import streamlit as st from transformers import pipeline from textblob import TextBlob from transformers import BertForSequenceClassification, AdamW, BertConfig st.set_page_config(layout='wide', initial_sidebar_state='expanded') with col1: st.title("Spamd: Turkish Spam Detector") st.markdown("Message spam detection tool for Turkish language. Due the small size of the dataset, I decided to go with transformers technology Google BERT. Using the Turkish pre-trained model BERTurk, I imporved the accuracy of the tool by 18 percent compared to the previous model which used fastText.") import torch import numpy as np from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-turkish-uncased") from transformers import AutoModel model = BertForSequenceClassification.from_pretrained("NimaKL/spamd_model") token_id = [] attention_masks = [] def preprocessing(input_text, tokenizer): ''' Returns with the following fields: - input_ids: list of token ids - token_type_ids: list of token type ids - attention_mask: list of indices (0,1) specifying which tokens should considered by the model (return_attention_mask = True). ''' return tokenizer.encode_plus( input_text, add_special_tokens = True, max_length = 32, pad_to_max_length = True, return_attention_mask = True, return_tensors = 'pt' ) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') with col1: st.success("Model Loaded!") def predict(new_sentence): # We need Token IDs and Attention Mask for inference on the new sentence test_ids = [] test_attention_mask = [] # Apply the tokenizer encoding = preprocessing(new_sentence, tokenizer) #Extract IDs and Attention Mask test_ids.append(encoding['input_ids']) test_attention_mask.append(encoding['attention_mask']) test_ids = torch.cat(test_ids, dim = 0) test_attention_mask = torch.cat(test_attention_mask, dim = 0) #Forward pass, calculate logit predictions with torch.no_grad(): output = model(test_ids.to(device), token_type_ids = None, attention_mask = test_attention_mask.to(device)) prediction = 'Spam' if np.argmax(output.logits.cpu().numpy()).flatten().item() == 1 else 'Normal' pred = 'Predicted Class: '+ prediction return pred if text or aButton: st.text_input("Enter the text you'd like to analyze for spam.") st.button('Analyze') with col2: st.header(predict(text))