdim=True)
normalized_d2_cdf = normalized_d2.cumsum(dim=-1)
# Remove tokens with CDF value above the threshold (token with 0 are kept)
sorted_indices_to_remove = normalized_d2_cdf > self.tfs
# Centre the distribution around the cutoff as in the original implementation of the algorithm
sorted_indices_to_remove = torch.cat(
(
torch.zeros(scores.shape[0], 1, dtype=torch.bool, device=scores.device),
sorted_indices_to_remove,
torch.ones(scores.shape[0], 1, dtype=torch.bool, device=scores.device),
),
dim=-1,
)
if self.min_tokens_to_keep > 1:
# Keep at least min_tokens_to_keep
sorted_indices_to_remove[..., : self.min_tokens_to_keep] = 0
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
scores = scores.masked_fill(indices_to_remove, self.filter_value)
return scores
class TopALogitsWarper(LogitsWarper):
def __init__(self, top_a: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
top_a = float(top_a)
if top_a < 0 or top_a > 1.0:
raise ValueError(f"`top_a` has to be a float >= 0 and <= 1, but is {top_a}")
self.top_a = top_a
self.filter_value = filter_value
self.min_tokens_to_keep = min_tokens_to_keep
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
sorted_logits, sorted_indices = torch.sort(scores, descending=True)
probs = sorted_logits.softmax(dim=-1)
# Remove tokens with probability less than top_a*(max(probs))^2 (token with 0 are kept)
probs_max = probs[..., 0, None]
sorted_indices_to_remove = probs < probs_max * probs_max * self.top_a
if self.min_tokens_to_keep > 1:
# Keep at least min_tokens_to_keep
sorted_indices_to_remove[..., : self.min_tokens_to_keep] = 0
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
scores = scores.masked_fill(indices_to_remove, self.filter_value)
return scores
class MirostatLogitsWarper(LogitsWarper):
def __init__(self, mirostat_mode: int, mirostat_tau: float, mirostat_eta: float, filter_value: float = -float("Inf"), min_tokens_to_keep: int = 1):
if mirostat_mode not in [2]:
raise ValueError(f"`mirostat` has to be a an integer 2, but is {mirostat_mode}")
self.mirostat_mode = mirostat_mode
self.mirostat_eta = mirostat_eta
self.mirostat_tau = mirostat_tau
self.filter_value = filter_value
self.min_tokens_to_keep = min_tokens_to_keep
self.mu = 2 * self.mirostat_tau
self.e = 0
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
logits = scores[0]
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
prob_original = torch.softmax(sorted_logits, dim=-1).tolist() # candidates
# Truncate the words with surprise values greater than mu
for i, candidate in enumerate(prob_original):
if candidate > 0 and -math.log2(candidate) > self.mu:
if (i == 0):
sorted_logits = sorted_logits[:1]
else:
sorted_logits = sorted_logits[:i]
break
# Normalize the probabilities of the remaining words
if is_torch_xpu_available():
prob_topk = torch.softmax(sorted_logits, dim=0).to("xpu")
prev_i = torch.multinomial(prob_topk, num_samples=1, replacement=True).to("xpu")
else:
prob_topk = torch.softmax(sorted_logits, dim=0).to('cuda')
prev_i = torch.multinomial(prob_topk, num_samples=1, replacement=True).to('cuda')
observed_surprise = -math.log2(prob_topk[prev_i])
self.e = observed_surprise - self.mirostat_tau
# Update mu using the learning rate and error
self.mu -= self.mirostat_eta * self.e
sorted_indices_to_remove = torch.ones_like(scores[0], dtype=torch.bool)
sorted_indices_to_remove[prev_i] = False
indices_to_remove = sorted_indices_to_remove.unsqueeze(0).scatter(1, sorted_indices.unsqueeze(0), sorted_indices_to_remove.unsqueeze(0))
scores = scores.masked_fill(indices_to_remove, self.filter_value)
return scores
class SpyLogitsWarper(LogitsWarper):
def __init__(self):
pass
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
global global_scores
global_scores = scores
return scores
class RepetitionPenaltyLogitsProcessorWithRange(LogitsProcessor):
'''
Copied from the transformers library
'''
def __init__(self, penalty: float, presence_penalty: float, frequency_penalty: float, _range: int):
if not (penalty > 0):
raise ValueError(f"`penalty` has to be strictly positive, but is {penalty}")
self.penalty = penalty
self.presence_penalty = presence_penalty
self.frequency_penalty = frequency_penalty
self._range = _range
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
input_ids = input_ids[:, -self._range:]
# We loop here because torch.unique() needs to process each row separately in the
# case that batch_size > 1.
for input_ids_row, scores_row in zip(input_ids, scores):
unique_ids, counts = torch.unique(input_ids_row, return_counts=True)
score = torch.gather(scores_row, 0, unique_ids)
# multiplicative repetition penalty
# if score < 0 then repetition penalty has to be multiplied to reduce the previous token probability
score = torch.where(score < 0, score * self.penalty, score / self.penalty)
scores_row.scatter_(0, unique_ids, score)
# presence_penalty and frequency_penalty
raw_presence_penalty = (counts > 0).to(scores.dtype)
raw_frequency_penalty = counts.to(scores.dtype)
additive_penalty = raw_presence_penalty * self.presence_penalty + raw_frequency_penalty * self.frequency_penalty
scores_row.scatter_add_(0, unique_ids, -additive_penalty)
return scores
def get_logits_warper_patch(self, generation_config):
# Make sure that temperature is float and not int
if isinstance(generation_config.temperature, int):
generation_config.temperature = float(generation_config.temperature)
temperature = generation_config.temperature
if generation_config.dynamic_temperature:
# Make sure TemperatureLogitsWarper will be created by temporarily
# setting temperature to a value != 1.
generation_config.temperature = 1.1
warpers = self._get_logits_warper_old(generation_config)
for i in range(len(warpers)):
if warpers[i].__class__.__name__ == 'TemperatureLogitsWarper':
warpers[i] = TemperatureLogitsWarperWithDynatemp(
temperature,
generation_config.dynamic_temperature,
generation_config.dynatemp_low,
generation_config.dynatemp_high,
generation_config.dynatemp_exponent
)
warpers_to_add = LogitsProcessorList()
min_tokens_to_keep = 2 if generation_config.num_beams > 1 else 1
if generation_config.mirostat_mode is not None and generation_config.mirostat_mode == 2:
warpers_to_add.append(MirostatLogitsWarper(mirostat_mode=generation_config.mirostat_mode, mirostat_eta=generation_config.mirostat_eta, mirostat_tau=generation_config.mirostat_tau, min_tokens_to_keep=min_tokens_to_keep))
# We need to disable samplers other than temperature
for warper in warpers:
if not isinstance(warper, TemperatureLogitsWarper):
warpers.remove(warper)
else:
if generation_config.tfs is not None and 0.0 <= generation_config.tfs < 1.0:
warpers_to_add.append(TailFreeLogitsWarper(tfs=generation_config.tfs, min_tokens_to_keep=min_tokens_to_keep))
if generation_config.top_a is not None and 0.0 < generation_config.top_a <= 1.0:
warpers_to_add.append(TopALogitsWarper(top_a=generation_config.top_a, min_tokens_to_keep=min_tokens_to_keep))
if generation_config.min_p is not None and 0.0 < generation_config.min_p <= 1.0:
warpers_to_add.append(MinPLogitsWarper(min_p=generation_config.min_p, min_tokens_to_keep=min_tokens_to_keep))
if len(warpers) > 0 and isinstance(warpers[-1], LogitNormalization):
normalize = warpers.pop(-1)
else:
normalize = None
warpers += warpers_to_add
if generation_config.temperature_last:
temperature_idx = None
for i in range(len(warpers)):
if warpers[i].__class__.__name__ in ['TemperatureLogitsWarper', 'TemperatureLogitsWarperWithDynatemp']:
temperature_idx = i
break
if temperature_idx is not None:
warpers.append(warpers.pop(temperature_idx))
if normalize is not None:
warpers.append(normalize)
warpers.append(SpyLogitsWarper())
warpers = LogitsProcessorList(warpers)
# for i in range(len(warpers)):
# print(warpers[i].__class__.__name__)
return warpers
def get_logits_processor_patch(self, **kwargs):
repetition_penalty = kwargs['generation_config'].repetition_penalty
presence_penalty = kwargs['generation_config'].presence_penalty
frequency_penalty = kwargs['generation_config'].frequency_penalty
repetition_penalty_range = kwargs['generation_config'].repetition_penalty_range
do_rep_pen_hijack = (repetition_penalty > 1) or (presence_penalty != 0) or (frequency_penalty != 0)
if do_rep_pen_hijack:
# Make sure that a RepetitionPenaltyLogitsProcessor will be created
kwargs['generation_config'].repetition_penalty = 1.1 # must set to some value > 1
result = self._get_logits_processor_old(**kwargs)
if do_rep_pen_hijack:
for i in range(len(result)):
if result[i].__class__.__name__ == 'RepetitionPenaltyLogitsProcessor':
result[i] = RepetitionPenaltyLogitsProcessorWithRange(repetition_penalty, presence_penalty, frequency_penalty, repetition_penalty_range)
return result
def generation_config_init_patch(self, **kwargs):
self.__init___old(**kwargs)
self.min_p = kwargs.pop("min_p", 0.0)
self.dynamic_temperature = kwargs.pop("dynamic_temperature", False)
self.dynatemp_low = kwargs.pop("dynatemp_low", 1)
self.dynatemp_high = kwargs.pop("dynatemp_high", 1)
self.dynatemp_exponent = kwargs.pop("dynatemp_exponent", 1)
self.tfs = kwargs.pop("tfs", 1.0)
self.top_a = kwargs.pop("top_a", 0.0)
self.mirostat_mode = kwargs.pop("mirostat_mode", 0)
self.mirostat_eta = kwargs.pop("mirostat_eta", 0.1)
self.mirostat_tau = kwargs.pop("mirostat_tau", 5)
self.repetition_penalty_range = kwargs.pop("repetition_penalty_range", 0)
self.presence_penalty = kwargs.pop("presence_penalty", 0)
self.frequency_penalty = kwargs.pop("frequency_penalty", 0)
self.temperature_last = kwargs.pop("temperature_last", False)
def hijack_samplers():
transformers.GenerationMixin._get_logits_warper_old = transformers.GenerationMixin._get_logits_warper
transformers.GenerationMixin._get_logits_warper = get_logits_warper_patch
transformers.GenerationMixin._get_logits_processor_old = transformers.GenerationMixin._get_logits_processor
transformers.GenerationMixin._get_logits_processor = get_logits_processor_patch
transformers.GenerationConfig.__init___old = transformers.GenerationConfig.__init__
transformers.GenerationConfig.__init__ = generation_config_init_patch
|