import gradio as gr from gradio_client import Client, handle_file def generate_video(input_image, prompt, negative_prompt, diffusion_step, height, width, scfg_scale, use_dctinit, dct_coefficients, noise_level, motion_bucket_id, seed): client = Client("maxin-cn/Cinemo") try: result = client.predict( input_image=handle_file(input_image), prompt=prompt, negative_prompt=negative_prompt, diffusion_step=diffusion_step, height=height, width=width, scfg_scale=scfg_scale, use_dctinit=use_dctinit, dct_coefficients=dct_coefficients, noise_level=noise_level, motion_bucket_id=motion_bucket_id, seed=seed, api_name="/gen_video" ) print("API Response:", result) return result except Exception as e: return f"Error: {str(e)}" # Define the Gradio interface with gr.Blocks() as demo: with gr.Row(): input_image = gr.Image(label="Input Image", type="filepath") with gr.Column(): prompt = gr.Textbox(label="Prompt", placeholder="Enter prompt here...") negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Enter negative prompt here...") diffusion_step = gr.Slider(minimum=1, maximum=100, value=50, label="Diffusion Steps") height = gr.Slider(minimum=128, maximum=1024, value=320, label="Height") width = gr.Slider(minimum=128, maximum=1024, value=512, label="Width") scfg_scale = gr.Slider(minimum=1.0, maximum=20.0, value=7.5, label="CFG Scale") use_dctinit = gr.Checkbox(value=True, label="Enable DCTInit") dct_coefficients = gr.Slider(minimum=0.0, maximum=1.0, value=0.23, label="DCT Coefficients") noise_level = gr.Slider(minimum=0, maximum=1000, value=985, label="Noise Level") motion_bucket_id = gr.Slider(minimum=1, maximum=100, value=10, label="Motion Intensity") seed = gr.Slider(minimum=1, maximum=10000, value=100, label="Seed") generate_btn = gr.Button("Generate Video") output_video = gr.Video(label="Generated Video") generate_btn.click(generate_video, inputs=[input_image, prompt, negative_prompt, diffusion_step, height, width, scfg_scale, use_dctinit, dct_coefficients, noise_level, motion_bucket_id, seed], outputs=output_video) # Launch the app with verbose error reporting demo.launch(show_error=True)