import subprocess import os import gradio as gr import torch if torch.cuda.is_available(): device = "cuda" print("Using GPU") else: device = "cpu" print("Using CPU") subprocess.run(["git", "clone", "https://github.com/Nick088Official/Stable_Diffusion_Finetuned_Minecraft_Skin_Generator.git"]) os.chdir("Stable_Diffusion_Finetuned_Minecraft_Skin_Generator") def generate( prompt, stable_diffusion_model, num_inference_steps, guidance_scale, num_images_per_prompt, model_precision_type, seed ): if verbose: verbose_opt = '--verbose' else: verbose_opt = '' if stable_diffusion_model == '2': sd_model = "minecraft-skins" else: sd_model = "minecraft-skins-sdxl" command = f"Python_Scripts/{sd_model}.py '{prompt}' {num_inference_steps} {guidance_scale} {num_images_per_prompt} {model_precision_type} {output_image_name} {verbose_opt}" subprocess.run(["python", "$command"]) return os.path.join(f"output_minecraft_skins/{output_image_name}") prompt = gr.Textbox(label="Prompt", interactive=True) stable_diffusion_model = gr.Dropdown(["2", "xl"], interactive=True, label="Stable Diffusion Model", value="xl", info="Choose which Stable Diffusion Model to use, xl understands prompts better") num_inference_steps = gr.Number(value=50, minimum=1, precision=0, interactive=True, label="Inference Steps", info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference") guidance_scale = gr.Number(value=7.5, minimum=0.1, interactive=True, label="Guidance Scale", info="How closely the generated image adheres to the prompt") num_images_per_prompt = gr.Number(value=1, minimum=1, precision=0, interactive=True, label="Images Per Prompt", info="The number of images to make with the prompt") model_precision_type = gr.Dropdown(["fp16", "fp32"], value="fp16", interactive=True, label="Model Precision Type", info="The precision type to load the model, like fp16 which is faster, or fp32 which gives better results") seed = gr.Number(value=42, interactive=True, label="Seed", info="A starting point to initiate the generation process, put 0 for a random one") output_image_name = gr.Textbox(label="Name of Generated Skin Output", interactive=Trie, value="output.png") verbose = gr.Checkbox(label="Verbose Output", interactive=True, value=False, info="Produce verbose output while running") examples = [ [ "A man in a purple suit wearing a tophat.", "xl", 25, 7.5, 1, "fp16", 42, ] ] gr.Interface( fn=generate, inputs=[prompt, stable_diffusion_model, num_inference_steps, guidance_scale, num_images_per_prompt, model_precision_type, output_image_name, verbose, seed], outputs=gr.Image(label="Generated Minecraft Skin"), title="Stable Diffusion Finetuned Minecraft Skin Generator", description="Make your prompts more detailed!
Model used: https://huggingface.co/roborovski/superprompt-v1
Hugging Face Space made by [Nick088](https://linktr.ee/Nick088)", examples=examples, concurrency_limit=20, ).launch(show_api=False)