Spaces:
Running
Running
import gradio as gr | |
from gradio_client import Client, handle_file | |
def generate_video(input_image, prompt, negative_prompt, diffusion_step, height, width, scfg_scale, use_dctinit, dct_coefficients, noise_level, motion_bucket_id, seed): | |
client = Client("maxin-cn/Cinemo") | |
try: | |
result = client.predict( | |
input_image=handle_file(input_image), | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
diffusion_step=diffusion_step, | |
height=height, | |
width=width, | |
scfg_scale=scfg_scale, | |
use_dctinit=use_dctinit, | |
dct_coefficients=dct_coefficients, | |
noise_level=noise_level, | |
motion_bucket_id=motion_bucket_id, | |
seed=seed, | |
api_name="/gen_video" | |
) | |
print("API Response:", result) | |
return result | |
except Exception as e: | |
return f"Error: {str(e)}" | |
# Define the Gradio interface | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
input_image = gr.Image(label="Input Image", type="filepath") | |
with gr.Column(): | |
prompt = gr.Textbox(label="Prompt", placeholder="Enter prompt here...") | |
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Enter negative prompt here...") | |
diffusion_step = gr.Slider(minimum=1, maximum=100, value=50, label="Diffusion Steps") | |
height = gr.Slider(minimum=128, maximum=1024, value=320, label="Height") | |
width = gr.Slider(minimum=128, maximum=1024, value=512, label="Width") | |
scfg_scale = gr.Slider(minimum=1.0, maximum=20.0, value=7.5, label="CFG Scale") | |
use_dctinit = gr.Checkbox(value=True, label="Enable DCTInit") | |
dct_coefficients = gr.Slider(minimum=0.0, maximum=1.0, value=0.23, label="DCT Coefficients") | |
noise_level = gr.Slider(minimum=0, maximum=1000, value=985, label="Noise Level") | |
motion_bucket_id = gr.Slider(minimum=1, maximum=100, value=10, label="Motion Intensity") | |
seed = gr.Slider(minimum=1, maximum=10000, value=100, label="Seed") | |
generate_btn = gr.Button("Generate Video") | |
output_video = gr.Video(label="Generated Video") | |
generate_btn.click(generate_video, inputs=[input_image, prompt, negative_prompt, diffusion_step, height, width, scfg_scale, use_dctinit, dct_coefficients, noise_level, motion_bucket_id, seed], outputs=output_video) | |
# Launch the app with verbose error reporting | |
demo.launch(show_error=True) | |