import torch.nn as nn import torch.nn.functional as F class VGG_FeatureExtractor(nn.Module): """ FeatureExtractor of CRNN (https://arxiv.org/pdf/1507.05717.pdf) """ def __init__(self, input_channel, output_channel=512): super(VGG_FeatureExtractor, self).__init__() self.output_channel = [int(output_channel / 8), int(output_channel / 4), int(output_channel / 2), output_channel] # [64, 128, 256, 512] self.ConvNet = nn.Sequential( nn.Conv2d(input_channel, self.output_channel[0], 3, 1, 1), nn.ReLU(True), nn.MaxPool2d(2, 2), # 64x16x50 nn.Conv2d(self.output_channel[0], self.output_channel[1], 3, 1, 1), nn.ReLU(True), nn.MaxPool2d(2, 2), # 128x8x25 nn.Conv2d(self.output_channel[1], self.output_channel[2], 3, 1, 1), nn.ReLU(True), # 256x8x25 nn.Conv2d(self.output_channel[2], self.output_channel[2], 3, 1, 1), nn.ReLU(True), nn.MaxPool2d((2, 1), (2, 1)), # 256x4x25 nn.Conv2d(self.output_channel[2], self.output_channel[3], 3, 1, 1, bias=False), nn.BatchNorm2d(self.output_channel[3]), nn.ReLU(True), # 512x4x25 nn.Conv2d(self.output_channel[3], self.output_channel[3], 3, 1, 1, bias=False), nn.BatchNorm2d(self.output_channel[3]), nn.ReLU(True), nn.MaxPool2d((2, 1), (2, 1)), # 512x2x25 nn.Conv2d(self.output_channel[3], self.output_channel[3], 2, 1, 0), nn.ReLU(True)) # 512x1x24 def forward(self, input): return self.ConvNet(input) class RCNN_FeatureExtractor(nn.Module): """ FeatureExtractor of GRCNN (https://papers.nips.cc/paper/6637-gated-recurrent-convolution-neural-network-for-ocr.pdf) """ def __init__(self, input_channel, output_channel=512): super(RCNN_FeatureExtractor, self).__init__() self.output_channel = [int(output_channel / 8), int(output_channel / 4), int(output_channel / 2), output_channel] # [64, 128, 256, 512] self.ConvNet = nn.Sequential( nn.Conv2d(input_channel, self.output_channel[0], 3, 1, 1), nn.ReLU(True), nn.MaxPool2d(2, 2), # 64 x 16 x 50 GRCL(self.output_channel[0], self.output_channel[0], num_iteration=5, kernel_size=3, pad=1), nn.MaxPool2d(2, 2), # 64 x 8 x 25 GRCL(self.output_channel[0], self.output_channel[1], num_iteration=5, kernel_size=3, pad=1), nn.MaxPool2d(2, (2, 1), (0, 1)), # 128 x 4 x 26 GRCL(self.output_channel[1], self.output_channel[2], num_iteration=5, kernel_size=3, pad=1), nn.MaxPool2d(2, (2, 1), (0, 1)), # 256 x 2 x 27 nn.Conv2d(self.output_channel[2], self.output_channel[3], 2, 1, 0, bias=False), nn.BatchNorm2d(self.output_channel[3]), nn.ReLU(True)) # 512 x 1 x 26 def forward(self, input): return self.ConvNet(input) class ResNet_FeatureExtractor(nn.Module): """ FeatureExtractor of FAN (http://openaccess.thecvf.com/content_ICCV_2017/papers/Cheng_Focusing_Attention_Towards_ICCV_2017_paper.pdf) """ def __init__(self, input_channel, output_channel=512): super(ResNet_FeatureExtractor, self).__init__() self.ConvNet = ResNet(input_channel, output_channel, BasicBlock, [1, 2, 5, 3]) def forward(self, input): return self.ConvNet(input) # For Gated RCNN class GRCL(nn.Module): def __init__(self, input_channel, output_channel, num_iteration, kernel_size, pad): super(GRCL, self).__init__() self.wgf_u = nn.Conv2d(input_channel, output_channel, 1, 1, 0, bias=False) self.wgr_x = nn.Conv2d(output_channel, output_channel, 1, 1, 0, bias=False) self.wf_u = nn.Conv2d(input_channel, output_channel, kernel_size, 1, pad, bias=False) self.wr_x = nn.Conv2d(output_channel, output_channel, kernel_size, 1, pad, bias=False) self.BN_x_init = nn.BatchNorm2d(output_channel) self.num_iteration = num_iteration self.GRCL = [GRCL_unit(output_channel) for _ in range(num_iteration)] self.GRCL = nn.Sequential(*self.GRCL) def forward(self, input): """ The input of GRCL is consistant over time t, which is denoted by u(0) thus wgf_u / wf_u is also consistant over time t. """ wgf_u = self.wgf_u(input) wf_u = self.wf_u(input) x = F.relu(self.BN_x_init(wf_u)) for i in range(self.num_iteration): x = self.GRCL[i](wgf_u, self.wgr_x(x), wf_u, self.wr_x(x)) return x class GRCL_unit(nn.Module): def __init__(self, output_channel): super(GRCL_unit, self).__init__() self.BN_gfu = nn.BatchNorm2d(output_channel) self.BN_grx = nn.BatchNorm2d(output_channel) self.BN_fu = nn.BatchNorm2d(output_channel) self.BN_rx = nn.BatchNorm2d(output_channel) self.BN_Gx = nn.BatchNorm2d(output_channel) def forward(self, wgf_u, wgr_x, wf_u, wr_x): G_first_term = self.BN_gfu(wgf_u) G_second_term = self.BN_grx(wgr_x) G = F.sigmoid(G_first_term + G_second_term) x_first_term = self.BN_fu(wf_u) x_second_term = self.BN_Gx(self.BN_rx(wr_x) * G) x = F.relu(x_first_term + x_second_term) return x class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = self._conv3x3(inplanes, planes) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = self._conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def _conv3x3(self, in_planes, out_planes, stride=1): "3x3 convolution with padding" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, input_channel, output_channel, block, layers): super(ResNet, self).__init__() self.output_channel_block = [int(output_channel / 4), int(output_channel / 2), output_channel, output_channel] self.inplanes = int(output_channel / 8) self.conv0_1 = nn.Conv2d(input_channel, int(output_channel / 16), kernel_size=3, stride=1, padding=1, bias=False) self.bn0_1 = nn.BatchNorm2d(int(output_channel / 16)) self.conv0_2 = nn.Conv2d(int(output_channel / 16), self.inplanes, kernel_size=3, stride=1, padding=1, bias=False) self.bn0_2 = nn.BatchNorm2d(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool1 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0) self.layer1 = self._make_layer(block, self.output_channel_block[0], layers[0]) self.conv1 = nn.Conv2d(self.output_channel_block[0], self.output_channel_block[ 0], kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(self.output_channel_block[0]) self.maxpool2 = nn.MaxPool2d(kernel_size=2, stride=2, padding=0) self.layer2 = self._make_layer(block, self.output_channel_block[1], layers[1], stride=1) self.conv2 = nn.Conv2d(self.output_channel_block[1], self.output_channel_block[ 1], kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(self.output_channel_block[1]) self.maxpool3 = nn.MaxPool2d(kernel_size=2, stride=(2, 1), padding=(0, 1)) self.layer3 = self._make_layer(block, self.output_channel_block[2], layers[2], stride=1) self.conv3 = nn.Conv2d(self.output_channel_block[2], self.output_channel_block[ 2], kernel_size=3, stride=1, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(self.output_channel_block[2]) self.layer4 = self._make_layer(block, self.output_channel_block[3], layers[3], stride=1) self.conv4_1 = nn.Conv2d(self.output_channel_block[3], self.output_channel_block[ 3], kernel_size=2, stride=(2, 1), padding=(0, 1), bias=False) self.bn4_1 = nn.BatchNorm2d(self.output_channel_block[3]) self.conv4_2 = nn.Conv2d(self.output_channel_block[3], self.output_channel_block[ 3], kernel_size=2, stride=1, padding=0, bias=False) self.bn4_2 = nn.BatchNorm2d(self.output_channel_block[3]) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv0_1(x) x = self.bn0_1(x) x = self.relu(x) x = self.conv0_2(x) x = self.bn0_2(x) x = self.relu(x) x = self.maxpool1(x) x = self.layer1(x) x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool2(x) x = self.layer2(x) x = self.conv2(x) x = self.bn2(x) x = self.relu(x) x = self.maxpool3(x) x = self.layer3(x) x = self.conv3(x) x = self.bn3(x) x = self.relu(x) x = self.layer4(x) x = self.conv4_1(x) x = self.bn4_1(x) x = self.relu(x) x = self.conv4_2(x) x = self.bn4_2(x) x = self.relu(x) return x