Spaces:
Runtime error
Runtime error
import os | |
import shutil | |
import subprocess | |
from PIL import Image | |
import directories as Dir | |
def clearDir(): | |
#/text_detection/cookie/user_input | |
#shutil.rmtree('/cookie') | |
#os.remove("/cookie/user_input.jpg") | |
#cropped_img_path = "/runs/detect/" + cropped_img_folder_name | |
shutil.rmtree(Dir.cropped_img_path) #'/runs/detect/user_output' | |
#txt_file_path = "/HCR/TextRecognition/log_demo_result.txt" | |
os.remove(Dir.txt_file_path) | |
def textDetection(im): | |
#change dir to yolo folder | |
#yolo_dir = "/HCR/TextDetection/" | |
#subprocess.call('pwd', shell=True) | |
#subprocess.call('ls', shell=True) | |
## subprocess.call('sudo cd '+ Dir.yolo_dir, shell=True) | |
#transfrom ndarray type to PIL type | |
im = Image.fromarray(im) | |
# save input image to cookie folder | |
## subprocess.call('cd cookie', shell=True) | |
im.save("/home/user/app"+Dir.yolo_dir+"/cookie/user_input.jpg", 'JPEG') | |
#yolo_dir = "/HCR/TextDetection/" | |
## subprocess.call('cd '+ Dir.yolo_dir, shell=True) | |
# (Shell) run detect.py to get cropped word images | |
subprocess.call(['python', "/home/user/app"+Dir.yolo_dir+'/detect.py', | |
#User Input Data : /text_detection/cookie | |
'--source','/cookie', | |
#Text Detection Model : /runs/wordDetection/weights/best.pt | |
'--weights', Dir.detect_model_dir, | |
'--conf','0.25', | |
#Output Images Save Directory /runs/detect/user_output | |
'--name', Dir.cropped_img_folder_name, | |
'--save-crop', | |
'--save-conf']) | |
#g = (size / max(im.size)) # gain | |
#im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize | |
#results = model(im) # inference | |
#results.render() # updates results.imgs with boxes and labels | |
#return Image.fromarray(results.imgs[0]) | |
def textRearrange(): | |
## subprocess.call('cd ' + Dir.DBSCAN_dir, shell=True) | |
subprocess.call(['python', "/home/user/app"+Dir.DBSCAN_dir+'/DBSCAN.py']) | |
def textRecognition(): | |
#%cd /content/drive/MyDrive/KITA/Text/lmdb/deep-text-recognition-benchmark | |
## subprocess.call('cd '+Dir.recog_dir, shell=True) | |
#!CUDA_VISIBLE_DEVICES=0 python3 demo.py --Transformation TPS --FeatureExtraction ResNet --SequenceModeling BiLSTM --Prediction Attn --image_folder /content/drive/MyDrive/KITA/Text/YOLO/runs/detect/youtube_data2/crops/word --saved_model /content/drive/MyDrive/KITA/Text/best_accuracy_s/best_accuracy_s.pth | |
subprocess.call('CUDA_VISIBLE_DEVICES="" python3 '+ "/home/user/app"+ Dir.recog_dir +'/demo.py --Transformation TPS --FeatureExtraction ResNet --SequenceModeling BiLSTM --Prediction Attn --image_folder /home/user/app' + Dir.yolo_dir + Dir.cropped_img_path + '/crops/word --saved_model '+ Dir.recog_model_dir, shell=True) | |
def getHcrResult(file_path):#*# | |
texts = "" | |
with open(file_path, 'r') as file: | |
lines = file.readlines() | |
for line in lines[3:]: | |
line = line.replace("\t","*",1) | |
line = line.replace(" ","*",1) | |
parts = line.replace(" ","") | |
parts2 = parts.split("*",2) | |
#print(len(parts2)) | |
texts = texts +" "+ str(parts2[1:2])[2:-2] | |
return texts |