Spaces:
Sleeping
Sleeping
import requests | |
import json | |
import wikipedia | |
import requests | |
from bs4 import BeautifulSoup | |
import gradio as gr | |
from transformers import pipeline | |
# Set up Google SERP API credentials | |
serp_api_key = '5924c6cfe5fec240e39838ff06439c8d36d294a0' # Replace with your actual Google SERP API key | |
# Function to send a message and receive a response from the chatbot | |
def chat(message): | |
try: | |
# You can add your chatbot implementation here | |
return "This is a dummy chat response." | |
except Exception as e: | |
print("An error occurred:", e) | |
return "" | |
# Function to get the latest answers from Google SERP API | |
def get_latest_answers(query): | |
url = "https://google.serper.dev/search" | |
payload = json.dumps({ | |
"q": query | |
}) | |
headers = { | |
'X-API-KEY': serp_api_key, | |
'Content-Type': 'application/json' | |
} | |
response = requests.request("POST", url, headers=headers, data=payload) | |
try: | |
# Parse the response JSON | |
data = json.loads(response.text) | |
# Extract details from the response | |
output = "" | |
if 'knowledgeGraph' in data: | |
knowledge_graph = data['knowledgeGraph'] | |
output += "Website: {}\n".format(knowledge_graph.get('website')) | |
output += "Description: {}\n".format(knowledge_graph.get('description')) | |
if 'organic' in data: | |
organic_results = data['organic'] | |
for result in organic_results: | |
output += "Snippet: {}\n".format(result.get('snippet')) | |
if 'peopleAlsoAsk' in data: | |
people_also_ask = data['peopleAlsoAsk'] | |
for question in people_also_ask: | |
output += "Snippet: {}\n".format(question.get('snippet')) | |
return output | |
except json.JSONDecodeError: | |
print(".") | |
return "" | |
except Exception as e: | |
print(".") | |
return "" | |
# Function to search Wikipedia for an answer and summarize it | |
def search_wikipedia(query): | |
try: | |
search_results = wikipedia.search(query) | |
# Get the page summary of the first search result | |
if search_results: | |
page_title = search_results[0] | |
page_summary = wikipedia.summary(page_title) | |
return page_summary | |
else: | |
print(".") | |
return None | |
except wikipedia.exceptions.DisambiguationError as e: | |
# Handle disambiguation error | |
print(".") | |
return None | |
except wikipedia.exceptions.PageError as e: | |
# Handle page not found error | |
print(".") | |
return None | |
except Exception as e: | |
# Handle other exceptions | |
print(".") | |
return None | |
# Function to generate summarized paragraph using transformer-based summarization | |
def generate_summary(user_input): | |
output = get_latest_answers(user_input) | |
page_summary = search_wikipedia(user_input) | |
chat_answer = chat(user_input) | |
# Generate summarized paragraph using transformer-based summarization | |
summarizer = pipeline("summarization") | |
input_text = f"{output}\n {page_summary}\n" | |
summarized_paragraph = summarizer(input_text, max_length=200, do_sample=True)[0]['summary_text'] | |
return summarized_paragraph | |
# Define the Gradio interface | |
def summarizer_interface(user_input): | |
summarized_text = generate_summary(user_input) | |
return summarized_text | |
iface = gr.Interface( | |
fn=summarizer_interface, | |
inputs="text", | |
outputs="text", | |
title="Osana Web-GPT", | |
description="Enter your query and get the latest and better answer.", | |
theme="black", | |
layout="horizontal", | |
) | |
# Launch the interface | |
iface.launch() | |