import os import torch from transformers import AutoConfig, AutoModel, AutoTokenizer # 载入Tokenizer model_path = "..\\models\\chatglm-6b-int4" CHECKPOINT_PATH = '.\\output\\adgen-chatglm-6b-pt-128-2e-2\\checkpoint-100' tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) # 如果需要加载的是新 Checkpoint(只包含 PrefixEncoder 参数): config = AutoConfig.from_pretrained(model_path, trust_remote_code=True, pre_seq_len=128) model = AutoModel.from_pretrained(model_path, config=config, trust_remote_code=True) prefix_state_dict = torch.load(os.path.join(CHECKPOINT_PATH, "pytorch_model.bin")) new_prefix_state_dict = {} for k, v in prefix_state_dict.items(): if k.startswith("transformer.prefix_encoder."): new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict) # 之后根据需求可以进行量化,也可以直接使用: kernel_file = "{}\\quantization_kernels.so".format(model_path) model = model.quantize(bits=4,kernel_file=kernel_file) model = model.half().cuda() model.transformer.prefix_encoder.float() model = model.eval() response, history = model.chat(tokenizer, "你好呀", history=[]) print("response:", response)