File size: 3,059 Bytes
2caa545 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
import streamlit as st
import os
from langchain_groq import ChatGroq
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
from langchain.chains import create_retrieval_chain
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFDirectoryLoader
from dotenv import load_dotenv
import time
# Load environment variables from .env file
load_dotenv()
# Retrieve the API keys from environment variables
huggingfacehub_api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
groq_api_key = os.getenv("GROQ_API_KEY")
# Check if the keys are retrieved correctly
if huggingfacehub_api_token is None:
raise ValueError("HUGGINGFACEHUB_API_TOKEN environment variable is not set")
if groq_api_key is None:
raise ValueError("GROQ_API_KEY environment variable is not set")
# Set environment variables for Hugging Face
os.environ['HUGGINGFACEHUB_API_TOKEN'] = huggingfacehub_api_token
# Initialize the ChatGroq LLM with the retrieved API key
llm = ChatGroq(api_key=groq_api_key, model_name="Llama3-8b-8192")
st.title("DataScience Chatgroq With Llama3")
prompt = ChatPromptTemplate.from_template(
"""
Answer the questions based on the provided context only.
Please provide the most accurate response based on the question.
<context>
{context}
<context>
Questions: {input}
"""
)
def vector_embedding():
if "vectors" not in st.session_state:
st.session_state.embeddings = HuggingFaceEmbeddings()
st.session_state.loader = PyPDFDirectoryLoader("./Data_Science") # Data Ingestion
st.session_state.docs = st.session_state.loader.load() # Document Loading
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) # Chunk Creation
st.session_state.final_documents = st.session_state.text_splitter.split_documents(st.session_state.docs[:20]) # Splitting
st.session_state.vectors = FAISS.from_documents(st.session_state.final_documents, st.session_state.embeddings) # Vector HuggingFace embeddings
prompt1 = st.text_input("Enter Your Question From Documents")
if st.button("Documents Embedding"):
vector_embedding()
st.write("Vector Store DB Is Ready")
if prompt1:
document_chain = create_stuff_documents_chain(llm, prompt)
retriever = st.session_state.vectors.as_retriever()
retrieval_chain = create_retrieval_chain(retriever, document_chain)
start = time.process_time()
response = retrieval_chain.invoke({'input': prompt1})
st.write("Response time: ", time.process_time() - start)
st.write(response['answer'])
with st.expander("Document Similarity Search"):
for i, doc in enumerate(response["context"]):
st.write(doc.page_content)
st.write("--------------------------------")
|