import logging import sys import gradio as gr logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index import VectorStoreIndex, SimpleDirectoryReader, ServiceContext from llama_index.llms import HuggingFaceLLM documents = SimpleDirectoryReader( input_files=["bio.pdf"] ).load_data() from llama_index.prompts.prompts import SimpleInputPrompt system_prompt = "You are a Q&A assistant. Your goal is to answer questions as accurately as possible based on the instructions and context provided." # This will wrap the default prompts that are internal to llama-index query_wrapper_prompt = SimpleInputPrompt("<|USER|>{query_str}<|ASSISTANT|>") from huggingface_hub import login login(token="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") import torch llm = HuggingFaceLLM( context_window=4096, max_new_tokens=256, generate_kwargs={"temperature": 0.0, "do_sample": False}, system_prompt=system_prompt, query_wrapper_prompt=query_wrapper_prompt, tokenizer_name="meta-llama/Llama-2-7b-chat-hf", model_name="meta-llama/Llama-2-7b-chat-hf", device_map="auto", # uncomment this if using CUDA to reduce memory usage model_kwargs={"torch_dtype": torch.float16 , "load_in_8bit":True} ) from langchain.embeddings.huggingface import HuggingFaceEmbeddings from llama_index import LangchainEmbedding, ServiceContext embed_model = LangchainEmbedding( HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") ) service_context = ServiceContext.from_defaults( chunk_size=1024, llm=llm, embed_model=embed_model ) index = VectorStoreIndex.from_documents(documents, service_context=service_context) query_engine = index.as_query_engine() # Define a function to get responses from your Q&A model def get_response(query): response = query_engine.query(query) return response # Create an input component for user queries query_input = gr.inputs.Textbox(label="Enter your question", lines=2) # Create an output component to display the response response_output = gr.outputs.Textbox(label="Response") # Create a Gradio interface gr.Interface( fn=get_response, inputs=query_input, outputs=response_output, title="Q&A Assistant", description="Ask a question and get an answer based on the provided documents.", ).launch()