Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +91 -0
- cars.xls +0 -0
- requirements.txt +0 -0
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# # Araba Fiyatı Tahmin Eden Model ve Deployment
|
5 |
+
|
6 |
+
|
7 |
+
#import libraries
|
8 |
+
import pandas as pd
|
9 |
+
from sklearn.model_selection import train_test_split
|
10 |
+
from sklearn.linear_model import LinearRegression
|
11 |
+
from sklearn.metrics import r2_score,mean_squared_error
|
12 |
+
from sklearn.pipeline import Pipeline
|
13 |
+
from sklearn.compose import ColumnTransformer
|
14 |
+
from sklearn.preprocessing import StandardScaler,OneHotEncoder
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
#Load data
|
19 |
+
df=pd.read_excel('cars.xls')
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
X=df.drop('Price',axis=1)
|
28 |
+
y=df[['Price']]
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
X_train,X_test,y_train,y_test=train_test_split(X,y,
|
33 |
+
test_size=0.2,
|
34 |
+
random_state=42)
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
preproccer=ColumnTransformer(transformers=[('num',StandardScaler(),
|
40 |
+
['Mileage','Cylinder','Liter','Doors']),
|
41 |
+
('cat',OneHotEncoder(),['Make','Model','Trim','Type'])])
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
model=LinearRegression()
|
47 |
+
pipe=Pipeline(steps=[('preprocessor',preproccer),
|
48 |
+
('model',model)])
|
49 |
+
pipe.fit(X_train,y_train)
|
50 |
+
y_pred=pipe.predict(X_test)
|
51 |
+
mean_squared_error(y_test,y_pred)**0.5,r2_score(y_test,y_pred)
|
52 |
+
|
53 |
+
import streamlit as st
|
54 |
+
def price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather):
|
55 |
+
input_data=pd.DataFrame({
|
56 |
+
'Make':[make],
|
57 |
+
'Model':[model],
|
58 |
+
'Trim':[trim],
|
59 |
+
'Mileage':[mileage],
|
60 |
+
'Type':[car_type],
|
61 |
+
'Car_type':[car_type],
|
62 |
+
'Cylinder':[cylinder],
|
63 |
+
'Liter':[liter],
|
64 |
+
'Doors':[doors],
|
65 |
+
'Cruise':[cruise],
|
66 |
+
'Sound':[sound],
|
67 |
+
'Leather':[leather]
|
68 |
+
})
|
69 |
+
prediction=pipe.predict(input_data)[0]
|
70 |
+
return prediction
|
71 |
+
st.title("Araba Fiyatı Tahmin :red_car: @NaimeKorkmaz")
|
72 |
+
st.write("Arabanın özelliklerini seçin")
|
73 |
+
make=st.selectbox("Marka",df['Make'].unique())
|
74 |
+
model=st.selectbox("Model",df[df['Make']==make]['Model'].unique())
|
75 |
+
trim=st.selectbox("Trim",df[(df['Make']==make) & (df['Model']==model)]['Trim'].unique())
|
76 |
+
mileage=st.number_input("Kilometre",200,60000)
|
77 |
+
car_type=st.selectbox("Tipi",df[(df['Make']==make) & (df['Model']==model) & (df['Trim']==trim )]['Type'].unique())
|
78 |
+
cylinder=st.selectbox("Silindir",df['Cylinder'].unique())
|
79 |
+
liter=st.number_input("Liter",1,6)
|
80 |
+
doors=st.selectbox("Kapı",df['Doors'].unique())
|
81 |
+
cruise=st.radio("Hız S.",[True,False])
|
82 |
+
sound=st.radio("Ses Sistemi",[True,False])
|
83 |
+
leather=st.radio("Deri döşeme",[True,False])
|
84 |
+
if st.button("Tahmin"):
|
85 |
+
pred=price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather)
|
86 |
+
|
87 |
+
st.write("11062024:Predicted Price :red_car: $",round(pred[0],2))
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
|
cars.xls
ADDED
Binary file (142 kB). View file
|
|
requirements.txt
ADDED
Binary file (150 Bytes). View file
|
|