import streamlit as st import torch import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # (You may need to install Streamlit if you haven't already: pip install streamlit) LANG_ID = "en" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-english" st.title("Speech Recognition App") # Give your app a title # Load the model and processor (do this outside the main function for efficiency) processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) def speech_file_to_array_fn(audio_file): speech_array, sampling_rate = librosa.load(audio_file, sr=16_000) return speech_array def process_audio(speech_array): inputs = processor(speech_array, sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) predicted_sentence = processor.batch_decode(predicted_ids)[0] return predicted_sentence def main(): uploaded_file = st.file_uploader("Choose an audio file (.wav format)", type='wav') if uploaded_file is not None: speech_array = speech_file_to_array_fn(uploaded_file) predicted_sentence = process_audio(speech_array) st.header("Prediction:") st.write(predicted_sentence) if __name__ == "__main__": main()