File size: 18,959 Bytes
23aa310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for sequence to sequence.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.

import logging
import os
import sys
import json

import numpy as np
from datasets import load_dataset
import jieba 
from rouge_chinese import Rouge
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
import torch

import transformers
from transformers import (
    AutoConfig,
    AutoModel,
    AutoTokenizer,
    AutoTokenizer,
    DataCollatorForSeq2Seq,
    HfArgumentParser,
    Seq2SeqTrainingArguments,
    set_seed,
)
from trainer_seq2seq import Seq2SeqTrainer

from arguments import ModelArguments, DataTrainingArguments

logger = logging.getLogger(__name__)

def main():

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    if training_args.should_log:
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
        transformers.utils.logging.set_verbosity_info()

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    # datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Load dataset
    data_files = {}
    if data_args.train_file is not None:
        data_files["train"] = data_args.train_file
        extension = data_args.train_file.split(".")[-1]
    if data_args.validation_file is not None:
        data_files["validation"] = data_args.validation_file
        extension = data_args.validation_file.split(".")[-1]
    if data_args.test_file is not None:
        data_files["test"] = data_args.test_file
        extension = data_args.test_file.split(".")[-1]

    raw_datasets = load_dataset(
        extension,
        data_files=data_files,
        cache_dir=model_args.cache_dir,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    print('---------------------------------------------------')

    print("raw_datasets:", raw_datasets)


    # Load pretrained model and tokenizer
    config = AutoConfig.from_pretrained(model_args.model_name_or_path, trust_remote_code=True)
    config.pre_seq_len = model_args.pre_seq_len
    config.prefix_projection = model_args.prefix_projection

    tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, trust_remote_code=True)

    if model_args.ptuning_checkpoint is not None:
        # Evaluation
        # Loading extra state dict of prefix encoder
        model = AutoModel.from_pretrained(model_args.model_name_or_path, config=config, trust_remote_code=True)
        prefix_state_dict = torch.load(os.path.join(model_args.ptuning_checkpoint, "pytorch_model.bin"))
        new_prefix_state_dict = {}
        for k, v in prefix_state_dict.items():
            if k.startswith("transformer.prefix_encoder."):
                new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
        model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
    else:
        model = AutoModel.from_pretrained(model_args.model_name_or_path, config=config, trust_remote_code=True)

    if model_args.quantization_bit is not None:
        print(f"Quantized to {model_args.quantization_bit} bit")

        try:
            # kernel_file = "{}\\quantization_kernels.so".format(model_args.model_name_or_path)
            kernel_file = "{}/quantization_kernels.so".format(model_args.model_name_or_path)
            model = model.quantize(bits=model_args.quantization_bit, kernel_file=kernel_file)

        except:
            model = model.quantize(bits=model_args.quantization_bit)


    if model_args.pre_seq_len is not None:
        # P-tuning v2
        model = model.half()
        model.transformer.prefix_encoder.float()
    else:
        # Finetune
        model = model.float()

    prefix = data_args.source_prefix if data_args.source_prefix is not None else ""

    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    if training_args.do_train:
        column_names = raw_datasets["train"].column_names
    elif training_args.do_eval:
        column_names = raw_datasets["validation"].column_names
    elif training_args.do_predict:
        column_names = raw_datasets["test"].column_names

    else:
        logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
        return

    # Get the column names for input/target.
    prompt_column = data_args.prompt_column
    response_column = data_args.response_column
    history_column = data_args.history_column
    
    # Temporarily set max_target_length for training.
    max_target_length = data_args.max_target_length

    def preprocess_function_eval(examples):
        inputs, targets = [], []
        for i in range(len(examples[prompt_column])):
            if examples[prompt_column][i] and examples[response_column][i]:
                query = examples[prompt_column][i]
                if history_column is None or len(examples[history_column][i]) == 0:
                    prompt = query
                else:
                    prompt = ""
                    history = examples[history_column][i]
                    for turn_idx, (old_query, response) in enumerate(history):
                        prompt += "[Round {}]\n问:{}\n答:{}\n".format(turn_idx, old_query, response)
                    prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
                inputs.append(prompt)
                targets.append(examples[response_column][i])

        inputs = [prefix + inp for inp in inputs]
        model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, truncation=True, padding=True)
        labels = tokenizer(text_target=targets, max_length=max_target_length, truncation=True)

        if data_args.ignore_pad_token_for_loss:
            labels["input_ids"] = [
                [(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
            ]
        model_inputs["labels"] = labels["input_ids"]

        return model_inputs

    def preprocess_function_train(examples):
        max_seq_length = data_args.max_source_length + data_args.max_target_length

        model_inputs = {
            "input_ids": [],
            "labels": [],
        }
        for i in range(len(examples[prompt_column])):
            if examples[prompt_column][i] and examples[response_column][i]:
                query, answer = examples[prompt_column][i], examples[response_column][i]

                if history_column is None:
                    prompt = query
                else:
                    prompt = ""
                    history = examples[history_column][i]
                    for turn_idx, (old_query, response) in enumerate(history):
                        prompt += "[Round {}]\n问:{}\n答:{}\n".format(turn_idx, old_query, response)
                    prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)

                prompt = prefix + prompt
                a_ids = tokenizer.encode(text=prompt, add_special_tokens=False)
                b_ids = tokenizer.encode(text=answer, add_special_tokens=False)

                if len(a_ids) > data_args.max_source_length - 1:
                    a_ids = a_ids[: data_args.max_source_length - 1]

                if len(b_ids) > data_args.max_target_length - 2:
                    b_ids = b_ids[: data_args.max_target_length - 2]

                input_ids = tokenizer.build_inputs_with_special_tokens(a_ids, b_ids)

                context_length = input_ids.index(tokenizer.bos_token_id)
                mask_position = context_length - 1
                labels = [-100] * context_length + input_ids[mask_position+1:]
                
                pad_len = max_seq_length - len(input_ids)
                input_ids = input_ids + [tokenizer.pad_token_id] * pad_len
                labels = labels + [tokenizer.pad_token_id] * pad_len
                if data_args.ignore_pad_token_for_loss:
                    labels = [(l if l != tokenizer.pad_token_id else -100) for l in labels]

                model_inputs["input_ids"].append(input_ids)
                model_inputs["labels"].append(labels)

        return model_inputs
    
    def print_dataset_example(example):
        print("input_ids",example["input_ids"])
        print("inputs", tokenizer.decode(example["input_ids"]))
        print("label_ids", example["labels"])
        print("labels", tokenizer.decode(example["labels"]))

    if training_args.do_train:
        if "train" not in raw_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = raw_datasets["train"]
        if data_args.max_train_samples is not None:
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                preprocess_function_train,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
        print_dataset_example(train_dataset[0])

    if training_args.do_eval:
        max_target_length = data_args.val_max_target_length
        if "validation" not in raw_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = raw_datasets["validation"]
        if data_args.max_eval_samples is not None:
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                preprocess_function_eval,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
        print_dataset_example(eval_dataset[0])

    if training_args.do_predict:
        max_target_length = data_args.val_max_target_length
        if "test" not in raw_datasets:
            raise ValueError("--do_predict requires a test dataset")
        predict_dataset = raw_datasets["test"]
        if data_args.max_predict_samples is not None:
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                preprocess_function_eval,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
        print_dataset_example(predict_dataset[0])

    # Data collator
    label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
    data_collator = DataCollatorForSeq2Seq(
        tokenizer,
        model=model,
        label_pad_token_id=label_pad_token_id,
        pad_to_multiple_of=None,
        padding=False
    )

    # Metric
    def compute_metrics(eval_preds):
        preds, labels = eval_preds
        if isinstance(preds, tuple):
            preds = preds[0]
        decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
        if data_args.ignore_pad_token_for_loss:
            # Replace -100 in the labels as we can't decode them.
            labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
        decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)

        score_dict = {
            "rouge-1": [],
            "rouge-2": [],
            "rouge-l": [],
            "bleu-4": []
        }
        for pred, label in zip(decoded_preds, decoded_labels):
            hypothesis = list(jieba.cut(pred))
            reference = list(jieba.cut(label))
            rouge = Rouge()
            scores = rouge.get_scores(' '.join(hypothesis) , ' '.join(reference))
            result = scores[0]
            
            for k, v in result.items():
                score_dict[k].append(round(v["f"] * 100, 4))
            bleu_score = sentence_bleu([list(label)], list(pred), smoothing_function=SmoothingFunction().method3)
            score_dict["bleu-4"].append(round(bleu_score * 100, 4))

        for k, v in score_dict.items():
            score_dict[k] = float(np.mean(v))
        return score_dict

    # Override the decoding parameters of Seq2SeqTrainer
    training_args.generation_max_length = (
        training_args.generation_max_length
        if training_args.generation_max_length is not None
        else data_args.val_max_target_length
    )
    training_args.generation_num_beams = (
        data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams
    )
    # Initialize our Trainer
    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
        compute_metrics=compute_metrics if training_args.predict_with_generate else None,
        save_prefixencoder=model_args.pre_seq_len is not None
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        # elif last_checkpoint is not None:
        #     checkpoint = last_checkpoint
        model.gradient_checkpointing_enable()
        model.enable_input_require_grads()
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        # trainer.save_model()  # Saves the tokenizer too for easy upload

        metrics = train_result.metrics
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
        metrics = trainer.evaluate(metric_key_prefix="eval", do_sample=True, top_p=0.7, max_length=512, temperature=0.95)
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    if training_args.do_predict:
        logger.info("*** Predict ***")

        predict_results = trainer.predict(predict_dataset, metric_key_prefix="predict", max_length=512, do_sample=True, top_p=0.7, temperature=0.95)
        metrics = predict_results.metrics
        max_predict_samples = (
            data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
        )
        metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))

        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)

        if trainer.is_world_process_zero():
            if training_args.predict_with_generate:
                predictions = tokenizer.batch_decode(
                    predict_results.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
                )
                predictions = [pred.strip() for pred in predictions]
                labels = tokenizer.batch_decode(
                    predict_results.label_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
                )
                labels = [label.strip() for label in labels]
                output_prediction_file = os.path.join(training_args.output_dir, "generated_predictions.txt")
                with open(output_prediction_file, "w", encoding="utf-8") as writer:
                    for p, l in zip(predictions, labels):
                        res = json.dumps({"labels": l, "predict": p}, ensure_ascii=False)
                        writer.write(f"{res}\n")
    return results


def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()