Spaces:
Runtime error
Runtime error
import os | |
import torch | |
from transformers import AutoConfig, AutoModel, AutoTokenizer | |
# 载入Tokenizer | |
model_path = "..\\models\\chatglm-6b-int4" | |
CHECKPOINT_PATH = '.\\output\\adgen-chatglm-6b-pt-128-2e-2\\checkpoint-1000' | |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) | |
# 如果需要加载的是新 Checkpoint(只包含 PrefixEncoder 参数): | |
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True, pre_seq_len=128) | |
model = AutoModel.from_pretrained(model_path, config=config, trust_remote_code=True) | |
prefix_state_dict = torch.load(os.path.join(CHECKPOINT_PATH, "pytorch_model.bin")) | |
new_prefix_state_dict = {} | |
for k, v in prefix_state_dict.items(): | |
if k.startswith("transformer.prefix_encoder."): | |
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v | |
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict) | |
# 之后根据需求可以进行量化,也可以直接使用: | |
kernel_file = "{}\\quantization_kernels.so".format(model_path) | |
model = model.quantize(bits=4,kernel_file=kernel_file) | |
model = model.half().cuda() | |
model.transformer.prefix_encoder.float() | |
model = model.eval() | |
# response, history = model.chat(tokenizer, "你好呀", history=[]) | |
# print("response:", response) | |
def parse_text(text): | |
lines = text.split("\n") | |
lines = [line for line in lines if line != ""] | |
count = 0 | |
for i, line in enumerate(lines): | |
if "```" in line: | |
count += 1 | |
items = line.split('`') | |
if count % 2 == 1: | |
lines[i] = f'<pre><code class="language-{items[-1]}">' | |
else: | |
lines[i] = f'<br></code></pre>' | |
else: | |
if i > 0: | |
if count % 2 == 1: | |
line = line.replace("`", "\`") | |
line = line.replace("<", "<") | |
line = line.replace(">", ">") | |
line = line.replace(" ", " ") | |
line = line.replace("*", "*") | |
line = line.replace("_", "_") | |
line = line.replace("-", "-") | |
line = line.replace(".", ".") | |
line = line.replace("!", "!") | |
line = line.replace("(", "(") | |
line = line.replace(")", ")") | |
line = line.replace("$", "$") | |
lines[i] = "<br>"+line | |
text = "".join(lines) | |
return text | |
def predict(input, chatbot, max_length, top_p, temperature, history): | |
chatbot.append((parse_text(input), "")) | |
for response, history in model.stream_chat(tokenizer, input, history, max_length=max_length, top_p=top_p, | |
temperature=temperature): | |
chatbot[-1] = (parse_text(input), parse_text(response)) | |
yield chatbot, history | |
response_new = '' | |
history = [] | |
for i in range(3000): | |
length_history = len(history) | |
if (length_history > 5): # 如果对话长度太长,就把之前的遗忘掉 | |
del history[0] | |
del history[0] | |
# print('\nYou:',end='') | |
print('\033[1;31m{}\033[0m'.format('\nYou:'),end='') | |
msg = input() | |
print('\033[1;34m{}\033[0m'.format('ChatGLM:'),end='') | |
for chatbot, history in predict(input=msg, chatbot=[], max_length=10000, top_p=0.5, temperature=0.5, history=history): | |
response_old = response_new | |
response_new = chatbot[0][1] | |
new_single = response_new.replace(response_old, '') | |
print(new_single,end='') | |