Spaces:
Runtime error
Runtime error
Navanjana
commited on
Commit
•
5cee539
1
Parent(s):
7ba356d
Upload 2 files
Browse files- app.py +81 -0
- requirements.txt +11 -0
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import logging
|
3 |
+
import sys
|
4 |
+
import gradio as gr
|
5 |
+
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
6 |
+
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
|
7 |
+
|
8 |
+
from llama_index import VectorStoreIndex, SimpleDirectoryReader, ServiceContext
|
9 |
+
from llama_index.llms import HuggingFaceLLM
|
10 |
+
|
11 |
+
|
12 |
+
documents = SimpleDirectoryReader(
|
13 |
+
input_files=["bio.pdf"]
|
14 |
+
).load_data()
|
15 |
+
|
16 |
+
from llama_index.prompts.prompts import SimpleInputPrompt
|
17 |
+
|
18 |
+
|
19 |
+
system_prompt = "You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided."
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
# This will wrap the default prompts that are internal to llama-index
|
24 |
+
query_wrapper_prompt = SimpleInputPrompt("<|USER|>{query_str}<|ASSISTANT|>")
|
25 |
+
|
26 |
+
from huggingface_hub import login
|
27 |
+
login(token="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")
|
28 |
+
|
29 |
+
|
30 |
+
import torch
|
31 |
+
|
32 |
+
llm = HuggingFaceLLM(
|
33 |
+
context_window=4096,
|
34 |
+
max_new_tokens=256,
|
35 |
+
generate_kwargs={"temperature": 0.0, "do_sample": False},
|
36 |
+
system_prompt=system_prompt,
|
37 |
+
query_wrapper_prompt=query_wrapper_prompt,
|
38 |
+
tokenizer_name="meta-llama/Llama-2-7b-chat-hf",
|
39 |
+
model_name="meta-llama/Llama-2-7b-chat-hf",
|
40 |
+
device_map="auto",
|
41 |
+
# uncomment this if using CUDA to reduce memory usage
|
42 |
+
model_kwargs={"torch_dtype": torch.float16 , "load_in_8bit":True}
|
43 |
+
)
|
44 |
+
|
45 |
+
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
46 |
+
from llama_index import LangchainEmbedding, ServiceContext
|
47 |
+
|
48 |
+
embed_model = LangchainEmbedding(
|
49 |
+
HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
50 |
+
)
|
51 |
+
|
52 |
+
service_context = ServiceContext.from_defaults(
|
53 |
+
chunk_size=1024,
|
54 |
+
llm=llm,
|
55 |
+
embed_model=embed_model
|
56 |
+
)
|
57 |
+
|
58 |
+
index = VectorStoreIndex.from_documents(documents, service_context=service_context)
|
59 |
+
|
60 |
+
|
61 |
+
query_engine = index.as_query_engine()
|
62 |
+
|
63 |
+
# Define a function to get responses from your Q&A model
|
64 |
+
def get_response(query):
|
65 |
+
response = query_engine.query(query)
|
66 |
+
return response
|
67 |
+
|
68 |
+
# Create an input component for user queries
|
69 |
+
query_input = gr.inputs.Textbox(label="Enter your question", lines=2)
|
70 |
+
|
71 |
+
# Create an output component to display the response
|
72 |
+
response_output = gr.outputs.Textbox(label="Response")
|
73 |
+
|
74 |
+
# Create a Gradio interface
|
75 |
+
gr.Interface(
|
76 |
+
fn=get_response,
|
77 |
+
inputs=query_input,
|
78 |
+
outputs=response_output,
|
79 |
+
title="Q&A Assistant",
|
80 |
+
description="Ask a question and get an answer based on the provided documents.",
|
81 |
+
).launch()
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pypdf
|
2 |
+
python-dotenv
|
3 |
+
transformers
|
4 |
+
einops
|
5 |
+
accelerate
|
6 |
+
langchain
|
7 |
+
bitsandbytes
|
8 |
+
sentence_transformers
|
9 |
+
llama-index
|
10 |
+
gradio
|
11 |
+
huggingface_hub
|