|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
import gradio as gr |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("merve/chatgpt-prompt-generator-v12") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("merve/chatgpt-prompt-generator-v12", from_tf=True) |
|
|
|
def generate(prompt): |
|
|
|
batch = tokenizer(prompt, return_tensors="pt") |
|
generated_ids = model.generate(batch["input_ids"], max_new_tokens=150) |
|
output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) |
|
return output[0] |
|
|
|
input_component = gr.Textbox(label = "Input a persona, e.g. photographer", value = "photographer") |
|
output_component = gr.Textbox(label = "Prompt") |
|
examples = [["photographer"], ["developer"]] |
|
description = "This app generates Chattensor prompts, it's based on a BART model trained on [this dataset](https://huggingface.co/datasets/fka/awesome-chatgpt-prompts). 📓 Simply enter a persona that you want the prompt to be generated based on. 🧙🏻🧑🏻🚀🧑🏻🎨🧑🏻🔬🧑🏻💻🧑🏼🏫🧑🏽🌾" |
|
gr.Interface(generate, inputs = input_component, outputs=output_component, examples=examples, title = "Chaττensor Prompt Generator v12", description=description).launch() |
|
|