File size: 9,580 Bytes
f37320f dcff7bb f37320f 22c1db1 f37320f c421bc7 f37320f b056a47 f37320f 49a4b29 e43b653 f37320f 65aaba1 f37320f c421bc7 f37320f 2ef1b3c f37320f fe21a95 f37320f dcff7bb f37320f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
"""
Build txtai workflows.
Based on this example: https://github.com/neuml/txtai/blob/master/examples/workflows.py
"""
import os
import re
import nltk
import pandas as pd
import streamlit as st
from txtai.embeddings import Documents, Embeddings
from txtai.pipeline import Segmentation, Summary, Tabular, Translation
from txtai.workflow import ServiceTask, Task, UrlTask, Workflow
class Application:
"""
Streamlit application.
"""
def __init__(self):
"""
Creates a new Streamlit application.
"""
# Component options
self.components = {}
# Defined pipelines
self.pipelines = {}
# Current workflow
self.workflow = []
# Embeddings index params
self.embeddings = None
self.documents = None
self.data = None
def number(self, label):
"""
Extracts a number from a text input field.
Args:
label: label to use for text input field
Returns:
numeric input
"""
value = st.sidebar.text_input(label)
return int(value) if value else None
def split(self, text):
"""
Splits text on commas and returns a list.
Args:
text: input text
Returns:
list
"""
return [x.strip() for x in text.split(",")]
def options(self, component):
"""
Extracts component settings into a component configuration dict.
Args:
component: component type
Returns:
dict with component settings
"""
options = {"type": component}
st.sidebar.markdown("---")
if component == "embeddings":
st.sidebar.markdown("**Embeddings Index** \n*Index workflow output*")
options["path"] = st.sidebar.text_input("Embeddings model path", value="sentence-transformers/nli-mpnet-base-v2")
options["upsert"] = st.sidebar.checkbox("Upsert")
elif component == "summary":
st.sidebar.markdown("**Summary** \n*Abstractive text summarization*")
options["path"] = st.sidebar.text_input("Model", value="sshleifer/distilbart-cnn-12-6")
options["minlength"] = self.number("Min length")
options["maxlength"] = self.number("Max length")
elif component == "segment":
st.sidebar.markdown("**Segment** \n*Split text into semantic units*")
options["sentences"] = st.sidebar.checkbox("Split sentences")
options["lines"] = st.sidebar.checkbox("Split lines")
options["paragraphs"] = st.sidebar.checkbox("Split paragraphs")
options["join"] = st.sidebar.checkbox("Join tokenized")
options["minlength"] = self.number("Min section length")
elif component == "service":
options["url"] = st.sidebar.text_input("URL")
options["method"] = st.sidebar.selectbox("Method", ["get", "post"], index=0)
options["params"] = st.sidebar.text_input("URL parameters")
options["batch"] = st.sidebar.checkbox("Run as batch", value=True)
options["extract"] = st.sidebar.text_input("Subsection(s) to extract")
if options["params"]:
options["params"] = {key: None for key in self.split(options["params"])}
if options["extract"]:
options["extract"] = self.split(options["extract"])
elif component == "tabular":
options["idcolumn"] = st.sidebar.text_input("Id columns")
options["textcolumns"] = st.sidebar.text_input("Text columns")
if options["textcolumns"]:
options["textcolumns"] = self.split(options["textcolumns"])
elif component == "translate":
st.sidebar.markdown("**Translate** \n*Machine translation*")
options["target"] = st.sidebar.text_input("Target language code", value="en")
return options
def build(self, components):
"""
Builds a workflow using components.
Args:
components: list of components to add to workflow
"""
# Clear application
self.__init__()
# pylint: disable=W0108
tasks = []
for component in components:
component = dict(component)
wtype = component.pop("type")
self.components[wtype] = component
if wtype == "embeddings":
self.embeddings = Embeddings({**component})
self.documents = Documents()
tasks.append(Task(self.documents.add, unpack=False))
elif wtype == "segment":
self.pipelines[wtype] = Segmentation(**self.components["segment"])
tasks.append(Task(self.pipelines["segment"]))
elif wtype == "service":
tasks.append(ServiceTask(**self.components["service"]))
elif wtype == "summary":
self.pipelines[wtype] = Summary(component.pop("path"))
tasks.append(Task(lambda x: self.pipelines["summary"](x, **self.components["summary"])))
elif wtype == "tabular":
self.pipelines[wtype] = Tabular(**self.components["tabular"])
tasks.append(Task(self.pipelines["tabular"]))
elif wtype == "translate":
self.pipelines[wtype] = Translation()
tasks.append(Task(lambda x: self.pipelines["translate"](x, **self.components["translate"])))
self.workflow = Workflow(tasks)
def find(self, key):
"""
Lookup record from cached data by uid key.
Args:
key: uid to search for
Returns:
text for matching uid
"""
return [text for uid, text, _ in self.data if uid == key][0]
def process(self, data):
"""
Processes the current application action.
Args:
data: input data
"""
if data and self.workflow:
# Build tuples for embedding index
if self.documents:
data = [(x, element, None) for x, element in enumerate(data)]
# Process workflow
for result in self.workflow(data):
if not self.documents:
st.write(result)
# Build embeddings index
if self.documents:
# Cache data
self.data = list(self.documents)
with st.spinner("Building embedding index...."):
self.embeddings.index(self.documents)
self.documents.close()
# Clear workflow
self.documents, self.pipelines, self.workflow = None, None, None
if self.embeddings and self.data:
# Set query and limit
query = st.text_input("Query")
limit = min(5, len(self.data))
st.markdown(
"""
<style>
table td:nth-child(1) {
display: none
}
table th:nth-child(1) {
display: none
}
table {text-align: left !important}
</style>
""",
unsafe_allow_html=True,
)
if query:
df = pd.DataFrame([{"content": self.find(uid), "score": score} for uid, score in self.embeddings.search(query, limit)])
st.table(df)
def parse(self, data):
"""
Parse input data, splits on new lines depending on type of tasks and format of input.
Args:
data: input data
Returns:
parsed data
"""
if re.match(r"^(http|https|file):\/\/", data) or (self.workflow and isinstance(self.workflow.tasks[0], ServiceTask)):
return [x for x in data.split("\n") if x]
return [data]
def run(self):
"""
Runs Streamlit application.
"""
st.sidebar.image("https://github.com/neuml/txtai/raw/master/logo.png", width=256)
st.sidebar.markdown("# Workflow builder \n*Build and apply workflows to data* \n[GitHub](https://github.com/neuml/txtai) ")
# Get selected components
components = ["embeddings", "segment", "service", "summary", "tabular", "translate"]
selected = st.sidebar.multiselect("Select components", components)
# Get selected options
components = [self.options(component) for component in selected]
st.sidebar.markdown("---")
with st.sidebar:
# Build or re-build workflow when build button clicked
build = st.button("Build", help="Build the workflow and run within this application")
if build:
with st.spinner("Building workflow...."):
self.build(components)
with st.expander("Data", expanded=not self.data):
data = st.text_area("Input", height=10)
# Parse text items
data = self.parse(data) if data else data
# Process current action
self.process(data)
@st.cache(allow_output_mutation=True)
def create():
"""
Creates and caches a Streamlit application.
Returns:
Application
"""
return Application()
if __name__ == "__main__":
os.environ["TOKENIZERS_PARALLELISM"] = "false"
try:
nltk.sent_tokenize("This is a test. Split")
except:
nltk.download("punkt")
# Create and run application
app = create()
app.run()
|