Spaces:
Runtime error
Runtime error
from transformers import AutoModel, AutoTokenizer | |
import gradio as gr | |
import mdtex2html | |
tokenizer = AutoTokenizer.from_pretrained("models/chatglm-6b-int4", trust_remote_code=True, revision="") | |
model = AutoModel.from_pretrained("models/chatglm-6b-int4", trust_remote_code=True, revision="").float().cuda() | |
# tokenizer = AutoTokenizer.from_pretrained(".\\models\\chatglm-6b-int4", trust_remote_code=True, revision="") | |
# model = AutoModel.from_pretrained(".\\models\\chatglm-6b-int4", trust_remote_code=True, revision="").half().cuda() | |
# chatglm-6b-int4 cuda,本地可以运行成功 | |
# tokenizer = AutoTokenizer.from_pretrained(".\\models\\chatglm-6b-int4", trust_remote_code=True, revision="") | |
# model = AutoModel.from_pretrained(".\\models\\chatglm-6b-int4", trust_remote_code=True, revision="").half().cuda() | |
# chatglm-6b-int4 CPU, | |
# tokenizer = AutoTokenizer.from_pretrained("models/chatglm-6b-int4", trust_remote_code=True, revision="") | |
# model = AutoModel.from_pretrained("models/chatglm-6b-int4", trust_remote_code=True, revision="").float() | |
# chatglm-6b | |
# kernel_file = "./models/chatglm-6b-int4/quantization_kernels.so" | |
# tokenizer = AutoTokenizer.from_pretrained("./models/chatglm-6b-int4", trust_remote_code=True, revision="") | |
# model = AutoModel.from_pretrained("./models/chatglm-6b-int4", trust_remote_code=True, revision="").half().cuda() | |
# model = AutoModel.from_pretrained("./models/chatglm-6b-int4", trust_remote_code=True, revision="").float() | |
model = model.eval() | |
"""Override Chatbot.postprocess""" | |
def postprocess(self, y): | |
if y is None: | |
return [] | |
for i, (message, response) in enumerate(y): | |
y[i] = ( | |
None if message is None else mdtex2html.convert((message)), | |
None if response is None else mdtex2html.convert(response), | |
) | |
return y | |
gr.Chatbot.postprocess = postprocess | |
def parse_text(text): | |
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/""" | |
lines = text.split("\n") | |
lines = [line for line in lines if line != ""] | |
count = 0 | |
for i, line in enumerate(lines): | |
if "```" in line: | |
count += 1 | |
items = line.split('`') | |
if count % 2 == 1: | |
lines[i] = f'<pre><code class="language-{items[-1]}">' | |
else: | |
lines[i] = f'<br></code></pre>' | |
else: | |
if i > 0: | |
if count % 2 == 1: | |
line = line.replace("`", "\`") | |
line = line.replace("<", "<") | |
line = line.replace(">", ">") | |
line = line.replace(" ", " ") | |
line = line.replace("*", "*") | |
line = line.replace("_", "_") | |
line = line.replace("-", "-") | |
line = line.replace(".", ".") | |
line = line.replace("!", "!") | |
line = line.replace("(", "(") | |
line = line.replace(")", ")") | |
line = line.replace("$", "$") | |
lines[i] = "<br>"+line | |
text = "".join(lines) | |
return text | |
def predict(input, chatbot, max_length, top_p, temperature, history): | |
chatbot.append((parse_text(input), "")) | |
for response, history in model.stream_chat(tokenizer, input, history, max_length=max_length, top_p=top_p, | |
temperature=temperature): | |
chatbot[-1] = (parse_text(input), parse_text(response)) | |
yield chatbot, history | |
def reset_user_input(): | |
return gr.update(value='') | |
def reset_state(): | |
return [], [] | |
with gr.Blocks() as demo: | |
gr.HTML("""<h1 align="center">ChatGLM</h1>""") | |
chatbot = gr.Chatbot() | |
with gr.Row(): | |
with gr.Column(scale=4): | |
with gr.Column(scale=12): | |
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style( | |
container=False) | |
with gr.Column(min_width=32, scale=1): | |
submitBtn = gr.Button("Submit", variant="primary") | |
with gr.Column(scale=1): | |
emptyBtn = gr.Button("Clear History") | |
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True) | |
top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True) | |
temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True) | |
history = gr.State([]) | |
submitBtn.click(predict, [user_input, chatbot, max_length, top_p, temperature, history], [chatbot, history], | |
show_progress=True) | |
submitBtn.click(reset_user_input, [], [user_input]) | |
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True) | |
demo.queue().launch(share=False, inbrowser=True) | |