import subprocess
import os
import gradio as gr
import torch
if torch.cuda.is_available():
device = "cuda"
print("Using GPU")
else:
device = "cpu"
print("Using CPU")
subprocess.run(["git", "clone", "https://github.com/Nick088Official/Stable_Diffusion_Finetuned_Minecraft_Skin_Generator.git"])
os.chdir("Stable_Diffusion_Finetuned_Minecraft_Skin_Generator")
def generate(
prompt,
stable_diffusion_model,
num_inference_steps,
guidance_scale,
num_images_per_prompt,
model_precision_type,
seed
):
if verbose:
verbose_opt = '--verbose'
else:
verbose_opt = ''
if stable_diffusion_model == '2':
sd_model = "minecraft-skins"
else:
sd_model = "minecraft-skins-sdxl"
command = f"Python_Scripts/{sd_model}.py '{prompt}' {num_inference_steps} {guidance_scale} {num_images_per_prompt} {model_precision_type} {output_image_name} {verbose_opt}"
subprocess.run(["python", "$command"])
return os.path.join(f"output_minecraft_skins/{output_image_name}")
prompt = gr.Textbox(label="Prompt", interactive=True)
stable_diffusion_model = gr.Dropdown(["2", "xl"], interactive=True, label="Stable Diffusion Model", value="xl", info="Choose which Stable Diffusion Model to use, xl understands prompts better")
num_inference_steps = gr.Number(value=50, minimum=1, precision=0, interactive=True, label="Inference Steps", info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference")
guidance_scale = gr.Number(value=7.5, minimum=0.1, interactive=True, label="Guidance Scale", info="How closely the generated image adheres to the prompt")
num_images_per_prompt = gr.Number(value=1, minimum=1, precision=0, interactive=True, label="Images Per Prompt", info="The number of images to make with the prompt")
model_precision_type = gr.Dropdown(["fp16", "fp32"], value="fp16", interactive=True, label="Model Precision Type", info="The precision type to load the model, like fp16 which is faster, or fp32 which gives better results")
seed = gr.Number(value=42, interactive=True, label="Seed", info="A starting point to initiate the generation process, put 0 for a random one")
output_image_name = gr.Textbox(label="Name of Generated Skin Output", interactive=Trie, value="output.png")
verbose = gr.Checkbox(label="Verbose Output", interactive=True, value=False, info="Produce verbose output while running")
examples = [
[
"A man in a purple suit wearing a tophat.",
"xl",
25,
7.5,
1,
"fp16",
42,
]
]
gr.Interface(
fn=generate,
inputs=[prompt, stable_diffusion_model, num_inference_steps, guidance_scale, num_images_per_prompt, model_precision_type, output_image_name, verbose, seed],
outputs=gr.Image(label="Generated Minecraft Skin"),
title="Stable Diffusion Finetuned Minecraft Skin Generator",
description="Make your prompts more detailed!
Model used: https://huggingface.co/roborovski/superprompt-v1
Hugging Face Space made by [Nick088](https://linktr.ee/Nick088)",
examples=examples,
concurrency_limit=20,
).launch(show_api=False)