Upload ocr_project.py
Browse files- ocr_project.py +51 -0
ocr_project.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import easyocr
|
3 |
+
from transformers import AutoModel, AutoTokenizer
|
4 |
+
from PIL import Image
|
5 |
+
import warnings
|
6 |
+
from transformers import logging
|
7 |
+
import re
|
8 |
+
|
9 |
+
#To Surpaas warnings
|
10 |
+
warnings.filterwarnings("ignore", message="The attention mask and the pad token id were not set.")
|
11 |
+
warnings.filterwarnings("ignore", message="Setting `pad_token_id` to `eos_token_id`")
|
12 |
+
warnings.filterwarnings("ignore", message="The `seen_tokens` attribute is deprecated")
|
13 |
+
|
14 |
+
logging.set_verbosity_error()
|
15 |
+
|
16 |
+
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True)
|
18 |
+
model = AutoModel.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True, low_cpu_mem_usage=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
|
19 |
+
model = model.eval()
|
20 |
+
|
21 |
+
|
22 |
+
easyocr_reader = easyocr.Reader(['hi'], gpu=False)
|
23 |
+
|
24 |
+
# Function to perform OCR based on selected language
|
25 |
+
def perform_ocr(image, language):
|
26 |
+
if language == "Hindi":
|
27 |
+
image_np = np.array(image)
|
28 |
+
result = easyocr_reader.readtext(image_np, detail=0)
|
29 |
+
return ' '.join(result)
|
30 |
+
elif language == "English":
|
31 |
+
image_path = 'temp_image.png'
|
32 |
+
image.save(image_path)
|
33 |
+
result = model.chat(tokenizer, image_path, ocr_type='ocr')
|
34 |
+
return result
|
35 |
+
else:
|
36 |
+
return "Invalid language selection. Please choose Hindi or English."
|
37 |
+
|
38 |
+
def process_keyword(image, language, keyword):
|
39 |
+
extracted_text = perform_ocr(image, language)
|
40 |
+
if keyword:
|
41 |
+
keyword_regex = re.escape(keyword)
|
42 |
+
highlighted_text = re.sub(
|
43 |
+
f'({keyword_regex})', r'<mark style="background-color: yellow">\1</mark>', extracted_text, flags=re.IGNORECASE
|
44 |
+
)
|
45 |
+
|
46 |
+
if highlighted_text != extracted_text:
|
47 |
+
return highlighted_text
|
48 |
+
else:
|
49 |
+
return f"No keyword '{keyword}' found in the text."
|
50 |
+
else:
|
51 |
+
return extracted_text
|