File size: 10,693 Bytes
607d7d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import streamlit as st
from transformers import pipeline
from textblob import TextBlob

pipe = pipeline('summarization')
st.title("Spamd: Turkish Spam Detector")

# -*- coding: utf-8 -*-
"""Spamd_SpamDetector_Turkish_BERT_22.09.2022.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1QuorqAuLsmomesZHsaQHEZgzbPEM8YTH
"""

#Cuda and  PyTorch Versions must match https://pytorch.org/get-started/locally/



import csv
data = []
# with open('TurkishSMSCollection.csv', "rt", encoding="utf-8") as csvfile: 
    # reader = csv.reader(csvfile, skipinitialspace=True)
    # data.append(tuple(next(reader)))
    # for Message, Group in reader:
    #     data.append((int(Group), Message))
import pandas as pd


df = pd.read_csv('TurkishSMSCollection.csv', encoding='utf-8', on_bad_lines='skip', usecols= ['Group','Message'], sep=r';')
df['Group']= df['Group'].replace(2, 0)  

# reader = open('TurkishSMSCollection.csv', "rt", encoding="utf-8") as csvfile
print(df)

text = df.Message.values
len(text)

labels = df.Group.values
len(labels)



from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-turkish-uncased")

import os
os.environ['CUDA_LAUNCH_BLOCKING'] = "1"

import torch
token_id = []
attention_masks = []

def preprocessing(input_text, tokenizer):
  '''
  Returns <class transformers.tokenization_utils_base.BatchEncoding> with the following fields:
    - input_ids: list of token ids
    - token_type_ids: list of token type ids
    - attention_mask: list of indices (0,1) specifying which tokens should considered by the model (return_attention_mask = True).
  '''
  return tokenizer.encode_plus(
                        input_text,
                        add_special_tokens = True,
                        max_length = 32,
                        pad_to_max_length = True,
                        return_attention_mask = True,
                        return_tensors = 'pt'
                   )


for sample in text:
  encoding_dict = preprocessing(sample, tokenizer)
  token_id.append(encoding_dict['input_ids']) 
  attention_masks.append(encoding_dict['attention_mask'])


token_id = torch.cat(token_id, dim = 0)
attention_masks = torch.cat(attention_masks, dim = 0)
labels = torch.tensor(labels)




import random
import numpy as np
from tabulate import tabulate
def print_rand_sentence_encoding():
  '''Displays tokens, token IDs and attention mask of a random text sample'''
  index = random.randint(0, len(text) - 1)
  tokens = tokenizer.tokenize(tokenizer.decode(token_id[index]))
  token_ids = [i.numpy() for i in token_id[index]]
  attention = [i.numpy() for i in attention_masks[index]]

  table = np.array([tokens, token_ids, attention]).T
  print(tabulate(table, 
                 headers = ['Tokens', 'Token IDs', 'Attention Mask'],
                 tablefmt = 'fancy_grid'))

print_rand_sentence_encoding()


from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset, TensorDataset
from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler


val_ratio = 0.2
# Recommended batch size: 16, 32. See: https://arxiv.org/pdf/1810.04805.pdf
batch_size = 32

# Indices of the train and validation splits stratified by labels
train_idx, val_idx = train_test_split(
    np.arange(len(labels)),
    test_size = val_ratio,
    shuffle = True,
    stratify = labels)

# Train and validation sets
train_set = TensorDataset(token_id[train_idx], 
                          attention_masks[train_idx], 
                          labels[train_idx])

val_set = TensorDataset(token_id[val_idx], 
                        attention_masks[val_idx], 
                        labels[val_idx])

# Prepare DataLoader
train_dataloader = DataLoader(
            train_set,
            sampler = RandomSampler(train_set),
            batch_size = batch_size
        )

validation_dataloader = DataLoader(
            val_set,
            sampler = SequentialSampler(val_set),
            batch_size = batch_size
        )

def b_tp(preds, labels):
  '''Returns True Positives (TP): count of correct predictions of actual class 1'''
  return sum([preds == labels and preds == 1 for preds, labels in zip(preds, labels)])

def b_fp(preds, labels):
  '''Returns False Positives (FP): count of wrong predictions of actual class 1'''
  return sum([preds != labels and preds == 1 for preds, labels in zip(preds, labels)])

def b_tn(preds, labels):
  '''Returns True Negatives (TN): count of correct predictions of actual class 0'''
  return sum([preds == labels and preds == 0 for preds, labels in zip(preds, labels)])

def b_fn(preds, labels):
  '''Returns False Negatives (FN): count of wrong predictions of actual class 0'''
  return sum([preds != labels and preds == 0 for preds, labels in zip(preds, labels)])

def b_metrics(preds, labels):
  '''
  Returns the following metrics:
    - accuracy    = (TP + TN) / N
    - precision   = TP / (TP + FP)
    - recall      = TP / (TP + FN)
    - specificity = TN / (TN + FP)
  '''
  preds = np.argmax(preds, axis = 1).flatten()
  labels = labels.flatten()
  tp = b_tp(preds, labels)
  tn = b_tn(preds, labels)
  fp = b_fp(preds, labels)
  fn = b_fn(preds, labels)
  b_accuracy = (tp + tn) / len(labels)
  b_precision = tp / (tp + fp) if (tp + fp) > 0 else 'nan'
  b_recall = tp / (tp + fn) if (tp + fn) > 0 else 'nan'
  b_specificity = tn / (tn + fp) if (tn + fp) > 0 else 'nan'
  return b_accuracy, b_precision, b_recall, b_specificity

from transformers import AutoModel

#!pip install torch.utils

from transformers import BertForSequenceClassification, AdamW, BertConfig

model = BertForSequenceClassification.from_pretrained(
    "dbmdz/bert-base-turkish-uncased",
    num_labels = 2,
    output_attentions = False,
    output_hidden_states = False)

optimizer = torch.optim.AdamW(model.parameters(), 
                              lr = 5e-5,
                              eps = 1e-08
                              )

# Run on GPU
model.cuda()

from tqdm import trange 
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Recommended number of epochs: 2, 3, 4. See: https://arxiv.org/pdf/1810.04805.pdf
epochs = 5

for _ in trange(epochs, desc = 'Epoch'):
    
    # ========== Training ==========
    
    # Set model to training mode
    model.train()
    
    # Tracking variables
    tr_loss = 0
    nb_tr_examples, nb_tr_steps = 0, 0

    for step, batch in enumerate(train_dataloader):
        batch = tuple(t.to(device) for t in batch)
        b_input_ids, b_input_mask, b_labels = batch
        optimizer.zero_grad()
        # Forward pass
        train_output = model(b_input_ids, 
                             token_type_ids = None, 
                             attention_mask = b_input_mask, 
                             labels = b_labels)
        # Backward pass
        train_output.loss.backward()
        optimizer.step()
        # Update tracking variables
        tr_loss += train_output.loss.item()
        nb_tr_examples += b_input_ids.size(0)
        nb_tr_steps += 1

    # ========== Validation ==========

    # Set model to evaluation mode
    model.eval()

    # Tracking variables 
    val_accuracy = []
    val_precision = []
    val_recall = []
    val_specificity = []

    for batch in validation_dataloader:
        batch = tuple(t.to(device) for t in batch)
        b_input_ids, b_input_mask, b_labels = batch
        with torch.no_grad():
          # Forward pass
          eval_output = model(b_input_ids, 
                              token_type_ids = None, 
                              attention_mask = b_input_mask)
        logits = eval_output.logits.detach().cpu().numpy()
        label_ids = b_labels.to('cpu').numpy()
        # Calculate validation metrics
        b_accuracy, b_precision, b_recall, b_specificity = b_metrics(logits, label_ids)
        val_accuracy.append(b_accuracy)
        # Update precision only when (tp + fp) !=0; ignore nan
        if b_precision != 'nan': val_precision.append(b_precision)
        # Update recall only when (tp + fn) !=0; ignore nan
        if b_recall != 'nan': val_recall.append(b_recall)
        # Update specificity only when (tn + fp) !=0; ignore nan
        if b_specificity != 'nan': val_specificity.append(b_specificity)

    print('\n\t - Train loss: {:.4f}'.format(tr_loss / nb_tr_steps))
    print('\t - Validation Accuracy: {:.4f}'.format(sum(val_accuracy)/len(val_accuracy)))
    print('\t - Validation Precision: {:.4f}'.format(sum(val_precision)/len(val_precision)) if len(val_precision)>0 else '\t - Validation Precision: NaN')
    print('\t - Validation Recall: {:.4f}'.format(sum(val_recall)/len(val_recall)) if len(val_recall)>0 else '\t - Validation Recall: NaN')
    print('\t - Validation Specificity: {:.4f}\n'.format(sum(val_specificity)/len(val_specificity)) if len(val_specificity)>0 else '\t - Validation Specificity: NaN')

#Used for printing the name if the variables. Removing it will not intrupt the project.
def namestr(obj, namespace):
    return [name for name in namespace if namespace[name] is obj]

def predict(new_sentence):
    # We need Token IDs and Attention Mask for inference on the new sentence
    test_ids = []
    test_attention_mask = []

    # Apply the tokenizer
    encoding = preprocessing(new_sentence, tokenizer)

    # Extract IDs and Attention Mask
    test_ids.append(encoding['input_ids'])
    test_attention_mask.append(encoding['attention_mask'])
    test_ids = torch.cat(test_ids, dim = 0)
    test_attention_mask = torch.cat(test_attention_mask, dim = 0)

    # Forward pass, calculate logit predictions
    with torch.no_grad():
      output = model(test_ids.to(device), token_type_ids = None, attention_mask = test_attention_mask.to(device))

    prediction = 'Spam' if np.argmax(output.logits.cpu().numpy()).flatten().item() == 1 else 'Normal'

    
    print('Input', namestr(new_sentence, globals()),': \n', new_sentence) 
      # Remove the namestr(new_sentence, globals()) in case of an error      
    print('Predicted Class: ', prediction,'\n----------------------------------\n')

#Textbox for text user is entering
st.subheader("Enter the text you'd like to analyze for spam.")
text = st.text_input('Enter text') #text is stored in this variable

predict(text)


'''
@software{stefan_schweter_2020_3770924,
  author       = {Stefan Schweter},
  title        = {BERTurk - BERT models for Turkish},
  month        = apr,
  year         = 2020,
  publisher    = {Zenodo},
  version      = {1.0.0},
  doi          = {10.5281/zenodo.3770924},
  url          = {https://doi.org/10.5281/zenodo.3770924}
}
'''