Spaces:
Runtime error
Runtime error
File size: 10,012 Bytes
255495b 73a3141 255495b 7971354 4ff32d6 7971354 255495b cfc810b 255495b 7971354 255495b 39ff2a7 255495b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
#!/usr/bin/env python
import os
import pathlib
import tempfile
import gradio as gr
import torch
import torchaudio
from fairseq2.assets import InProcAssetMetadataProvider, asset_store
from fairseq2.data import Collater, SequenceData, VocabularyInfo
from fairseq2.data.audio import (
AudioDecoder,
WaveformToFbankConverter,
WaveformToFbankOutput,
)
from seamless_communication.inference import SequenceGeneratorOptions
from fairseq2.generation import NGramRepeatBlockProcessor
from fairseq2.memory import MemoryBlock
from fairseq2.typing import DataType, Device
from huggingface_hub import snapshot_download
from seamless_communication.inference import BatchedSpeechOutput, Translator, SequenceGeneratorOptions
from seamless_communication.models.generator.loader import load_pretssel_vocoder_model
from seamless_communication.models.unity import (
UnitTokenizer,
load_gcmvn_stats,
load_unity_text_tokenizer,
load_unity_unit_tokenizer,
)
from torch.nn import Module
from seamless_communication.cli.expressivity.evaluate.pretssel_inference_helper import PretsselGenerator
from utils import LANGUAGE_CODE_TO_NAME
DESCRIPTION = """\
# Seamless Expressive
[SeamlessExpressive](https://github.com/facebookresearch/seamless_communication/blob/main/docs/expressive/README.md) is a speech-to-speech translation model that captures certain underexplored aspects of prosody such as speech rate and pauses, while preserving the style of one's voice and high content translation quality.
"""
CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1" and torch.cuda.is_available()
CHECKPOINTS_PATH = pathlib.Path(os.getenv("CHECKPOINTS_PATH", "/home/user/app/models"))
if not CHECKPOINTS_PATH.exists():
snapshot_download(repo_id="facebook/seamless-expressive", repo_type="model", local_dir=CHECKPOINTS_PATH)
snapshot_download(repo_id="facebook/seamless-m4t-v2-large", repo_type="model", local_dir=CHECKPOINTS_PATH)
# Ensure that we do not have any other environment resolvers and always return
# "demo" for demo purposes.
asset_store.env_resolvers.clear()
asset_store.env_resolvers.append(lambda: "demo")
# Construct an `InProcAssetMetadataProvider` with environment-specific metadata
# that just overrides the regular metadata for "demo" environment. Note the "@demo" suffix.
demo_metadata = [
{
"name": "seamless_expressivity@demo",
"checkpoint": f"file://{CHECKPOINTS_PATH}/m2m_expressive_unity.pt",
"char_tokenizer": f"file://{CHECKPOINTS_PATH}/spm_char_lang38_tc.model",
},
{
"name": "vocoder_pretssel@demo",
"checkpoint": f"file://{CHECKPOINTS_PATH}/pretssel_melhifigan_wm-final.pt",
},
{
"name": "seamlessM4T_v2_large@demo",
"checkpoint": f"file://{CHECKPOINTS_PATH}/seamlessM4T_v2_large.pt",
"char_tokenizer": f"file://{CHECKPOINTS_PATH}/spm_char_lang38_tc.model",
},
]
asset_store.metadata_providers.append(InProcAssetMetadataProvider(demo_metadata))
LANGUAGE_NAME_TO_CODE = {v: k for k, v in LANGUAGE_CODE_TO_NAME.items()}
if torch.cuda.is_available():
device = torch.device("cuda:0")
dtype = torch.float16
else:
device = torch.device("cpu")
dtype = torch.float32
MODEL_NAME = "seamless_expressivity"
VOCODER_NAME = "vocoder_pretssel"
# used for ASR for toxicity
m4t_translator = Translator(
model_name_or_card="seamlessM4T_v2_large",
vocoder_name_or_card=None,
device=device,
dtype=dtype,
)
unit_tokenizer = load_unity_unit_tokenizer(MODEL_NAME)
_gcmvn_mean, _gcmvn_std = load_gcmvn_stats(VOCODER_NAME)
gcmvn_mean = torch.tensor(_gcmvn_mean, device=device, dtype=dtype)
gcmvn_std = torch.tensor(_gcmvn_std, device=device, dtype=dtype)
translator = Translator(
MODEL_NAME,
vocoder_name_or_card=None,
device=device,
dtype=dtype,
apply_mintox=False,
)
text_generation_opts = SequenceGeneratorOptions(
beam_size=5,
unk_penalty=torch.inf,
soft_max_seq_len=(0, 200),
step_processor=NGramRepeatBlockProcessor(
ngram_size=10,
),
)
m4t_text_generation_opts = SequenceGeneratorOptions(
beam_size=5,
unk_penalty=torch.inf,
soft_max_seq_len=(1, 200),
step_processor=NGramRepeatBlockProcessor(
ngram_size=10,
),
)
pretssel_generator = PretsselGenerator(
VOCODER_NAME,
vocab_info=unit_tokenizer.vocab_info,
device=device,
dtype=dtype,
)
decode_audio = AudioDecoder(dtype=torch.float32, device=device)
convert_to_fbank = WaveformToFbankConverter(
num_mel_bins=80,
waveform_scale=2**15,
channel_last=True,
standardize=False,
device=device,
dtype=dtype,
)
def normalize_fbank(data: WaveformToFbankOutput) -> WaveformToFbankOutput:
fbank = data["fbank"]
std, mean = torch.std_mean(fbank, dim=0)
data["fbank"] = fbank.subtract(mean).divide(std)
data["gcmvn_fbank"] = fbank.subtract(gcmvn_mean).divide(gcmvn_std)
return data
collate = Collater(pad_value=0, pad_to_multiple=1)
AUDIO_SAMPLE_RATE = 16000
MAX_INPUT_AUDIO_LENGTH = 10 # in seconds
def remove_prosody_tokens_from_text(text):
# filter out prosody tokens, there is only emphasis '*', and pause '='
text = text.replace("*", "").replace("=", "")
text = " ".join(text.split())
return text
def preprocess_audio(input_audio_path: str) -> None:
arr, org_sr = torchaudio.load(input_audio_path)
new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE)
max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE)
if new_arr.shape[1] > max_length:
new_arr = new_arr[:, :max_length]
gr.Warning(f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used.")
torchaudio.save(input_audio_path, new_arr, sample_rate=AUDIO_SAMPLE_RATE)
def run(
input_audio_path: str,
source_language: str,
target_language: str,
) -> tuple[str, str]:
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
source_language_code = LANGUAGE_NAME_TO_CODE[source_language]
preprocess_audio(input_audio_path)
with pathlib.Path(input_audio_path).open("rb") as fb:
block = MemoryBlock(fb.read())
example = decode_audio(block)
example = convert_to_fbank(example)
example = normalize_fbank(example)
example = collate(example)
# get transcription for mintox
source_sentences, _ = m4t_translator.predict(
input=example["fbank"],
task_str="S2TT", # get source text
tgt_lang=source_language_code,
text_generation_opts=m4t_text_generation_opts,
)
source_text = str(source_sentences[0])
prosody_encoder_input = example["gcmvn_fbank"]
text_output, unit_output = translator.predict(
example["fbank"],
"S2ST",
tgt_lang=target_language_code,
src_lang=source_language_code,
text_generation_opts=text_generation_opts,
unit_generation_ngram_filtering=False,
duration_factor=1.0,
prosody_encoder_input=prosody_encoder_input,
src_text=source_text, # for mintox check
)
speech_output = pretssel_generator.predict(
unit_output.units,
tgt_lang=target_language_code,
prosody_encoder_input=prosody_encoder_input,
)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
torchaudio.save(
f.name,
speech_output.audio_wavs[0][0].to(torch.float32).cpu(),
sample_rate=speech_output.sample_rate,
)
text_out = remove_prosody_tokens_from_text(str(text_output[0]))
return f.name, text_out
TARGET_LANGUAGE_NAMES = [
"English",
"French",
"German",
"Spanish",
]
UPDATED_LANGUAGE_LIST = {
"English": ["French", "German", "Spanish"],
"French": ["English", "German", "Spanish"],
"German": ["English", "French", "Spanish"],
"Spanish": ["English", "French", "German"],
}
def rs_change(rs):
return gr.update(
choices=UPDATED_LANGUAGE_LIST[rs],
value=UPDATED_LANGUAGE_LIST[rs][0],
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(
value="Duplicate Space for private use",
elem_id="duplicate-button",
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
)
with gr.Row():
with gr.Column():
with gr.Group():
input_audio = gr.Audio(label="Input speech", type="filepath")
source_language = gr.Dropdown(
label="Source language",
choices=TARGET_LANGUAGE_NAMES,
value="English",
)
target_language = gr.Dropdown(
label="Target language",
choices=TARGET_LANGUAGE_NAMES,
value="French",
interactive=True,
)
source_language.change(
fn=rs_change,
inputs=[source_language],
outputs=[target_language],
)
btn = gr.Button()
with gr.Column():
with gr.Group():
output_audio = gr.Audio(label="Translated speech")
output_text = gr.Textbox(label="Translated text")
gr.Examples(
examples=[
["assets/Excited-Es.wav", "English", "Spanish"],
["assets/whisper.wav", "English", "French"],
["assets/FastTalking-En.wav", "French", "English"],
["assets/Sad-Es.wav", "English", "Spanish"],
],
inputs=[input_audio, source_language, target_language],
outputs=[output_audio, output_text],
fn=run,
cache_examples=CACHE_EXAMPLES,
api_name=False,
)
btn.click(
fn=run,
inputs=[input_audio, source_language, target_language],
outputs=[output_audio, output_text],
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=50).launch()
|