File size: 23,638 Bytes
ad5c122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
809aa1a
 
 
 
 
ad5c122
 
6cbeb97
ad5c122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
809aa1a
ad5c122
 
 
809aa1a
ad5c122
 
809aa1a
ad5c122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
809aa1a
 
ad5c122
 
809aa1a
 
ad5c122
 
 
 
 
 
 
 
 
809aa1a
ad5c122
 
 
 
 
809aa1a
ad5c122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
809aa1a
ad5c122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17a5d04
809aa1a
17a5d04
 
809aa1a
ad5c122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
809aa1a
ad5c122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02e16ea
ad5c122
 
 
 
 
 
 
809aa1a
 
 
 
ad5c122
 
 
 
 
 
 
 
 
 
 
 
 
 
809aa1a
ad5c122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
809aa1a
ad5c122
 
 
809aa1a
ad5c122
809aa1a
 
ad5c122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
809aa1a
ad5c122
 
02e16ea
ad5c122
 
 
 
 
 
 
809aa1a
 
ad5c122
 
809aa1a
 
ad5c122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
809aa1a
ad5c122
 
 
 
 
 
 
99d3b92
ad5c122
 
809aa1a
 
 
 
 
 
44dfbf8
809aa1a
ad5c122
 
 
809aa1a
 
 
 
 
ad5c122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17a5d04
ad5c122
 
 
 
 
 
 
 
 
 
6cbeb97
 
 
 
 
 
 
 
 
 
809aa1a
ad5c122
809aa1a
ad5c122
809aa1a
ad5c122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
import os
import subprocess
import json
from datetime import timedelta
import tempfile
import re
import gradio as gr
import groq
from groq import Groq


# setup groq 

client = Groq(api_key=os.environ.get("Groq_Api_Key"))

def handle_groq_error(e, model_name):
    error_data = e.args[0]

    if isinstance(error_data, str):
        # Use regex to extract the JSON part of the string
        json_match = re.search(r'(\{.*\})', error_data)
        if json_match:
            json_str = json_match.group(1)
            # Ensure the JSON string is well-formed
            json_str = json_str.replace("'", '"')  # Replace single quotes with double quotes
            error_data = json.loads(json_str)

    if isinstance(e, groq.AuthenticationError):
        if isinstance(error_data, dict) and 'error' in error_data and 'message' in error_data['error']:
            error_message = error_data['error']['message']
            raise gr.Error(error_message)
    elif isinstance(e, groq.RateLimitError):
        if isinstance(error_data, dict) and 'error' in error_data and 'message' in error_data['error']:
            error_message = error_data['error']['message']
            error_message = re.sub(r'org_[a-zA-Z0-9]+', 'org_(censored)', error_message) # censor org
            raise gr.Error(error_message)
    else:
        raise gr.Error(f"Error during Groq API call: {e}")


# language codes for subtitle maker

LANGUAGE_CODES = {
    "English": "en",
    "Chinese": "zh",
    "German": "de",
    "Spanish": "es",
    "Russian": "ru",
    "Korean": "ko",
    "French": "fr",
    "Japanese": "ja",
    "Portuguese": "pt",
    "Turkish": "tr",
    "Polish": "pl",
    "Catalan": "ca",
    "Dutch": "nl",
    "Arabic": "ar",
    "Swedish": "sv",
    "Italian": "it",
    "Indonesian": "id",
    "Hindi": "hi",
    "Finnish": "fi",
    "Vietnamese": "vi",
    "Hebrew": "he",
    "Ukrainian": "uk",
    "Greek": "el",
    "Malay": "ms",
    "Czech": "cs",
    "Romanian": "ro",
    "Danish": "da",
    "Hungarian": "hu",
    "Tamil": "ta",
    "Norwegian": "no",
    "Thai": "th",
    "Urdu": "ur",
    "Croatian": "hr",
    "Bulgarian": "bg",
    "Lithuanian": "lt",
    "Latin": "la",
    "Māori": "mi",
    "Malayalam": "ml",
    "Welsh": "cy",
    "Slovak": "sk",
    "Telugu": "te",
    "Persian": "fa",
    "Latvian": "lv",
    "Bengali": "bn",
    "Serbian": "sr",
    "Azerbaijani": "az",
    "Slovenian": "sl",
    "Kannada": "kn",
    "Estonian": "et",
    "Macedonian": "mk",
    "Breton": "br",
    "Basque": "eu",
    "Icelandic": "is",
    "Armenian": "hy",
    "Nepali": "ne",
    "Mongolian": "mn",
    "Bosnian": "bs",
    "Kazakh": "kk",
    "Albanian": "sq",
    "Swahili": "sw",
    "Galician": "gl",
    "Marathi": "mr",
    "Panjabi": "pa",
    "Sinhala": "si",
    "Khmer": "km",
    "Shona": "sn",
    "Yoruba": "yo",
    "Somali": "so",
    "Afrikaans": "af",
    "Occitan": "oc",
    "Georgian": "ka",
    "Belarusian": "be",
    "Tajik": "tg",
    "Sindhi": "sd",
    "Gujarati": "gu",
    "Amharic": "am",
    "Yiddish": "yi",
    "Lao": "lo",
    "Uzbek": "uz",
    "Faroese": "fo",
    "Haitian": "ht",
    "Pashto": "ps",
    "Turkmen": "tk",
    "Norwegian Nynorsk": "nn",
    "Maltese": "mt",
    "Sanskrit": "sa",
    "Luxembourgish": "lb",
    "Burmese": "my",
    "Tibetan": "bo",
    "Tagalog": "tl",
    "Malagasy": "mg",
    "Assamese": "as",
    "Tatar": "tt",
    "Hawaiian": "haw",
    "Lingala": "ln",
    "Hausa": "ha",
    "Bashkir": "ba",
    "jw": "jw",
    "Sundanese": "su",
}


# helper functions

def split_audio(input_file_path, chunk_size_mb):
    chunk_size = chunk_size_mb * 1024 * 1024  # Convert MB to bytes
    file_number = 1
    chunks = []
    with open(input_file_path, 'rb') as f:
        chunk = f.read(chunk_size)
        while chunk:
            chunk_name = f"{os.path.splitext(input_file_path)[0]}_part{file_number:03}.mp3" # Pad file number for correct ordering
            with open(chunk_name, 'wb') as chunk_file:
                chunk_file.write(chunk)
            chunks.append(chunk_name)
            file_number += 1
            chunk = f.read(chunk_size)
    return chunks

def merge_audio(chunks, output_file_path):
    with open("temp_list.txt", "w") as f:
        for file in chunks:
            f.write(f"file '{file}'\n")
    try:
        subprocess.run(
            [
                "ffmpeg",
                "-f",
                "concat",
                "-safe", "0",
                "-i",
                "temp_list.txt",
                "-c",
                "copy",
                "-y",
                output_file_path
            ],
            check=True
        )
        os.remove("temp_list.txt")
        for chunk in chunks:
            os.remove(chunk)
    except subprocess.CalledProcessError as e:
        raise gr.Error(f"Error during audio merging: {e}")


# Checks file extension, size, and downsamples or splits if needed.

ALLOWED_FILE_EXTENSIONS = ["mp3", "mp4", "mpeg", "mpga", "m4a", "wav", "webm"]
MAX_FILE_SIZE_MB = 25
CHUNK_SIZE_MB = 25

def check_file(input_file_path):
    if not input_file_path:
        raise gr.Error("Please upload an audio/video file.")

    file_size_mb = os.path.getsize(input_file_path) / (1024 * 1024)
    file_extension = input_file_path.split(".")[-1].lower()

    if file_extension not in ALLOWED_FILE_EXTENSIONS:
        raise gr.Error(f"Invalid file type (.{file_extension}). Allowed types: {', '.join(ALLOWED_FILE_EXTENSIONS)}")

    if file_size_mb > MAX_FILE_SIZE_MB:
        gr.Warning(
            f"File size too large ({file_size_mb:.2f} MB). Attempting to downsample to 16kHz MP3 128kbps. Maximum size allowed: {MAX_FILE_SIZE_MB} MB"
        )

        output_file_path = os.path.splitext(input_file_path)[0] + "_downsampled.mp3"
        try:
            subprocess.run(
                [
                    "ffmpeg",
                    "-i",
                    input_file_path,
                    "-ar",
                    "16000",
                    "-ab",
                    "128k",
                    "-ac",
                    "1",
                    "-f",
                    "mp3",
                    "-y",
                    output_file_path,
                ],
                check=True
            )

            # Check size after downsampling
            downsampled_size_mb = os.path.getsize(output_file_path) / (1024 * 1024)
            if downsampled_size_mb > MAX_FILE_SIZE_MB:
                gr.Warning(f"File still too large after downsampling ({downsampled_size_mb:.2f} MB). Splitting into {CHUNK_SIZE_MB} MB chunks.")
                return split_audio(output_file_path, CHUNK_SIZE_MB), "split"

            return output_file_path, None
        except subprocess.CalledProcessError as e:
            raise gr.Error(f"Error during downsampling: {e}")
    return input_file_path, None


# subtitle maker

def format_time(seconds):
    hours = int(seconds // 3600)
    minutes = int((seconds % 3600) // 60)
    seconds = int(seconds % 60)
    milliseconds = int((seconds % 1) * 1000)

    return f"{hours:02}:{minutes:02}:{seconds:02},{milliseconds:03}"

def json_to_srt(transcription_json):
    srt_lines = []

    for segment in transcription_json:
        start_time = format_time(segment['start'])
        end_time = format_time(segment['end'])
        text = segment['text']

        srt_line = f"{segment['id']+1}\n{start_time} --> {end_time}\n{text}\n"
        srt_lines.append(srt_line)

    return '\n'.join(srt_lines)


def generate_subtitles(input_file, prompt, language, auto_detect_language, model, include_video, font_selection, font_file, font_color, font_size, outline_thickness, outline_color):
    
    input_file_path = input_file

    processed_path, split_status = check_file(input_file_path)
    full_srt_content = ""
    total_duration = 0
    segment_id_offset = 0

    if split_status == "split":
        srt_chunks = []
        video_chunks = []
        for i, chunk_path in enumerate(processed_path):
            try:
                with open(chunk_path, "rb") as file:
                    transcription_json_response = client.audio.transcriptions.create(
                        file=(os.path.basename(chunk_path), file.read()),
                        model=model,
                        prompt=prompt,
                        response_format="verbose_json",
                        language=None if auto_detect_language else language,
                        temperature=0.0,
                    )
                transcription_json = transcription_json_response.segments

                # Adjust timestamps and segment IDs
                for segment in transcription_json:
                    segment['start'] += total_duration
                    segment['end'] += total_duration
                    segment['id'] += segment_id_offset
                segment_id_offset += len(transcription_json)
                total_duration += transcription_json[-1]['end']  # Update total duration

                srt_content = json_to_srt(transcription_json)
                full_srt_content += srt_content
                temp_srt_path = f"{os.path.splitext(chunk_path)[0]}.srt"
                with open(temp_srt_path, "w", encoding="utf-8") as temp_srt_file:
                    temp_srt_file.write(srt_content)
                    temp_srt_file.write("\n") # add a new line at the end of the srt chunk file to fix format when merged
                srt_chunks.append(temp_srt_path)

                if include_video and input_file_path.lower().endswith((".mp4", ".webm")):
                    try:
                        output_file_path = chunk_path.replace(os.path.splitext(chunk_path)[1], "_with_subs" + os.path.splitext(chunk_path)[1])
                        # Handle font selection
                        if font_selection == "Custom Font File" and font_file:
                            font_name = os.path.splitext(os.path.basename(font_file.name))[0]  # Get font filename without extension
                            font_dir = os.path.dirname(font_file.name)  # Get font directory path
                        elif font_selection == "Custom Font File" and not font_file:
                            font_name = None  # Let FFmpeg use its default Arial
                            font_dir = None  # No font directory
                            gr.Warning(f"You want to use a Custom Font File, but uploaded none. Using the default Arial font.")
                        elif font_selection == "Arial":
                            font_name = None  # Let FFmpeg use its default Arial
                            font_dir = None  # No font directory
                            
                        # FFmpeg command
                        subprocess.run(
                            [
                                "ffmpeg",
                                "-y",
                                "-i",
                                chunk_path,
                                "-vf",
                                f"subtitles={temp_srt_path}:fontsdir={font_dir}:force_style='Fontname={font_name},Fontsize={int(font_size)},PrimaryColour=&H{font_color[1:]}&,OutlineColour=&H{outline_color[1:]}&,BorderStyle={int(outline_thickness)},Outline=1'",
                                "-preset", "fast",
                                output_file_path,
                            ],
                            check=True,
                        )
                        video_chunks.append(output_file_path) 
                    except subprocess.CalledProcessError as e:
                        raise gr.Error(f"Error during subtitle addition: {e}")     
                elif include_video and not input_file_path.lower().endswith((".mp4", ".webm")):
                    gr.Warning(f"You have checked on the 'Include Video with Subtitles', but the input file {input_file_path} isn't a video (.mp4 or .webm). Returning only the SRT File.", duration=15)
            except groq.AuthenticationError as e:
                handle_groq_error(e, model)
            except groq.RateLimitError as e:
                handle_groq_error(e, model)
                gr.Warning(f"API limit reached during chunk {i+1}. Returning processed chunks only.")
                if srt_chunks and video_chunks:
                    merge_audio(video_chunks, 'merged_output_video.mp4')
                    with open('merged_output.srt', 'w', encoding="utf-8") as outfile:
                        for chunk_srt in srt_chunks:
                            with open(chunk_srt, 'r', encoding="utf-8") as infile:
                                outfile.write(infile.read())
                    return 'merged_output.srt', 'merged_output_video.mp4'
                else:
                    raise gr.Error("Subtitle generation failed due to API limits.")

        # Merge SRT chunks
        final_srt_path = os.path.splitext(input_file_path)[0] + "_final.srt"
        with open(final_srt_path, 'w', encoding="utf-8") as outfile:
            for chunk_srt in srt_chunks:
                with open(chunk_srt, 'r', encoding="utf-8") as infile:
                    outfile.write(infile.read())

        # Merge video chunks
        if video_chunks:
            merge_audio(video_chunks, 'merged_output_video.mp4')
            return final_srt_path, 'merged_output_video.mp4'
        else:
            return final_srt_path, None

    else:  # Single file processing (no splitting)
        try:
            with open(processed_path, "rb") as file:
                transcription_json_response = client.audio.transcriptions.create(
                    file=(os.path.basename(processed_path), file.read()),
                    model=model,
                    prompt=prompt,
                    response_format="verbose_json",
                    language=None if auto_detect_language else language,
                    temperature=0.0,
                )
            transcription_json = transcription_json_response.segments

            srt_content = json_to_srt(transcription_json)
            temp_srt_path = os.path.splitext(input_file_path)[0] + ".srt"
            with open(temp_srt_path, "w", encoding="utf-8") as temp_srt_file:
                temp_srt_file.write(srt_content)

            if include_video and input_file_path.lower().endswith((".mp4", ".webm")):
                try:
                    output_file_path = input_file_path.replace(
                        os.path.splitext(input_file_path)[1], "_with_subs" + os.path.splitext(input_file_path)[1]
                    )
                    # Handle font selection
                    if font_selection == "Custom Font File" and font_file:
                        font_name = os.path.splitext(os.path.basename(font_file.name))[0]  # Get font filename without extension
                        font_dir = os.path.dirname(font_file.name)  # Get font directory path
                    elif font_selection == "Custom Font File" and not font_file:
                        font_name = None  # Let FFmpeg use its default Arial
                        font_dir = None  # No font directory
                        gr.Warning(f"You want to use a Custom Font File, but uploaded none. Using the default Arial font.")
                    elif font_selection == "Arial":
                        font_name = None  # Let FFmpeg use its default Arial
                        font_dir = None  # No font directory

                    # FFmpeg command
                    subprocess.run(
                        [
                            "ffmpeg",
                            "-y",
                            "-i",
                            input_file_path,
                            "-vf",
                            f"subtitles={temp_srt_path}:fontsdir={font_dir}:force_style='FontName={font_name},Fontsize={int(font_size)},PrimaryColour=&H{font_color[1:]}&,OutlineColour=&H{outline_color[1:]}&,BorderStyle={int(outline_thickness)},Outline=1'",
                            "-preset", "fast",
                            output_file_path,
                        ],
                        check=True,
                    )
                    return temp_srt_path, output_file_path
                except subprocess.CalledProcessError as e:
                    raise gr.Error(f"Error during subtitle addition: {e}")
            elif include_video and not input_file_path.lower().endswith((".mp4", ".webm")):
                gr.Warning(f"You have checked on the 'Include Video with Subtitles', but the input file {input_file_path} isn't a video (.mp4 or .webm). Returning only the SRT File.", duration=15)
            
            return temp_srt_path, None
        except groq.AuthenticationError as e:
            handle_groq_error(e, model)
        except groq.RateLimitError as e:
            handle_groq_error(e, model)
        except ValueError as e:
            raise gr.Error(f"Error creating SRT file: {e}")


theme = gr.themes.Soft(
    primary_hue="sky",
    secondary_hue="blue",
    neutral_hue="neutral"
).set(
    border_color_primary='*neutral_300',
    block_border_width='1px',
    block_border_width_dark='1px',
    block_title_border_color='*secondary_100',
    block_title_border_color_dark='*secondary_200',
    input_background_fill_focus='*secondary_300',
    input_border_color='*border_color_primary',
    input_border_color_focus='*secondary_500',
    input_border_width='1px',
    input_border_width_dark='1px',
    slider_color='*secondary_500',
    slider_color_dark='*secondary_600'
)

css = """
.gradio-container{max-width: 1400px !important}
h1{text-align:center}
.extra-option {
    display: none;
}
.extra-option.visible {
    display: block;
}
"""



with gr.Blocks(theme=theme, css=css) as interface:
    gr.Markdown(
        """
    # Fast Subtitle Maker
    Inference by Groq API  
    If you are having API Rate Limit issues, you can retry later based on the [rate limits](https://console.groq.com/docs/rate-limits) or <a href="https://huggingface.co/spaces/Nick088/Fast-Subtitle-Maker?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank"> <img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a> with <a href=https://console.groq.com/keys>your own API Key</a> </p>
    Hugging Face Space by [Nick088](https://linktr.ee/Nick088)  
    <br> <a href="https://discord.gg/AQsmBmgEPy"> <img src="https://img.shields.io/discord/1198701940511617164?color=%23738ADB&label=Discord&style=for-the-badge" alt="Discord"> </a>  
    """
    )

    with gr.Column():
        # Input components
        input_file = gr.File(label="Upload Audio/Video", file_types=[f".{ext}" for ext in ALLOWED_FILE_EXTENSIONS], visible=True)

    # Model and options
    model_choice_subtitles = gr.Dropdown(choices=["whisper-large-v3", "whisper-large-v3-turbo", "distil-whisper-large-v3-en"], value="whisper-large-v3-turbo", label="Audio Speech Recogition (ASR) Model", info="'whisper-large-v3' = Multilingual high quality, 'whisper-large-v3-turbo' = Multilingual fast with minimal impact on quality, good balance, 'distil-whisper-large-v3-en' = English only, fastest with also slight impact on quality")
    transcribe_prompt_subtitles = gr.Textbox(label="Prompt (Optional)", info="Specify any context or spelling corrections.")
    with gr.Row():
        language_subtitles = gr.Dropdown(choices=[(lang, code) for lang, code in LANGUAGE_CODES.items()], value="en", label="Language")
        auto_detect_language_subtitles = gr.Checkbox(label="Auto Detect Language")

    # Generate button
    transcribe_button_subtitles = gr.Button("Generate Subtitles")

    # Output and settings
    include_video_option = gr.Checkbox(label="Include Video with Subtitles")
    gr.Markdown("The SubText Rip (SRT) File, contains the subtitles, you can upload this to any video editing app for adding the subs to your video and also modify/stilyze them")
    srt_output = gr.File(label="SRT Output File")
    show_subtitle_settings = gr.Checkbox(label="Show Subtitle Video Settings", visible=False)
    with gr.Row(visible=False) as subtitle_video_settings:
        with gr.Column():
            font_selection = gr.Radio(["Arial", "Custom Font File"], value="Arial", label="Font Selection", info="Select what font to use")
            font_file = gr.File(label="Upload Font File (TTF or OTF)", file_types=[".ttf", ".otf"], visible=False)
        font_color = gr.ColorPicker(label="Font Color", value="#FFFFFF")
        font_size = gr.Slider(label="Font Size (in pixels)", minimum=10, maximum=60, value=24, step=1)
        outline_thickness = gr.Slider(label="Outline Thickness", minimum=0, maximum=5, value=1, step=1)
        outline_color = gr.ColorPicker(label="Outline Color", value="#000000")

    
    video_output = gr.Video(label="Output Video with Subtitles", visible=False)


    # Event bindings
    
    # show video output
    include_video_option.change(lambda include_video: gr.update(visible=include_video), inputs=[include_video_option], outputs=[video_output])
    # show video output subs settings checkbox
    include_video_option.change(lambda include_video: gr.update(visible=include_video), inputs=[include_video_option], outputs=[show_subtitle_settings])
    # show video output subs settings
    show_subtitle_settings.change(lambda show: gr.update(visible=show), inputs=[show_subtitle_settings], outputs=[subtitle_video_settings])
    # uncheck show subtitle settings checkbox if include video is unchecked (to make the output subs settings not visible)
    show_subtitle_settings.change(lambda show, include_video: gr.update(visible=show and include_video), inputs=[show_subtitle_settings, include_video_option], outputs=[show_subtitle_settings])
    # show custom font file selection
    font_selection.change(lambda font_selection: gr.update(visible=font_selection == "Custom Font File"), inputs=[font_selection], outputs=[font_file])
    
    # Update language dropdown based on model selection
    def update_language_options(model):
        if model == "distil-whisper-large-v3-en":
            return gr.update(choices=[("English", "en")], value="en", interactive=False)
        else:
            return gr.update(choices=[(lang, code) for lang, code in LANGUAGE_CODES.items()], value="en", interactive=True)

    model_choice_subtitles.change(fn=update_language_options, inputs=[model_choice_subtitles], outputs=[language_subtitles])

    # Modified generate subtitles event
    transcribe_button_subtitles.click(
        fn=generate_subtitles,
        inputs=[
            input_file,
            transcribe_prompt_subtitles,
            language_subtitles,
            auto_detect_language_subtitles,
            model_choice_subtitles,
            include_video_option,
            font_selection,
            font_file,
            font_color,
            font_size,
            outline_thickness,
            outline_color,
        ],
        outputs=[srt_output, video_output],
    )

interface.launch(share=True)