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Chapter 1

Machine learning

For the journal, see Machine Learning (journal).

Machine learning is a subfield of computer science[1]

that evolved from the study of pattern recognition and
computational learning theory in artificial intelligence.[1]

Machine learning explores the construction and study of
algorithms that can learn from and make predictions on
data.[2] Such algorithms operate by building a model from
example inputs in order to make data-driven predictions
or decisions,[3]:2 rather than following strictly static pro-
gram instructions.
Machine learning is closely related to and often over-
laps with computational statistics; a discipline that also
specializes in prediction-making. It has strong ties to
mathematical optimization, which deliver methods, the-
ory and application domains to the field. Machine learn-
ing is employed in a range of computing tasks where
designing and programming explicit algorithms is in-
feasible. Example applications include spam filtering,
optical character recognition (OCR),[4] search engines
and computer vision. Machine learning is sometimes
conflated with data mining,[5] although that focuses more
on exploratory data analysis.[6] Machine learning and pat-
tern recognition “can be viewed as two facets of the same
field.”[3]:vii

When employed in industrial contexts, machine learn-
ing methods may be referred to as predictive analytics or
predictive modelling.

1.1 Overview

In 1959, Arthur Samuel defined machine learning as a
“Field of study that gives computers the ability to learn
without being explicitly programmed”.[7]

Tom M. Mitchell provided a widely quoted, more for-
mal definition: “A computer program is said to learn
from experience E with respect to some class of tasks T
and performance measure P, if its performance at tasks
in T, as measured by P, improves with experience E”.[8]

This definition is notable for its defining machine learn-
ing in fundamentally operational rather than cognitive
terms, thus following Alan Turing's proposal in his paper

"Computing Machinery and Intelligence" that the ques-
tion “Can machines think?" be replaced with the ques-
tion “Can machines do what we (as thinking entities) can
do?"[9]

1.1.1 Types of problems and tasks

Machine learning tasks are typically classified into three
broad categories, depending on the nature of the learn-
ing “signal” or “feedback” available to a learning system.
These are:[10]

• Supervised learning: The computer is presented
with example inputs and their desired outputs, given
by a “teacher”, and the goal is to learn a general rule
that maps inputs to outputs.

• Unsupervised learning: No labels are given to the
learning algorithm, leaving it on its own to find struc-
ture in its input. Unsupervised learning can be a goal
in itself (discovering hidden patterns in data) or a
means towards an end.

• Reinforcement learning: A computer program in-
teracts with a dynamic environment in which it must
perform a certain goal (such as driving a vehicle),
without a teacher explicitly telling it whether it has
come close to its goal or not. Another example
is learning to play a game by playing against an
opponent.[3]:3

Between supervised and unsupervised learning is semi-
supervised learning, where the teacher gives an incom-
plete training signal: a training set with some (often
many) of the target outputs missing. Transduction is a
special case of this principle where the entire set of prob-
lem instances is known at learning time, except that part
of the targets are missing.
Among other categories of machine learning problems,
learning to learn learns its own inductive bias based on
previous experience. Developmental learning, elabo-
rated for robot learning, generates its own sequences (also
called curriculum) of learning situations to cumulatively
acquire repertoires of novel skills through autonomous

1
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A support vector machine is a classifier that divides its input space
into two regions, separated by a linear boundary. Here, it has
learned to distinguish black and white circles.

self-exploration and social interaction with human teach-
ers, and using guidance mechanisms such as active learn-
ing, maturation, motor synergies, and imitation.
Another categorization of machine learning tasks arises
when one considers the desired output of a machine-
learned system:[3]:3

• In classification, inputs are divided into two or more
classes, and the learner must produce a model that
assigns unseen inputs to one (or multi-label classi-
fication) or more of these classes. This is typically
tackled in a supervised way. Spam filtering is an ex-
ample of classification, where the inputs are email
(or other) messages and the classes are “spam” and
“not spam”.

• In regression, also a supervised problem, the outputs
are continuous rather than discrete.

• In clustering, a set of inputs is to be divided into
groups. Unlike in classification, the groups are not
known beforehand, making this typically an unsu-
pervised task.

• Density estimation finds the distribution of inputs in
some space.

• Dimensionality reduction simplifies inputs by map-
ping them into a lower-dimensional space. Topic
modeling is a related problem, where a program is
given a list of human language documents and is
tasked to find out which documents cover similar
topics.

1.2 History and relationships to
other fields

As a scientific endeavour, machine learning grew out
of the quest for artificial intelligence. Already in the
early days of AI as an academic discipline, some re-
searchers were interested in having machines learn from
data. They attempted to approach the problem with vari-
ous symbolic methods, as well as what were then termed
"neural networks"; these were mostly perceptrons and
other models that were later found to be reinventions of
the generalized linear models of statistics. Probabilistic
reasoning was also employed, especially in automated
medical diagnosis.[10]:488

However, an increasing emphasis on the logical,
knowledge-based approach caused a rift between AI and
machine learning. Probabilistic systems were plagued
by theoretical and practical problems of data acquisition
and representation.[10]:488 By 1980, expert systems had
come to dominate AI, and statistics was out of favor.[11]

Work on symbolic/knowledge-based learning did con-
tinue within AI, leading to inductive logic programming,
but the more statistical line of research was now out-
side the field of AI proper, in pattern recognition and
information retrieval.[10]:708–710; 755 Neural networks re-
search had been abandoned by AI and computer science
around the same time. This line, too, was continued out-
side the AI/CS field, as "connectionism", by researchers
from other disciplines including Hopfield, Rumelhart and
Hinton. Their main success came in the mid-1980s with
the reinvention of backpropagation.[10]:25

Machine learning, reorganized as a separate field, started
to flourish in the 1990s. The field changed its goal from
achieving artificial intelligence to tackling solvable prob-
lems of a practical nature. It shifted focus away from
the symbolic approaches it had inherited from AI, and
toward methods and models borrowed from statistics and
probability theory.[11] It also benefited from the increas-
ing availability of digitized information, and the possibil-
ity to distribute that via the internet.
Machine learning and data mining often employ the same
methods and overlap significantly. They can be roughly
distinguished as follows:

• Machine learning focuses on prediction, based on
known properties learned from the training data.

• Data mining focuses on the discovery of (previously)
unknown properties in the data. This is the analysis
step of Knowledge Discovery in Databases.

The two areas overlap in many ways: data mining uses
many machine learning methods, but often with a slightly
different goal in mind. On the other hand, machine
learning also employs data mining methods as “unsuper-
vised learning” or as a preprocessing step to improve
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learner accuracy. Much of the confusion between these
two research communities (which do often have sepa-
rate conferences and separate journals, ECML PKDD
being a major exception) comes from the basic assump-
tions they work with: in machine learning, performance
is usually evaluated with respect to the ability to re-
produce known knowledge, while in Knowledge Discov-
ery and Data Mining (KDD) the key task is the discov-
ery of previously unknown knowledge. Evaluated with
respect to known knowledge, an uninformed (unsuper-
vised) method will easily be outperformed by supervised
methods, while in a typical KDD task, supervised meth-
ods cannot be used due to the unavailability of training
data.
Machine learning also has intimate ties to optimization:
many learning problems are formulated as minimization
of some loss function on a training set of examples. Loss
functions express the discrepancy between the predic-
tions of the model being trained and the actual prob-
lem instances (for example, in classification, one wants
to assign a label to instances, and models are trained
to correctly predict the pre-assigned labels of a set ex-
amples). The difference between the two fields arises
from the goal of generalization: while optimization algo-
rithms can minimize the loss on a training set, machine
learning is concerned with minimizing the loss on unseen
samples.[12]

1.2.1 Relation to statistics

Machine learning and statistics are closely related fields.
According to Michael I. Jordan, the ideas of machine
learning, from methodological principles to theoretical
tools, have had a long pre-history in statistics.[13] He also
suggested the term data science as a placeholder to call
the overall field.[13]

Leo Breiman distinguished two statistical modelling
paradigms: data model and algorithmic model,[14]

wherein 'algorithmic model' means more or less the ma-
chine learning algorithms like Random forest.
Some statisticians have adopted methods from machine
learning, leading to a combined field that they call statis-
tical learning.[15]

1.3 Theory

Main article: Computational learning theory

A core objective of a learner is to generalize from its
experience.[3][16] Generalization in this context is the abil-
ity of a learning machine to perform accurately on new,
unseen examples/tasks after having experienced a learn-
ing data set. The training examples come from some gen-
erally unknown probability distribution (considered rep-

resentative of the space of occurrences) and the learner
has to build a general model about this space that en-
ables it to produce sufficiently accurate predictions in new
cases.
The computational analysis of machine learning algo-
rithms and their performance is a branch of theoretical
computer science known as computational learning the-
ory. Because training sets are finite and the future is un-
certain, learning theory usually does not yield guarantees
of the performance of algorithms. Instead, probabilis-
tic bounds on the performance are quite common. The
bias–variance decomposition is one way to quantify gen-
eralization error.
In addition to performance bounds, computational learn-
ing theorists study the time complexity and feasibility of
learning. In computational learning theory, a computa-
tion is considered feasible if it can be done in polynomial
time. There are two kinds of time complexity results.
Positive results show that a certain class of functions can
be learned in polynomial time. Negative results show that
certain classes cannot be learned in polynomial time.
There are many similarities between machine learning
theory and statistical inference, although they use differ-
ent terms.

1.4 Approaches

Main article: List of machine learning algorithms

1.4.1 Decision tree learning

Main article: Decision tree learning

Decision tree learning uses a decision tree as a predictive
model, which maps observations about an item to conclu-
sions about the item’s target value.

1.4.2 Association rule learning

Main article: Association rule learning

Association rule learning is a method for discovering in-
teresting relations between variables in large databases.

1.4.3 Artificial neural networks

Main article: Artificial neural network

An artificial neural network (ANN) learning algorithm,
usually called “neural network” (NN), is a learning al-
gorithm that is inspired by the structure and func-
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tional aspects of biological neural networks. Compu-
tations are structured in terms of an interconnected
group of artificial neurons, processing information using
a connectionist approach to computation. Modern neu-
ral networks are non-linear statistical data modeling tools.
They are usually used to model complex relationships be-
tween inputs and outputs, to find patterns in data, or to
capture the statistical structure in an unknown joint prob-
ability distribution between observed variables.

1.4.4 Inductive logic programming

Main article: Inductive logic programming

Inductive logic programming (ILP) is an approach to rule
learning using logic programming as a uniform represen-
tation for input examples, background knowledge, and
hypotheses. Given an encoding of the known background
knowledge and a set of examples represented as a log-
ical database of facts, an ILP system will derive a hy-
pothesized logic program that entails all positive and no
negative examples. Inductive programming is a related
field that considers any kind of programming languages
for representing hypotheses (and not only logic program-
ming), such as functional programs.

1.4.5 Support vector machines

Main article: Support vector machines

Support vector machines (SVMs) are a set of related
supervised learning methods used for classification and
regression. Given a set of training examples, each marked
as belonging to one of two categories, an SVM training
algorithm builds a model that predicts whether a new ex-
ample falls into one category or the other.

1.4.6 Clustering

Main article: Cluster analysis

Cluster analysis is the assignment of a set of observations
into subsets (called clusters) so that observations within
the same cluster are similar according to some predes-
ignated criterion or criteria, while observations drawn
from different clusters are dissimilar. Different cluster-
ing techniques make different assumptions on the struc-
ture of the data, often defined by some similarity metric
and evaluated for example by internal compactness (simi-
larity between members of the same cluster) and separa-
tion between different clusters. Other methods are based
on estimated density and graph connectivity. Clustering is
a method of unsupervised learning, and a common tech-
nique for statistical data analysis.

1.4.7 Bayesian networks

Main article: Bayesian network

A Bayesian network, belief network or directed acyclic
graphical model is a probabilistic graphical model that
represents a set of random variables and their conditional
independencies via a directed acyclic graph (DAG). For
example, a Bayesian network could represent the prob-
abilistic relationships between diseases and symptoms.
Given symptoms, the network can be used to compute
the probabilities of the presence of various diseases. Ef-
ficient algorithms exist that perform inference and learn-
ing.

1.4.8 Reinforcement learning

Main article: Reinforcement learning

Reinforcement learning is concerned with how an agent
ought to take actions in an environment so as to maxi-
mize some notion of long-term reward. Reinforcement
learning algorithms attempt to find a policy that maps
states of the world to the actions the agent ought to take
in those states. Reinforcement learning differs from the
supervised learning problem in that correct input/output
pairs are never presented, nor sub-optimal actions explic-
itly corrected.

1.4.9 Representation learning

Main article: Representation learning

Several learning algorithms, mostly unsupervised learn-
ing algorithms, aim at discovering better representations
of the inputs provided during training. Classical exam-
ples include principal components analysis and cluster
analysis. Representation learning algorithms often at-
tempt to preserve the information in their input but trans-
form it in a way that makes it useful, often as a pre-
processing step before performing classification or pre-
dictions, allowing to reconstruct the inputs coming from
the unknown data generating distribution, while not being
necessarily faithful for configurations that are implausible
under that distribution.
Manifold learning algorithms attempt to do so under
the constraint that the learned representation is low-
dimensional. Sparse coding algorithms attempt to do
so under the constraint that the learned representation is
sparse (has many zeros). Multilinear subspace learning
algorithms aim to learn low-dimensional representations
directly from tensor representations for multidimensional
data, without reshaping them into (high-dimensional)
vectors.[17] Deep learning algorithms discover multiple
levels of representation, or a hierarchy of features, with
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higher-level, more abstract features defined in terms of
(or generating) lower-level features. It has been argued
that an intelligent machine is one that learns a represen-
tation that disentangles the underlying factors of variation
that explain the observed data.[18]

1.4.10 Similarity and metric learning

Main article: Similarity learning

In this problem, the learning machine is given pairs of ex-
amples that are considered similar and pairs of less simi-
lar objects. It then needs to learn a similarity function (or
a distance metric function) that can predict if new objects
are similar. It is sometimes used in Recommendation sys-
tems.

1.4.11 Sparse dictionary learning

In this method, a datum is represented as a linear com-
bination of basis functions, and the coefficients are as-
sumed to be sparse. Let x be a d-dimensional datum, D
be a d by n matrix, where each column of D represents
a basis function. r is the coefficient to represent x using
D. Mathematically, sparse dictionary learning means the
following x ≈ Dr where r is sparse. Generally speaking,
n is assumed to be larger than d to allow the freedom for
a sparse representation.
Learning a dictionary along with sparse representa-
tions is strongly NP-hard and also difficult to solve
approximately.[19] A popular heuristic method for sparse
dictionary learning is K-SVD.
Sparse dictionary learning has been applied in several
contexts. In classification, the problem is to determine
which classes a previously unseen datum belongs to. Sup-
pose a dictionary for each class has already been built.
Then a new datum is associated with the class such that
it’s best sparsely represented by the corresponding dic-
tionary. Sparse dictionary learning has also been applied
in image de-noising. The key idea is that a clean image
patch can be sparsely represented by an image dictionary,
but the noise cannot.[20]

1.4.12 Genetic algorithms

Main article: Genetic algorithm

A genetic algorithm (GA) is a search heuristic that mim-
ics the process of natural selection, and uses methods such
as mutation and crossover to generate new genotype in
the hope of finding good solutions to a given problem. In
machine learning, genetic algorithms found some uses in
the 1980s and 1990s.[21][22] Vice versa, machine learning

techniques have been used to improve the performance
of genetic and evolutionary algorithms.[23]

1.5 Applications

Applications for machine learning include:

• Adaptive websites

• Affective computing

• Bioinformatics

• Brain-machine interfaces

• Cheminformatics

• Classifying DNA sequences

• Computational advertising

• Computational finance

• Computer vision, including object recognition

• Detecting credit card fraud

• Game playing[24]

• Information retrieval

• Internet fraud detection

• Machine perception

• Medical diagnosis

• Natural language processing[25]

• Optimization and metaheuristic

• Recommender systems

• Robot locomotion

• Search engines

• Sentiment analysis (or opinion mining)

• Sequence mining

• Software engineering

• Speech and handwriting recognition

• Stock market analysis

• Structural health monitoring

• Syntactic pattern recognition
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In 2006, the online movie company Netflix held the first
"Netflix Prize" competition to find a program to better
predict user preferences and improve the accuracy on its
existing Cinematch movie recommendation algorithm by
at least 10%. A joint team made up of researchers from
AT&T Labs-Research in collaboration with the teams Big
Chaos and Pragmatic Theory built an ensemble model to
win the Grand Prize in 2009 for $1 million.[26] Shortly
after the prize was awarded, Netflix realized that view-
ers’ ratings were not the best indicators of their view-
ing patterns (“everything is a recommendation”) and they
changed their recommendation engine accordingly.[27]

In 2010 The Wall Street Journal wrote about money man-
agement firm Rebellion Research’s use of machine learn-
ing to predict economic movements. The article de-
scribes Rebellion Research’s prediction of the financial
crisis and economic recovery.[28]

In 2014 it has been reported that a machine learning al-
gorithm has been applied in Art History to study fine art
paintings, and that it may have revealed previously unrec-
ognized influences between artists.[29]

1.6 Software

Software suites containing a variety of machine learning
algorithms include the following:

1.6.1 Open-source software

• dlib

• ELKI

• Encog

• H2O

• Mahout

• mlpy

• MLPACK

• MOA (Massive Online Analysis)

• ND4J with Deeplearning4j

• OpenCV

• OpenNN

• Orange

• R

• scikit-learn

• Shogun

• Torch (machine learning)

• Spark

• Yooreeka

• Weka

1.6.2 Commercial software with open-
source editions

• KNIME

• RapidMiner

1.6.3 Commercial software

• Amazon Machine Learning

• Angoss KnowledgeSTUDIO

• Databricks

• IBM SPSS Modeler

• KXEN Modeler

• LIONsolver

• Mathematica

• MATLAB

• Microsoft Azure Machine Learning

• Neural Designer

• NeuroSolutions

• Oracle Data Mining

• RCASE

• SAS Enterprise Miner

• STATISTICA Data Miner

1.7 Journals

• Journal of Machine Learning Research

• Machine Learning

• Neural Computation

1.8 Conferences

• Conference on Neural Information Processing Sys-
tems

• International Conference on Machine Learning
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1.9 See also
• Adaptive control

• Adversarial machine learning

• Automatic reasoning

• Cache language model

• Cognitive model

• Cognitive science

• Computational intelligence

• Computational neuroscience

• Ethics of artificial intelligence

• Existential risk of artificial general intelligence

• Explanation-based learning

• Hidden Markov model

• Important publications in machine learning

• List of machine learning algorithms
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• mloss is an academic database of open-source ma-
chine learning software.

https://medium.com/the-physics-arxiv-blog/when-a-machine-learning-algorithm-studied-fine-art-paintings-it-saw-things-art-historians-had-never-b8e4e7bf7d3e
https://medium.com/the-physics-arxiv-blog/when-a-machine-learning-algorithm-studied-fine-art-paintings-it-saw-things-art-historians-had-never-b8e4e7bf7d3e
https://medium.com/the-physics-arxiv-blog/when-a-machine-learning-algorithm-studied-fine-art-paintings-it-saw-things-art-historians-had-never-b8e4e7bf7d3e
https://en.wikipedia.org/wiki/ArXiv
https://en.wikipedia.org/wiki/Mehryar_Mohri
http://www.cs.nyu.edu/~mohri/mlbook/
https://en.wikipedia.org/wiki/Special:BookSources/9780262018258
https://en.wikipedia.org/wiki/Special:BookSources/9780123748560
https://en.wikipedia.org/wiki/Special:BookSources/9780123748560
https://en.wikipedia.org/wiki/Special:BookSources/9781597492720
http://www.cs.uic.edu/~liub/WebMiningBook.html
http://www.cs.uic.edu/~liub/WebMiningBook.html
https://en.wikipedia.org/wiki/Special:BookSources/3540378812
https://en.wikipedia.org/wiki/Special:BookSources/3540378812
https://en.wikipedia.org/wiki/Special:BookSources/0596529325
http://learning-from-data.com/
http://learning-from-data.com/
http://learning-from-data.com/
https://en.wikipedia.org/wiki/Special:BookSources/3540316817
https://en.wikipedia.org/wiki/Special:BookSources/3540316817
https://en.wikipedia.org/wiki/Special:BookSources/0262012111
http://www.inference.phy.cam.ac.uk/mackay/itila/
http://www.inference.phy.cam.ac.uk/mackay/itila/
https://en.wikipedia.org/wiki/Special:BookSources/0521642981
http://support-vector.ws/
http://support-vector.ws/
http://support-vector.ws/
https://en.wikipedia.org/wiki/Special:BookSources/0262112558
https://en.wikipedia.org/wiki/Special:BookSources/0262112558
https://en.wikipedia.org/wiki/Trevor_Hastie
https://en.wikipedia.org/wiki/Robert_Tibshirani
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
https://en.wikipedia.org/wiki/Special:BookSources/0387952845
https://en.wikipedia.org/wiki/Special:BookSources/0471056693
https://en.wikipedia.org/wiki/Special:BookSources/0198538642
https://en.wikipedia.org/wiki/Special:BookSources/0198538642
https://en.wikipedia.org/wiki/Ryszard_S._Michalski
https://en.wikipedia.org/wiki/Special:BookSources/1558602518
https://en.wikipedia.org/wiki/Special:BookSources/1558600655
https://en.wikipedia.org/wiki/Ryszard_S._Michalski
https://en.wikipedia.org/wiki/Special:BookSources/1558601198
https://en.wikipedia.org/wiki/Special:BookSources/1558601198
https://en.wikipedia.org/wiki/Ryszard_S._Michalski
https://en.wikipedia.org/wiki/Tom_M._Mitchell
https://en.wikipedia.org/wiki/Tom_M._Mitchell
https://en.wikipedia.org/wiki/Special:BookSources/0934613001
https://en.wikipedia.org/wiki/Ryszard_S._Michalski
https://en.wikipedia.org/wiki/Special:BookSources/0935382054
https://en.wikipedia.org/wiki/Special:BookSources/0471030031
https://en.wikipedia.org/wiki/Ray_Solomonoff
http://world.std.com/~rjs/indinf56.pdf
http://world.std.com/~rjs/indinf56.pdf
https://en.wikipedia.org/wiki/Dartmouth_Conferences
http://machinelearning.org/
https://en.wikipedia.org/wiki/Andrew_Ng
https://www.coursera.org/course/ml
https://en.wikipedia.org/wiki/GNU_Octave
https://en.wikipedia.org/wiki/Stanford_University
http://see.stanford.edu/see/courseinfo.aspx?coll=348ca38a-3a6d-4052-937d-cb017338d7b1
http://videolectures.net/Top/Computer_Science/Machine_Learning/
https://mloss.org/


Chapter 2

Artificial intelligence

“AI” redirects here. For other uses, see Ai and Artificial
intelligence (disambiguation).

Artificial intelligence (AI) is the intelligence exhibited
by machines or software. It is also the name of the aca-
demic field of study which studies how to create comput-
ers and computer software that are capable of intelligent
behavior. Major AI researchers and textbooks define this
field as “the study and design of intelligent agents”,[1] in
which an intelligent agent is a system that perceives its
environment and takes actions that maximize its chances
of success.[2] John McCarthy, who coined the term in
1955,[3] defines it as “the science and engineering of mak-
ing intelligent machines”.[4]

AI research is highly technical and specialized, and is
deeply divided into subfields that often fail to commu-
nicate with each other.[5] Some of the division is due
to social and cultural factors: subfields have grown up
around particular institutions and the work of individual
researchers. AI research is also divided by several tech-
nical issues. Some subfields focus on the solution of spe-
cific problems. Others focus on one of several possible
approaches or on the use of a particular tool or towards
the accomplishment of particular applications.
The central problems (or goals) of AI research include
reasoning, knowledge, planning, learning, natural lan-
guage processing (communication), perception and the
ability to move and manipulate objects.[6] General in-
telligence is still among the field’s long-term goals.[7]

Currently popular approaches include statistical methods,
computational intelligence and traditional symbolic AI.
There are a large number of tools used in AI, includ-
ing versions of search and mathematical optimization,
logic, methods based on probability and economics, and
many others. The AI field is interdisciplinary, in which a
number of sciences and professions converge, including
computer science, mathematics, psychology, linguistics,
philosophy and neuroscience, as well as other specialized
fields such as artificial psychology.
The field was founded on the claim that a central prop-
erty of humans, intelligence—the sapience of Homo sapi-
ens—"can be so precisely described that a machine can
be made to simulate it.”[8] This raises philosophical is-

sues about the nature of the mind and the ethics of cre-
ating artificial beings endowed with human-like intelli-
gence, issues which have been addressed by myth, fiction
and philosophy since antiquity.[9] Artificial intelligence
has been the subject of tremendous optimism[10] but has
also suffered stunning setbacks.[11] Today it has become
an essential part of the technology industry, providing the
heavy lifting for many of the most challenging problems
in computer science.[12]

2.1 History

Main articles: History of artificial intelligence and
Timeline of artificial intelligence

Thinking machines and artificial beings appear in Greek
myths, such as Talos of Crete, the bronze robot of
Hephaestus, and Pygmalion’s Galatea.[13] Human like-
nesses believed to have intelligence were built in ev-
ery major civilization: animated cult images were wor-
shiped in Egypt and Greece[14] and humanoid automatons
were built by Yan Shi, Hero of Alexandria and Al-
Jazari.[15] It was also widely believed that artificial be-
ings had been created by Jābir ibn Hayyān, Judah Loew
and Paracelsus.[16] By the 19th and 20th centuries, arti-
ficial beings had become a common feature in fiction, as
in Mary Shelley's Frankenstein or Karel Čapek's R.U.R.
(Rossum’s Universal Robots).[17] Pamela McCorduck ar-
gues that all of these are some examples of an ancient
urge, as she describes it, “to forge the gods”.[9] Stories of
these creatures and their fates discuss many of the same
hopes, fears and ethical concerns that are presented by
artificial intelligence.
Mechanical or “formal” reasoning has been developed
by philosophers and mathematicians since antiquity.
The study of logic led directly to the invention of the
programmable digital electronic computer, based on the
work of mathematician Alan Turing and others. Turing’s
theory of computation suggested that a machine, by shuf-
fling symbols as simple as “0” and “1”, could simulate
any conceivable act of mathematical deduction.[18][19]

This, along with concurrent discoveries in neurology,
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information theory and cybernetics, inspired a small
group of researchers to begin to seriously consider the
possibility of building an electronic brain.[20]

The field of AI research was founded at a conference
on the campus of Dartmouth College in the summer
of 1956.[21] The attendees, including John McCarthy,
Marvin Minsky, Allen Newell, Arthur Samuel, and
Herbert Simon, became the leaders of AI research for
many decades.[22] They and their students wrote pro-
grams that were, to most people, simply astonishing:[23]

computers were winning at checkers, solving word prob-
lems in algebra, proving logical theorems and speak-
ing English.[24] By the middle of the 1960s, research in
the U.S. was heavily funded by the Department of De-
fense[25] and laboratories had been established around the
world.[26] AI’s founders were profoundly optimistic about
the future of the new field: Herbert Simon predicted that
“machines will be capable, within twenty years, of doing
any work a man can do” and Marvin Minsky agreed, writ-
ing that “within a generation ... the problem of creating
'artificial intelligence' will substantially be solved”.[27]

They had failed to recognize the difficulty of some of the
problems they faced.[28] In 1974, in response to the criti-
cism of Sir James Lighthill[29] and ongoing pressure from
the US Congress to fund more productive projects, both
the U.S. and British governments cut off all undirected
exploratory research in AI. The next few years would later
be called an "AI winter",[30] a period when funding for AI
projects was hard to find.
In the early 1980s, AI research was revived by the com-
mercial success of expert systems,[31] a form of AI pro-
gram that simulated the knowledge and analytical skills
of one or more human experts. By 1985 the market for
AI had reached over a billion dollars. At the same time,
Japan’s fifth generation computer project inspired the U.S
and British governments to restore funding for academic
research in the field.[32] However, beginning with the col-
lapse of the Lisp Machine market in 1987, AI once again
fell into disrepute, and a second, longer lasting AI winter
began.[33]

In the 1990s and early 21st century, AI achieved its great-
est successes, albeit somewhat behind the scenes. Artifi-
cial intelligence is used for logistics, data mining, medical
diagnosis and many other areas throughout the technol-
ogy industry.[12] The success was due to several factors:
the increasing computational power of computers (see
Moore’s law), a greater emphasis on solving specific sub-
problems, the creation of new ties between AI and other
fields working on similar problems, and a new commit-
ment by researchers to solid mathematical methods and
rigorous scientific standards.[34]

On 11 May 1997, Deep Blue became the first com-
puter chess-playing system to beat a reigning world chess
champion, Garry Kasparov.[35] In February 2011, in a
Jeopardy! quiz show exhibition match, IBM's question
answering system, Watson, defeated the two greatest

Jeopardy champions, Brad Rutter and Ken Jennings, by
a significant margin.[36] The Kinect, which provides a
3D body–motion interface for the Xbox 360 and the
Xbox One, uses algorithms that emerged from lengthy
AI research[37] as do intelligent personal assistants in
smartphones.[38]

2.2 Research

2.2.1 Goals
You awake one morning to find your brain

has another lobe functioning. Invisible, this
auxiliary lobe answers your questions with
information beyond the realm of your own
memory, suggests plausible courses of action,
and asks questions that help bring out relevant
facts. You quickly come to rely on the new
lobe so much that you stop wondering how it
works. You just use it. This is the dream of
artificial intelligence.
—BYTE, April 1985[39]

The general problem of simulating (or creating) intelli-
gence has been broken down into a number of specific
sub-problems. These consist of particular traits or capa-
bilities that researchers would like an intelligent system
to display. The traits described below have received the
most attention.[6]

Deduction, reasoning, problem solving

Early AI researchers developed algorithms that imitated
the step-by-step reasoning that humans use when they
solve puzzles or make logical deductions.[40] By the late
1980s and 1990s, AI research had also developed highly
successful methods for dealing with uncertain or incom-
plete information, employing concepts from probability
and economics.[41]

For difficult problems, most of these algorithms can re-
quire enormous computational resources – most experi-
ence a "combinatorial explosion": the amount of memory
or computer time required becomes astronomical when
the problem goes beyond a certain size. The search for
more efficient problem-solving algorithms is a high pri-
ority for AI research.[42]

Human beings solve most of their problems using fast,
intuitive judgements rather than the conscious, step-
by-step deduction that early AI research was able to
model.[43] AI has made some progress at imitating this
kind of “sub-symbolic” problem solving: embodied agent
approaches emphasize the importance of sensorimotor
skills to higher reasoning; neural net research attempts
to simulate the structures inside the brain that give rise to
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this skill; statistical approaches to AI mimic the proba-
bilistic nature of the human ability to guess.

Knowledge representation

An ontology represents knowledge as a set of concepts within a
domain and the relationships between those concepts.

Main articles: Knowledge representation and
Commonsense knowledge

Knowledge representation[44] and knowledge engineer-
ing[45] are central to AI research. Many of the prob-
lems machines are expected to solve will require extensive
knowledge about the world. Among the things that AI
needs to represent are: objects, properties, categories and
relations between objects;[46] situations, events, states and
time;[47] causes and effects;[48] knowledge about knowl-
edge (what we know about what other people know);[49]

and many other, less well researched domains. A rep-
resentation of “what exists” is an ontology: the set of
objects, relations, concepts and so on that the machine
knows about. The most general are called upper ontolo-
gies, which attempt to provide a foundation for all other
knowledge.[50]

Among the most difficult problems in knowledge repre-
sentation are:

Default reasoning and the qualification problem
Many of the things people know take the form
of “working assumptions.” For example, if a bird
comes up in conversation, people typically picture
an animal that is fist sized, sings, and flies. None
of these things are true about all birds. John
McCarthy identified this problem in 1969[51] as the
qualification problem: for any commonsense rule
that AI researchers care to represent, there tend to
be a huge number of exceptions. Almost nothing
is simply true or false in the way that abstract logic

requires. AI research has explored a number of
solutions to this problem.[52]

The breadth of commonsense knowledge The num-
ber of atomic facts that the average person knows
is astronomical. Research projects that attempt to
build a complete knowledge base of commonsense
knowledge (e.g., Cyc) require enormous amounts
of laborious ontological engineering—they must
be built, by hand, one complicated concept at a
time.[53] A major goal is to have the computer
understand enough concepts to be able to learn by
reading from sources like the internet, and thus be
able to add to its own ontology.

The subsymbolic form of some commonsense knowledge
Much of what people know is not represented as
“facts” or “statements” that they could express
verbally. For example, a chess master will avoid
a particular chess position because it “feels too
exposed”[54] or an art critic can take one look at a
statue and instantly realize that it is a fake.[55] These
are intuitions or tendencies that are represented in
the brain non-consciously and sub-symbolically.[56]

Knowledge like this informs, supports and provides
a context for symbolic, conscious knowledge. As
with the related problem of sub-symbolic reason-
ing, it is hoped that situated AI, computational
intelligence, or statistical AI will provide ways to
represent this kind of knowledge.[56]

Planning

tasks, goals

nodenode

top level
node

sensor actuator sensor /
actuator

sensations sensations
actions actions

Controlled system, controlled process, or environment

sensations,
results

Hierarchical Control System

A hierarchical control system is a form of control system in which
a set of devices and governing software is arranged in a hierar-
chy.

Main article: Automated planning and scheduling

Intelligent agents must be able to set goals and achieve
them.[57] They need a way to visualize the future (they
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must have a representation of the state of the world and
be able to make predictions about how their actions will
change it) and be able to make choices that maximize the
utility (or “value”) of the available choices.[58]

In classical planning problems, the agent can assume that
it is the only thing acting on the world and it can be certain
what the consequences of its actions may be.[59] However,
if the agent is not the only actor, it must periodically as-
certain whether the world matches its predictions and it
must change its plan as this becomes necessary, requiring
the agent to reason under uncertainty.[60]

Multi-agent planning uses the cooperation and competi-
tion of many agents to achieve a given goal. Emergent
behavior such as this is used by evolutionary algorithms
and swarm intelligence.[61]

Learning

Main article: Machine learning

Machine learning is the study of computer algorithms that
improve automatically through experience[62][63] and has
been central to AI research since the field’s inception.[64]

Unsupervised learning is the ability to find patterns in
a stream of input. Supervised learning includes both
classification and numerical regression. Classification is
used to determine what category something belongs in,
after seeing a number of examples of things from several
categories. Regression is the attempt to produce a func-
tion that describes the relationship between inputs and
outputs and predicts how the outputs should change as the
inputs change. In reinforcement learning[65] the agent is
rewarded for good responses and punished for bad ones.
The agent uses this sequence of rewards and punishments
to form a strategy for operating in its problem space.
These three types of learning can be analyzed in terms of
decision theory, using concepts like utility. The mathe-
matical analysis of machine learning algorithms and their
performance is a branch of theoretical computer science
known as computational learning theory.[66]

Within developmental robotics, developmental learning
approaches were elaborated for lifelong cumulative ac-
quisition of repertoires of novel skills by a robot, through
autonomous self-exploration and social interaction with
human teachers, and using guidance mechanisms such
as active learning, maturation, motor synergies, and
imitation.[67][68][69][70]

Natural language processing (communication)

Main article: Natural language processing

Natural language processing[71] gives machines the abil-
ity to read and understand the languages that humans
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A parse tree represents the syntactic structure of a sentence ac-
cording to some formal grammar.

speak. A sufficiently powerful natural language process-
ing system would enable natural language user interfaces
and the acquisition of knowledge directly from human-
written sources, such as newswire texts. Some straightfor-
ward applications of natural language processing include
information retrieval (or text mining), question answer-
ing[72] and machine translation.[73]

A common method of processing and extracting mean-
ing from natural language is through semantic indexing.
Increases in processing speeds and the drop in the cost
of data storage makes indexing large volumes of abstrac-
tions of the user’s input much more efficient.

Perception

Main articles: Machine perception, Computer vision and
Speech recognition

Machine perception[74] is the ability to use input from
sensors (such as cameras, microphones, tactile sensors,
sonar and others more exotic) to deduce aspects of the
world. Computer vision[75] is the ability to analyze visual
input. A few selected subproblems are speech recogni-
tion,[76] facial recognition and object recognition.[77]

Motion and manipulation

Main article: Robotics

The field of robotics[78] is closely related to AI. Intelli-
gence is required for robots to be able to handle such
tasks as object manipulation[79] and navigation, with sub-
problems of localization (knowing where you are, or
finding out where other things are), mapping (learning
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what is around you, building a map of the environment),
and motion planning (figuring out how to get there) or
path planning (going from one point in space to another
point, which may involve compliant motion – where the
robot moves while maintaining physical contact with an
object).[80][81]

Long-term goals

Among the long-term goals in the research pertaining to
artificial intelligence are: (1) Social intelligence, (2) Cre-
ativity, and (3) General intelligence.

Social intelligence Main article: Affective computing
Affective computing is the study and development of

Kismet, a robot with rudimentary social skills

systems and devices that can recognize, interpret, pro-
cess, and simulate human affects.[82][83] It is an interdis-
ciplinary field spanning computer sciences, psychology,
and cognitive science.[84] While the origins of the field
may be traced as far back as to early philosophical in-
quiries into emotion,[85] the more modern branch of com-
puter science originated with Rosalind Picard's 1995
paper[86] on affective computing.[87][88] A motivation for
the research is the ability to simulate empathy. The ma-
chine should interpret the emotional state of humans and
adapt its behaviour to them, giving an appropriate re-
sponse for those emotions.
Emotion and social skills[89] play two roles for an intel-
ligent agent. First, it must be able to predict the actions
of others, by understanding their motives and emotional
states. (This involves elements of game theory, decision
theory, as well as the ability to model human emotions
and the perceptual skills to detect emotions.) Also, in an
effort to facilitate human-computer interaction, an intelli-
gent machine might want to be able to display emotions—
even if it does not actually experience them itself—in or-
der to appear sensitive to the emotional dynamics of hu-
man interaction.

Creativity Main article: Computational creativity

A sub-field of AI addresses creativity both theoretically
(from a philosophical and psychological perspective) and
practically (via specific implementations of systems that
generate outputs that can be considered creative, or sys-
tems that identify and assess creativity). Related areas of
computational research are Artificial intuition and Artifi-
cial thinking.

General intelligence Main articles: Artificial general
intelligence and AI-complete

Many researchers think that their work will eventually
be incorporated into a machine with general intelligence
(known as strong AI), combining all the skills above and
exceeding human abilities at most or all of them.[7] A few
believe that anthropomorphic features like artificial con-
sciousness or an artificial brain may be required for such
a project.[90][91]

Many of the problems above may require general in-
telligence to be considered solved. For example, even
a straightforward, specific task like machine translation
requires that the machine read and write in both lan-
guages (NLP), follow the author’s argument (reason),
know what is being talked about (knowledge), and faith-
fully reproduce the author’s intention (social intelligence).
A problem like machine translation is considered "AI-
complete". In order to solve this particular problem, you
must solve all the problems.[92]

2.2.2 Approaches

There is no established unifying theory or paradigm that
guides AI research. Researchers disagree about many
issues.[93] A few of the most long standing questions
that have remained unanswered are these: should artifi-
cial intelligence simulate natural intelligence by studying
psychology or neurology? Or is human biology as irrele-
vant to AI research as bird biology is to aeronautical engi-
neering?[94] Can intelligent behavior be described using
simple, elegant principles (such as logic or optimization)?
Or does it necessarily require solving a large num-
ber of completely unrelated problems?[95] Can intelli-
gence be reproduced using high-level symbols, similar
to words and ideas? Or does it require “sub-symbolic”
processing?[96] John Haugeland, who coined the term
GOFAI (Good Old-Fashioned Artificial Intelligence),
also proposed that AI should more properly be referred to
as synthetic intelligence,[97] a term which has since been
adopted by some non-GOFAI researchers.[98][99]
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Cybernetics and brain simulation

Main articles: Cybernetics and Computational neuro-
science

In the 1940s and 1950s, a number of researchers explored
the connection between neurology, information theory,
and cybernetics. Some of them built machines that used
electronic networks to exhibit rudimentary intelligence,
such as W. Grey Walter's turtles and the Johns Hopkins
Beast. Many of these researchers gathered for meetings
of the Teleological Society at Princeton University and
the Ratio Club in England.[20] By 1960, this approach was
largely abandoned, although elements of it would be re-
vived in the 1980s.

Symbolic

Main article: Symbolic AI

When access to digital computers became possible in the
middle 1950s, AI research began to explore the possi-
bility that human intelligence could be reduced to sym-
bol manipulation. The research was centered in three
institutions: Carnegie Mellon University, Stanford and
MIT, and each one developed its own style of research.
John Haugeland named these approaches to AI “good old
fashioned AI” or "GOFAI".[100] During the 1960s, sym-
bolic approaches had achieved great success at simulat-
ing high-level thinking in small demonstration programs.
Approaches based on cybernetics or neural networks
were abandoned or pushed into the background.[101] Re-
searchers in the 1960s and the 1970s were convinced that
symbolic approaches would eventually succeed in creat-
ing a machine with artificial general intelligence and con-
sidered this the goal of their field.

Cognitive simulation Economist Herbert Simon and
Allen Newell studied human problem-solving skills
and attempted to formalize them, and their work
laid the foundations of the field of artificial intelli-
gence, as well as cognitive science, operations re-
search and management science. Their research
team used the results of psychological experiments
to develop programs that simulated the techniques
that people used to solve problems. This tradition,
centered at Carnegie Mellon University would even-
tually culminate in the development of the Soar ar-
chitecture in the middle 1980s.[102][103]

Logic-based Unlike Newell and Simon, John McCarthy
felt that machines did not need to simulate human
thought, but should instead try to find the essence
of abstract reasoning and problem solving, regard-
less of whether people used the same algorithms.[94]

His laboratory at Stanford (SAIL) focused on using
formal logic to solve a wide variety of problems,

including knowledge representation, planning and
learning.[104] Logic was also the focus of the work
at the University of Edinburgh and elsewhere in Eu-
rope which led to the development of the program-
ming language Prolog and the science of logic pro-
gramming.[105]

“Anti-logic” or “scruffy” Researchers at MIT (such as
Marvin Minsky and Seymour Papert)[106] found that
solving difficult problems in vision and natural lan-
guage processing required ad-hoc solutions – they
argued that there was no simple and general prin-
ciple (like logic) that would capture all the as-
pects of intelligent behavior. Roger Schank de-
scribed their “anti-logic” approaches as "scruffy"
(as opposed to the "neat" paradigms at CMU and
Stanford).[95] Commonsense knowledge bases (such
as Doug Lenat's Cyc) are an example of “scruffy”
AI, since they must be built by hand, one compli-
cated concept at a time.[107]

Knowledge-based When computers with large mem-
ories became available around 1970, researchers
from all three traditions began to build knowledge
into AI applications.[108] This “knowledge revo-
lution” led to the development and deployment
of expert systems (introduced by Edward Feigen-
baum), the first truly successful form of AI
software.[31] The knowledge revolution was also
driven by the realization that enormous amounts of
knowledge would be required by many simple AI
applications.

Sub-symbolic

By the 1980s progress in symbolic AI seemed to stall and
many believed that symbolic systems would never be able
to imitate all the processes of human cognition, especially
perception, robotics, learning and pattern recognition. A
number of researchers began to look into “sub-symbolic”
approaches to specific AI problems.[96] r

Bottom-up, embodied, situated, behavior-based or
nouvelle AI

Researchers from the related field of robotics, such
as Rodney Brooks, rejected symbolic AI and
focused on the basic engineering problems that
would allow robots to move and survive.[109] Their
work revived the non-symbolic viewpoint of the
early cybernetics researchers of the 1950s and
reintroduced the use of control theory in AI. This
coincided with the development of the embodied
mind thesis in the related field of cognitive science:
the idea that aspects of the body (such as movement,
perception and visualization) are required for higher
intelligence.

Computational intelligence and soft computing
Interest in neural networks and "connectionism"
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was revived by David Rumelhart and others in the
middle 1980s.[110] Neural networks are an example
of soft computing --- they are solutions to problems
which cannot be solved with complete logical cer-
tainty, and where an approximate solution is often
enough. Other soft computing approaches to AI in-
clude fuzzy systems, evolutionary computation and
many statistical tools. The application of soft com-
puting to AI is studied collectively by the emerging
discipline of computational intelligence.[111]

Statistical

In the 1990s, AI researchers developed sophisticated
mathematical tools to solve specific subproblems. These
tools are truly scientific, in the sense that their results
are both measurable and verifiable, and they have been
responsible for many of AI’s recent successes. The
shared mathematical language has also permitted a high
level of collaboration with more established fields (like
mathematics, economics or operations research). Stuart
Russell and Peter Norvig describe this movement as
nothing less than a “revolution” and “the victory of the
neats.”[34] Critics argue that these techniques (with few
exceptions[112]) are too focused on particular problems
and have failed to address the long-term goal of general
intelligence.[113] There is an ongoing debate about the rel-
evance and validity of statistical approaches in AI, exem-
plified in part by exchanges between Peter Norvig and
Noam Chomsky.[114][115]

Integrating the approaches

Intelligent agent paradigm An intelligent agent is a
system that perceives its environment and takes ac-
tions which maximize its chances of success. The
simplest intelligent agents are programs that solve
specific problems. More complicated agents include
human beings and organizations of human beings
(such as firms). The paradigm gives researchers li-
cense to study isolated problems and find solutions
that are both verifiable and useful, without agree-
ing on one single approach. An agent that solves a
specific problem can use any approach that works –
some agents are symbolic and logical, some are sub-
symbolic neural networks and others may use new
approaches. The paradigm also gives researchers
a common language to communicate with other
fields—such as decision theory and economics—
that also use concepts of abstract agents. The intelli-
gent agent paradigm became widely accepted during
the 1990s.[2]

Agent architectures and cognitive architectures
Researchers have designed systems to build intel-
ligent systems out of interacting intelligent agents
in a multi-agent system.[116] A system with both

symbolic and sub-symbolic components is a hybrid
intelligent system, and the study of such systems
is artificial intelligence systems integration. A
hierarchical control system provides a bridge be-
tween sub-symbolic AI at its lowest, reactive levels
and traditional symbolic AI at its highest levels,
where relaxed time constraints permit planning and
world modelling.[117] Rodney Brooks' subsumption
architecture was an early proposal for such a
hierarchical system.[118]

2.2.3 Tools

In the course of 50 years of research, AI has developed a
large number of tools to solve the most difficult problems
in computer science. A few of the most general of these
methods are discussed below.

Search and optimization

Main articles: Search algorithm, Mathematical opti-
mization and Evolutionary computation

Many problems in AI can be solved in theory by intel-
ligently searching through many possible solutions:[119]

Reasoning can be reduced to performing a search. For
example, logical proof can be viewed as searching for a
path that leads from premises to conclusions, where each
step is the application of an inference rule.[120] Planning
algorithms search through trees of goals and subgoals,
attempting to find a path to a target goal, a process
called means-ends analysis.[121] Robotics algorithms for
moving limbs and grasping objects use local searches
in configuration space.[79] Many learning algorithms use
search algorithms based on optimization.
Simple exhaustive searches[122] are rarely sufficient for
most real world problems: the search space (the num-
ber of places to search) quickly grows to astronomical
numbers. The result is a search that is too slow or never
completes. The solution, for many problems, is to use
"heuristics" or “rules of thumb” that eliminate choices
that are unlikely to lead to the goal (called "pruning the
search tree"). Heuristics supply the program with a “best
guess” for the path on which the solution lies.[123] Heuris-
tics limit the search for solutions into a smaller sample
size.[80]

A very different kind of search came to prominence in the
1990s, based on the mathematical theory of optimization.
For many problems, it is possible to begin the search with
some form of a guess and then refine the guess incremen-
tally until no more refinements can be made. These algo-
rithms can be visualized as blind hill climbing: we begin
the search at a random point on the landscape, and then,
by jumps or steps, we keep moving our guess uphill, un-
til we reach the top. Other optimization algorithms are
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simulated annealing, beam search and random optimiza-
tion.[124]

Evolutionary computation uses a form of optimization
search. For example, they may begin with a population
of organisms (the guesses) and then allow them to mutate
and recombine, selecting only the fittest to survive each
generation (refining the guesses). Forms of evolutionary
computation include swarm intelligence algorithms (such
as ant colony or particle swarm optimization)[125] and
evolutionary algorithms (such as genetic algorithms, gene
expression programming, and genetic programming).[126]

Logic

Main articles: Logic programming and Automated
reasoning

Logic[127] is used for knowledge representation and prob-
lem solving, but it can be applied to other problems
as well. For example, the satplan algorithm uses logic
for planning[128] and inductive logic programming is a
method for learning.[129]

Several different forms of logic are used in AI research.
Propositional or sentential logic[130] is the logic of state-
ments which can be true or false. First-order logic[131]

also allows the use of quantifiers and predicates, and can
express facts about objects, their properties, and their
relations with each other. Fuzzy logic,[132] is a version
of first-order logic which allows the truth of a statement
to be represented as a value between 0 and 1, rather
than simply True (1) or False (0). Fuzzy systems can be
used for uncertain reasoning and have been widely used
in modern industrial and consumer product control sys-
tems. Subjective logic[133] models uncertainty in a differ-
ent and more explicit manner than fuzzy-logic: a given
binomial opinion satisfies belief + disbelief + uncertainty
= 1 within a Beta distribution. By this method, ignorance
can be distinguished from probabilistic statements that an
agent makes with high confidence.
Default logics, non-monotonic logics and
circumscription[52] are forms of logic designed to
help with default reasoning and the qualification prob-
lem. Several extensions of logic have been designed
to handle specific domains of knowledge, such as:
description logics;[46] situation calculus, event calculus
and fluent calculus (for representing events and time);[47]

causal calculus;[48] belief calculus; and modal logics.[49]

Probabilistic methods for uncertain reasoning

Main articles: Bayesian network, Hidden Markov model,
Kalman filter, Decision theory and Utility theory

Many problems in AI (in reasoning, planning, learn-
ing, perception and robotics) require the agent to oper-

ate with incomplete or uncertain information. AI re-
searchers have devised a number of powerful tools to
solve these problems using methods from probability the-
ory and economics.[134]

Bayesian networks[135] are a very general tool that can
be used for a large number of problems: reasoning (us-
ing the Bayesian inference algorithm),[136] learning (using
the expectation-maximization algorithm),[137] planning
(using decision networks)[138] and perception (using
dynamic Bayesian networks).[139] Probabilistic algo-
rithms can also be used for filtering, prediction, smooth-
ing and finding explanations for streams of data, helping
perception systems to analyze processes that occur over
time (e.g., hidden Markov models or Kalman filters).[139]

A key concept from the science of economics is "utility":
a measure of how valuable something is to an intelli-
gent agent. Precise mathematical tools have been devel-
oped that analyze how an agent can make choices and
plan, using decision theory, decision analysis,[140] and
information value theory.[58] These tools include models
such as Markov decision processes,[141] dynamic decision
networks,[139] game theory and mechanism design.[142]

Classifiers and statistical learning methods

Main articles: Classifier (mathematics), Statistical
classification and Machine learning

The simplest AI applications can be divided into two
types: classifiers (“if shiny then diamond”) and con-
trollers (“if shiny then pick up”). Controllers do, how-
ever, also classify conditions before inferring actions, and
therefore classification forms a central part of many AI
systems. Classifiers are functions that use pattern match-
ing to determine a closest match. They can be tuned ac-
cording to examples, making them very attractive for use
in AI. These examples are known as observations or pat-
terns. In supervised learning, each pattern belongs to a
certain predefined class. A class can be seen as a deci-
sion that has to be made. All the observations combined
with their class labels are known as a data set. When a
new observation is received, that observation is classified
based on previous experience.[143]

A classifier can be trained in various ways; there
are many statistical and machine learning approaches.
The most widely used classifiers are the neural net-
work,[144] kernel methods such as the support vector
machine,[145] k-nearest neighbor algorithm,[146] Gaussian
mixture model,[147] naive Bayes classifier,[148] and
decision tree.[149] The performance of these classifiers
have been compared over a wide range of tasks. Clas-
sifier performance depends greatly on the characteristics
of the data to be classified. There is no single classifier
that works best on all given problems; this is also referred
to as the "no free lunch" theorem. Determining a suit-
able classifier for a given problem is still more an art than
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science.[150]

Neural networks

Main articles: Artificial neural network and
Connectionism
The study of artificial neural networks[144] began in the

Output

Hidden

Input

A neural network is an interconnected group of nodes, akin to the
vast network of neurons in the human brain.

decade before the field of AI research was founded, in
the work of Walter Pitts and Warren McCullough. Other
important early researchers were Frank Rosenblatt, who
invented the perceptron and Paul Werbos who developed
the backpropagation algorithm.[151]

The main categories of networks are acyclic or
feedforward neural networks (where the signal passes in
only one direction) and recurrent neural networks (which
allow feedback). Among the most popular feedforward
networks are perceptrons, multi-layer perceptrons and
radial basis networks.[152] Among recurrent networks,
the most famous is the Hopfield net, a form of attractor
network, which was first described by John Hopfield in
1982.[153] Neural networks can be applied to the problem
of intelligent control (for robotics) or learning, using
such techniques as Hebbian learning and competitive
learning.[154]

Hierarchical temporal memory is an approach that mod-
els some of the structural and algorithmic properties of
the neocortex.[155] The term "deep learning" gained trac-
tion in the mid-2000s after a publication by Geoffrey
Hinton and Ruslan Salakhutdinov showed how a many-
layered feedforward neural network could be effectively
pre-trained one layer at a time, treating each layer in turn
as an unsupervised restricted Boltzmann machine, then
using supervised backpropagation for fine-tuning.[156]

Control theory

Main article: Intelligent control

Control theory, the grandchild of cybernetics, has many
important applications, especially in robotics.[157]

Languages

Main article: List of programming languages for artificial
intelligence

AI researchers have developed several specialized
languages for AI research, including Lisp[158] and
Prolog.[159]

2.2.4 Evaluating progress

Main article: Progress in artificial intelligence

In 1950, Alan Turing proposed a general procedure to
test the intelligence of an agent now known as the Turing
test. This procedure allows almost all the major problems
of artificial intelligence to be tested. However, it is a very
difficult challenge and at present all agents fail.[160]

Artificial intelligence can also be evaluated on specific
problems such as small problems in chemistry, hand-
writing recognition and game-playing. Such tests have
been termed subject matter expert Turing tests. Smaller
problems provide more achievable goals and there are an
ever-increasing number of positive results.[161]

One classification for outcomes of an AI test is:[162]

1. Optimal: it is not possible to perform better.

2. Strong super-human: performs better than all hu-
mans.

3. Super-human: performs better than most humans.

4. Sub-human: performs worse than most humans.

For example, performance at draughts (i.e. checkers) is
optimal,[163] performance at chess is super-human and
nearing strong super-human (see computer chess: com-
puters versus human) and performance at many everyday
tasks (such as recognizing a face or crossing a room with-
out bumping into something) is sub-human.
A quite different approach measures machine intelli-
gence through tests which are developed from mathe-
matical definitions of intelligence. Examples of these
kinds of tests start in the late nineties devising intelligence
tests using notions from Kolmogorov complexity and data
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compression.[164] Two major advantages of mathemati-
cal definitions are their applicability to nonhuman intel-
ligences and their absence of a requirement for human
testers.
A derivative of the Turing test is the Completely Auto-
mated Public Turing test to tell Computers and Humans
Apart (CAPTCHA). as the name implies, this helps to
determine that a user is an actual person and not a com-
puter posing as a human. In contrast to the standard Tur-
ing test, CAPTCHA administered by a machine and tar-
geted to a human as opposed to being administered by
a human and targeted to a machine. A computer asks a
user to complete a simple test then generates a grade for
that test. Computers are unable to solve the problem, so
correct solutions are deemed to be the result of a person
taking the test. A common type of CAPTCHA is the
test that requires the typing of distorted letters, numbers
or symbols that appear in an image undecipherable by a
computer.[165]

2.3 Applications

An automated online assistant providing customer service on a
web page – one of many very primitive applications of artificial
intelligence.

Main article: Applications of artificial intelligence

Artificial intelligence techniques are pervasive and are too
numerous to list. Frequently, when a technique reaches
mainstream use, it is no longer considered artificial intelli-
gence; this phenomenon is described as the AI effect.[166]

An area that artificial intelligence has contributed greatly

to is intrusion detection.[167]

2.3.1 Competitions and prizes

Main article: Competitions and prizes in artificial
intelligence

There are a number of competitions and prizes to pro-
mote research in artificial intelligence. The main areas
promoted are: general machine intelligence, conversa-
tional behavior, data-mining, robotic cars, robot soccer
and games.

2.3.2 Platforms

A platform (or "computing platform") is defined as “some
sort of hardware architecture or software framework (in-
cluding application frameworks), that allows software to
run.” As Rodney Brooks pointed out many years ago,[168]

it is not just the artificial intelligence software that defines
the AI features of the platform, but rather the actual plat-
form itself that affects the AI that results, i.e., there needs
to be work in AI problems on real-world platforms rather
than in isolation.
A wide variety of platforms has allowed different aspects
of AI to develop, ranging from expert systems, albeit
PC-based but still an entire real-world system, to vari-
ous robot platforms such as the widely available Roomba
with open interface.[169]

2.3.3 Toys

AIBO, the first robotic pet, grew out of Sony’s Computer
Science Laboratory (CSL). Famed engineer Toshitada
Doi is credited as AIBO’s original progenitor: in 1994
he had started work on robots with artificial intelligence
expert Masahiro Fujita, at CSL. Doi’s friend, the artist
Hajime Sorayama, was enlisted to create the initial de-
signs for the AIBO’s body. Those designs are now part of
the permanent collections of Museum of Modern Art and
the Smithsonian Institution, with later versions of AIBO
being used in studies in Carnegie Mellon University. In
2006, AIBO was added into Carnegie Mellon University’s
“Robot Hall of Fame”.

2.4 Philosophy and ethics

Main articles: Philosophy of artificial intelligence and
Ethics of artificial intelligence

Alan Turing wrote in 1950 “I propose to consider the
question 'can a machine think'?"[160] and began the dis-
cussion that has become the philosophy of artificial intel-
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ligence. Because “thinking” is difficult to define, there
are two versions of the question that philosophers have
addressed. First, can a machine be intelligent? I.e., can
it solve all the problems the humans solve by using intel-
ligence? And second, can a machine be built with a mind
and the experience of subjective consciousness?[170]

The existence of an artificial intelligence that rivals or
exceeds human intelligence raises difficult ethical issues,
both on behalf of humans and on behalf of any possi-
ble sentient AI. The potential power of the technology
inspires both hopes and fears for society.

2.4.1 The possibility/impossibility of arti-
ficial general intelligence

Main articles: philosophy of AI, Turing test, Physical
symbol systems hypothesis, Dreyfus’ critique of AI, The
Emperor’s New Mind and AI effect

Can a machine be intelligent? Can it “think"?

Turing’s “polite convention” We need not decide if a
machine can “think"; we need only decide if a ma-
chine can act as intelligently as a human being. This
approach to the philosophical problems associated
with artificial intelligence forms the basis of the
Turing test.[160]

The Dartmouth proposal “Every aspect of learning or
any other feature of intelligence can be so precisely
described that a machine can be made to simulate
it.” This conjecture was printed in the proposal for
the Dartmouth Conference of 1956, and represents
the position of most working AI researchers.[171]

Newell and Simon’s physical symbol system hypothesis
“A physical symbol system has the necessary and
sufficient means of general intelligent action.”
Newell and Simon argue that intelligence consists
of formal operations on symbols.[172] Hubert
Dreyfus argued that, on the contrary, human ex-
pertise depends on unconscious instinct rather than
conscious symbol manipulation and on having a
“feel” for the situation rather than explicit symbolic
knowledge. (See Dreyfus’ critique of AI.)[173][174]

Gödelian arguments Gödel himself,[175] John Lucas (in
1961) and Roger Penrose (in a more detailed argu-
ment from 1989 onwards) argued that humans are
not reducible to Turing machines.[176] The detailed
arguments are complex, but in essence they derive
from Kurt Gödel's 1931 proof in his first incom-
pleteness theorem that it is always possible to create
statements that a formal system could not prove. A
human being, however, can (with some thought) see
the truth of these “Gödel statements”. Any Turing

program designed to search for these statements can
have its methods reduced to a formal system, and so
will always have a “Gödel statement” derivable from
its program which it can never discover. However, if
humans are indeed capable of understanding mathe-
matical truth, it doesn't seem possible that we could
be limited in the same way. This is quite a general
result, if accepted, since it can be shown that hard-
ware neural nets, and computers based on random
processes (e.g. annealing approaches) and quantum
computers based on entangled qubits (so long as they
involve no new physics) can all be reduced to Tur-
ing machines. All they do is reduce the complex-
ity of the tasks, not permit new types of problems
to be solved. Roger Penrose speculates that there
may be new physics involved in our brain, perhaps
at the intersection of gravity and quantum mechan-
ics at the Planck scale. This argument, if accepted
does not rule out the possibility of true artificial in-
telligence, but means it has to be biological in basis
or based on new physical principles. The argument
has been followed up by many counter arguments,
and then Roger Penrose has replied to those with
counter counter examples, and it is now an intricate
complex debate.[177] For details see Philosophy of
artificial intelligence: Lucas, Penrose and Gödel

The artificial brain argument The brain can be simu-
lated by machines and because brains are intelli-
gent, simulated brains must also be intelligent; thus
machines can be intelligent. Hans Moravec, Ray
Kurzweil and others have argued that it is techno-
logically feasible to copy the brain directly into hard-
ware and software, and that such a simulation will be
essentially identical to the original.[91]

The AI effect Machines are already intelligent, but ob-
servers have failed to recognize it. When Deep Blue
beat Gary Kasparov in chess, the machine was acting
intelligently. However, onlookers commonly dis-
count the behavior of an artificial intelligence pro-
gram by arguing that it is not “real” intelligence af-
ter all; thus “real” intelligence is whatever intelligent
behavior people can do that machines still can not.
This is known as the AI Effect: “AI is whatever
hasn't been done yet.”

2.4.2 Intelligent behaviour and machine
ethics

As a minimum, an AI system must be able to reproduce
aspects of human intelligence. This raises the issue of
how ethically the machine should behave towards both
humans and other AI agents. This issue was addressed
by Wendell Wallach in his book titled Moral Machines
in which he introduced the concept of artificial moral
agents (AMA).[178] For Wallach, AMAs have become a
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part of the research landscape of artificial intelligence
as guided by its two central questions which he identi-
fies as “Does Humanity Want Computers Making Moral
Decisions”[179] and “Can (Ro)bots Really Be Moral”.[180]

For Wallach the question is not centered on the issue
of whether machines can demonstrate the equivalent of
moral behavior in contrast to the constraints which soci-
ety may place on the development of AMAs.[181]

Machine ethics

Main article: Machine ethics

The field of machine ethics is concerned with giving ma-
chines ethical principles, or a procedure for discovering a
way to resolve the ethical dilemmas they might encounter,
enabling them to function in an ethically responsible man-
ner through their own ethical decision making.[182] The
field was delineated in the AAAI Fall 2005 Symposium
on Machine Ethics: “Past research concerning the rela-
tionship between technology and ethics has largely fo-
cused on responsible and irresponsible use of technol-
ogy by human beings, with a few people being inter-
ested in how human beings ought to treat machines. In
all cases, only human beings have engaged in ethical rea-
soning. The time has come for adding an ethical dimen-
sion to at least some machines. Recognition of the ethi-
cal ramifications of behavior involving machines, as well
as recent and potential developments in machine auton-
omy, necessitate this. In contrast to computer hacking,
software property issues, privacy issues and other topics
normally ascribed to computer ethics, machine ethics is
concerned with the behavior of machines towards human
users and other machines. Research in machine ethics
is key to alleviating concerns with autonomous systems
— it could be argued that the notion of autonomous ma-
chines without such a dimension is at the root of all fear
concerning machine intelligence. Further, investigation
of machine ethics could enable the discovery of prob-
lems with current ethical theories, advancing our think-
ing about Ethics.”[183] Machine ethics is sometimes re-
ferred to as machine morality, computational ethics or
computational morality. A variety of perspectives of this
nascent field can be found in the collected edition “Ma-
chine Ethics” [182] that stems from the AAAI Fall 2005
Symposium on Machine Ethics.[183]

Malevolent and friendly AI

Main article: Friendly AI

Political scientist Charles T. Rubin believes that AI can be
neither designed nor guaranteed to be benevolent.[184] He
argues that “any sufficiently advanced benevolence may
be indistinguishable from malevolence.” Humans should
not assume machines or robots would treat us favorably,

because there is no a priori reason to believe that they
would be sympathetic to our system of morality, which
has evolved along with our particular biology (which AIs
would not share). Hyper-intelligent software may not
necessarily decide to support the continued existence of
mankind, and would be extremely difficult to stop. This
topic has also recently begun to be discussed in academic
publications as a real source of risks to civilization, hu-
mans, and planet Earth.
Physicist Stephen Hawking, Microsoft founder Bill Gates
and SpaceX founder Elon Musk have expressed concerns
about the possibility that AI could evolve to the point that
humans could not control it, with Hawking theorizing that
this could "spell the end of the human race".[185]

One proposal to deal with this is to ensure that the first
generally intelligent AI is 'Friendly AI', and will then be
able to control subsequently developed AIs. Some ques-
tion whether this kind of check could really remain in
place.
Leading AI researcher Rodney Brooks writes, “I think it
is a mistake to be worrying about us developing malevo-
lent AI anytime in the next few hundred years. I think the
worry stems from a fundamental error in not distinguish-
ing the difference between the very real recent advances
in a particular aspect of AI, and the enormity and com-
plexity of building sentient volitional intelligence.”[186]

Devaluation of humanity

Main article: Computer Power and Human Reason

Joseph Weizenbaum wrote that AI applications can not,
by definition, successfully simulate genuine human em-
pathy and that the use of AI technology in fields such as
customer service or psychotherapy[187] was deeply mis-
guided. Weizenbaum was also bothered that AI re-
searchers (and some philosophers) were willing to view
the human mind as nothing more than a computer pro-
gram (a position now known as computationalism). To
Weizenbaum these points suggest that AI research deval-
ues human life.[188]

Decrease in demand for human labor

Martin Ford, author of The Lights in the Tunnel: Automa-
tion, Accelerating Technology and the Economy of the Fu-
ture,[189] and others argue that specialized artificial intel-
ligence applications, robotics and other forms of automa-
tion will ultimately result in significant unemployment
as machines begin to match and exceed the capability
of workers to perform most routine and repetitive jobs.
Ford predicts that many knowledge-based occupations—
and in particular entry level jobs—will be increasingly
susceptible to automation via expert systems, machine
learning[190] and other AI-enhanced applications. AI-
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based applications may also be used to amplify the ca-
pabilities of low-wage offshore workers, making it more
feasible to outsource knowledge work.[191]

2.4.3 Machine consciousness, sentience
and mind

Main article: Artificial consciousness

If an AI system replicates all key aspects of human in-
telligence, will that system also be sentient – will it have
a mind which has conscious experiences? This question
is closely related to the philosophical problem as to the
nature of human consciousness, generally referred to as
the hard problem of consciousness.

Consciousness

Main articles: Hard problem of consciousness and
Theory of mind

There are no objective criteria for knowing whether an
intelligent agent is sentient – that it has conscious expe-
riences. We assume that other people do because we do
and they tell us that they do, but this is only a subjective
determination. The lack of any hard criteria is known as
the “hard problem” in the theory of consciousness. The
problem applies not only to other people but to the higher
animals and, by extension, to AI agents.

Computationalism

Main articles: Computationalism and Functionalism
(philosophy of mind)

Are human intelligence, consciousness and mind prod-
ucts of information processing? Is the brain essentially a
computer?
Computationalism is the idea that “the human mind or
the human brain (or both) is an information processing
system and that thinking is a form of computing”. AI,
or implementing machines with human intelligence was
founded on the claim that “a central property of humans,
intelligence can be so precisely described that a machine
can be made to simulate it”. A program can then be de-
rived from this human human computer and implemented
into an artificial one to, create efficient artificial intel-
ligence. This program would act upon a set of outputs
that result from set inputs of the internal memory of the
computer, that is, the machine can only act with what it
has implemented in it to start with. A long term goal for
AI researchers is to provide machines with a deep under-
standing of the many abilities of a human being to repli-
cate a general intelligence or STRONG AI, defined as a

machine surpassing human abilities to perform the skills
implanted in it, a scary thought to many, who fear los-
ing control of such a powerful machine. Obstacles for
researchers are mainly time contstraints. That is, AI sci-
entists cannot establish much of a database for common-
sense knowledge because it must be ontologically crafted
into the machine which takes up a tremendous amount of
time. To combat this, AI research looks to have the ma-
chine able to understand enough concepts in order to add
to its own ontology, but how can it do this when machine
ethics is primarily concerned with behavior of machines
towards humans or other machines, limiting the extent of
developing AI. In order to function like a common human
AI must also display, “the ability to solve subsymbolic
commonsense knowledge tasks such as how artists can
tell statues are fake or how chess masters don’t move cer-
tain spots to avoid exposure,” but by developing machines
who can do it all AI research is faced with the difficulty of
potentially putting a lot of people out of work, while on
the economy side of things businesses would boom from
efficiency, thus forcing AI into a bottleneck trying to de-
veloping self improving machines.

Strong AI hypothesis

Main article: Chinese room

Searle’s strong AI hypothesis states that “The appropri-
ately programmed computer with the right inputs and out-
puts would thereby have a mind in exactly the same sense
human beings have minds.”[192] John Searle counters this
assertion with his Chinese room argument, which asks
us to look inside the computer and try to find where the
“mind” might be.[193]

Robot rights

Main article: Robot rights

Mary Shelley's Frankenstein considers a key issue in the
ethics of artificial intelligence: if a machine can be cre-
ated that has intelligence, could it also feel? If it can feel,
does it have the same rights as a human? The idea also
appears in modern science fiction, such as the film A.I.:
Artificial Intelligence, in which humanoid machines have
the ability to feel emotions. This issue, now known as
"robot rights", is currently being considered by, for exam-
ple, California’s Institute for the Future, although many
critics believe that the discussion is premature.[194] The
subject is profoundly discussed in the 2010 documentary
film Plug & Pray.[195]
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2.4.4 Superintelligence

Main article: Superintelligence

Are there limits to how intelligent machines – or human-
machine hybrids – can be? A superintelligence, hyper-
intelligence, or superhuman intelligence is a hypothetical
agent that would possess intelligence far surpassing that
of the brightest and most gifted human mind. ‘’Superin-
telligence’’ may also refer to the form or degree of intel-
ligence possessed by such an agent.

Technological singularity

Main articles: Technological singularity and Moore’s law

If research into Strong AI produced sufficiently intelli-
gent software, it might be able to reprogram and im-
prove itself. The improved software would be even
better at improving itself, leading to recursive self-
improvement.[196] The new intelligence could thus in-
crease exponentially and dramatically surpass humans.
Science fiction writer Vernor Vinge named this scenario
"singularity".[197] Technological singularity is when ac-
celerating progress in technologies will cause a runaway
effect wherein artificial intelligence will exceed human
intellectual capacity and control, thus radically changing
or even ending civilization. Because the capabilities of
such an intelligence may be impossible to comprehend,
the technological singularity is an occurrence beyond
which events are unpredictable or even unfathomable.[197]

Ray Kurzweil has used Moore’s law (which describes the
relentless exponential improvement in digital technology)
to calculate that desktop computers will have the same
processing power as human brains by the year 2029, and
predicts that the singularity will occur in 2045.[197]

Transhumanism

Main article: Transhumanism

Robot designer Hans Moravec, cyberneticist Kevin War-
wick and inventor Ray Kurzweil have predicted that hu-
mans and machines will merge in the future into cyborgs
that are more capable and powerful than either.[198] This
idea, called transhumanism, which has roots in Aldous
Huxley and Robert Ettinger, has been illustrated in fic-
tion as well, for example in the manga Ghost in the Shell
and the science-fiction series Dune.
In the 1980s artist Hajime Sorayama's Sexy Robots series
were painted and published in Japan depicting the actual
organic human form with lifelike muscular metallic skins
and later “the Gynoids” book followed that was used by
or influenced movie makers including George Lucas and
other creatives. Sorayama never considered these organic

robots to be real part of nature but always unnatural prod-
uct of the human mind, a fantasy existing in the mind even
when realized in actual form.
Edward Fredkin argues that “artificial intelligence is the
next stage in evolution”, an idea first proposed by Samuel
Butler's "Darwin among the Machines" (1863), and ex-
panded upon by George Dyson in his book of the same
name in 1998.[199]

2.5 In fiction

Main article: Artificial intelligence in fiction

The implications of artificial intelligence have been a per-
sistent theme in science fiction. Early stories typically re-
volved around intelligent robots. The word “robot” itself
was coined by Karel Čapek in his 1921 play R.U.R., the
title standing for "Rossum’s Universal Robots". Later,
the SF writer Isaac Asimov developed the three laws of
robotics which he subsequently explored in a long series
of robot stories. These laws have since gained some trac-
tion in genuine AI research.
Other influential fictional intelligences include HAL, the
computer in charge of the spaceship in 2001: A Space
Odyssey, released as both a film and a book in 1968 and
written by Arthur C. Clarke.
Since then, AI has become firmly rooted in popular cul-
ture.

2.6 See also

Main article: Outline of artificial intelligence

• AI takeover

• Artificial Intelligence (journal)

• Artificial intelligence (video games)

• Artificial stupidity

• Nick Bostrom

• Computer Go

• Effective altruism

• Existential risk

• Existential risk of artificial general intelligence

• Future of Humanity Institute

• Human Cognome Project

• List of artificial intelligence projects
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• List of artificial intelligence researchers

• List of emerging technologies

• List of important artificial intelligence publications

• List of machine learning algorithms

• List of scientific journals

• Machine ethics

• Machine learning

• Never-Ending Language Learning

• Our Final Invention

• Outline of artificial intelligence

• Outline of human intelligence

• Philosophy of mind

• Simulated reality

• Superintelligence

2.7 Notes
[1] Definition of AI as the study of intelligent agents:

• Poole, Mackworth & Goebel 1998, p. 1, which pro-
vides the version that is used in this article. Note
that they use the term “computational intelligence”
as a synonym for artificial intelligence.

• Russell & Norvig (2003) (who prefer the term “ra-
tional agent”) and write “The whole-agent view is
now widely accepted in the field” (Russell & Norvig
2003, p. 55).

• Nilsson 1998
• Legg & Hutter 2007.

[2] The intelligent agent paradigm:

• Russell & Norvig 2003, pp. 27, 32–58, 968–972
• Poole, Mackworth & Goebel 1998, pp. 7–21
• Luger & Stubblefield 2004, pp. 235–240
• Hutter 2005, pp. 125–126

The definition used in this article, in terms of goals, ac-
tions, perception and environment, is due to Russell &
Norvig (2003). Other definitions also include knowledge
and learning as additional criteria.

[3] Although there is some controversy on this point (see
Crevier (1993, p. 50)), McCarthy states unequivocally “I
came up with the term” in a c|net interview. (Skillings
2006) McCarthy first used the term in the proposal
for the Dartmouth conference, which appeared in 1955.
(McCarthy et al. 1955)

[4] McCarthy's definition of AI:

• McCarthy 2007

[5] Pamela McCorduck (2004, pp. 424) writes of “the rough
shattering of AI in subfields—vision, natural language, de-
cision theory, genetic algorithms, robotics ... and these
with own sub-subfield—that would hardly have anything
to say to each other.”

[6] This list of intelligent traits is based on the topics covered
by the major AI textbooks, including:

• Russell & Norvig 2003
• Luger & Stubblefield 2004
• Poole, Mackworth & Goebel 1998
• Nilsson 1998

[7] General intelligence (strong AI) is discussed in popular
introductions to AI:

• Kurzweil 1999 and Kurzweil 2005

[8] See the Dartmouth proposal, under Philosophy, below.

[9] This is a central idea of Pamela McCorduck's Machines
Who Think. She writes: “I like to think of artificial intel-
ligence as the scientific apotheosis of a venerable cultural
tradition.” (McCorduck 2004, p. 34) “Artificial intelli-
gence in one form or another is an idea that has pervaded
Western intellectual history, a dream in urgent need of
being realized.” (McCorduck 2004, p. xviii) “Our his-
tory is full of attempts—nutty, eerie, comical, earnest,
legendary and real—to make artificial intelligences, to re-
produce what is the essential us—bypassing the ordinary
means. Back and forth between myth and reality, our
imaginations supplying what our workshops couldn't, we
have engaged for a long time in this odd form of self-
reproduction.” (McCorduck 2004, p. 3) She traces the
desire back to its Hellenistic roots and calls it the urge to
“forge the Gods.” (McCorduck 2004, pp. 340–400)

[10] The optimism referred to includes the predictions of early
AI researchers (see optimism in the history of AI) as
well as the ideas of modern transhumanists such as Ray
Kurzweil.

[11] The “setbacks” referred to include the ALPAC report
of 1966, the abandonment of perceptrons in 1970, the
Lighthill Report of 1973 and the collapse of the Lisp ma-
chine market in 1987.

[12] AI applications widely used behind the scenes:

• Russell & Norvig 2003, p. 28
• Kurzweil 2005, p. 265
• NRC 1999, pp. 216–222

[13] AI in myth:

• McCorduck 2004, pp. 4–5
• Russell & Norvig 2003, p. 939

[14] Cult images as artificial intelligence:

• Crevier (1993, p. 1) (statue of Amun)
• McCorduck (2004, pp. 6–9)
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These were the first machines to be believed to have true
intelligence and consciousness. Hermes Trismegistus ex-
pressed the common belief that with these statues, crafts-
man had reproduced “the true nature of the gods”, their
sensus and spiritus. McCorduck makes the connection
between sacred automatons and Mosaic law (developed
around the same time), which expressly forbids the wor-
ship of robots (McCorduck 2004, pp. 6–9)

[15] Humanoid automata:
Yan Shi:

• Needham 1986, p. 53

Hero of Alexandria:

• McCorduck 2004, p. 6

Al-Jazari:

• “A Thirteenth Century Programmable Robot”.
Shef.ac.uk. Retrieved 25 April 2009.

Wolfgang von Kempelen:

• McCorduck 2004, p. 17

[16] Artificial beings:
Jābir ibn Hayyān's Takwin:

• O'Connor 1994

Judah Loew's Golem:

• McCorduck 2004, pp. 15–16
• Buchanan 2005, p. 50

Paracelsus' Homunculus:

• McCorduck 2004, pp. 13–14

[17] AI in early science fiction.

• McCorduck 2004, pp. 17–25

[18] This insight, that digital computers can simulate any pro-
cess of formal reasoning, is known as the Church–Turing
thesis.

[19] Formal reasoning:

• Berlinski, David (2000). The Advent of the Al-
gorithm. Harcourt Books. ISBN 0-15-601391-6.
OCLC 46890682.

[20] AI’s immediate precursors:

• McCorduck 2004, pp. 51–107
• Crevier 1993, pp. 27–32
• Russell & Norvig 2003, pp. 15, 940
• Moravec 1988, p. 3

See also Cybernetics and early neural networks (in History
of artificial intelligence). Among the researchers who laid
the foundations of AI were Alan Turing, John von Neu-
mann, Norbert Wiener, Claude Shannon, Warren McCul-
lough, Walter Pitts and Donald Hebb.

[21] Dartmouth conference:

• McCorduck 2004, pp. 111–136
• Crevier 1993, pp. 47–49, who writes “the confer-

ence is generally recognized as the official birthdate
of the new science.”

• Russell & Norvig 2003, p. 17, who call the confer-
ence “the birth of artificial intelligence.”

• NRC 1999, pp. 200–201

[22] Hegemony of the Dartmouth conference attendees:

• Russell & Norvig 2003, p. 17, who write “for the
next 20 years the field would be dominated by these
people and their students.”

• McCorduck 2004, pp. 129–130

[23] Russell and Norvig write “it was astonishing whenever
a computer did anything kind of smartish.” Russell &
Norvig 2003, p. 18

[24] "Golden years" of AI (successful symbolic reasoning pro-
grams 1956–1973):

• McCorduck 2004, pp. 243–252
• Crevier 1993, pp. 52–107
• Moravec 1988, p. 9
• Russell & Norvig 2003, pp. 18–21

The programs described are Arthur Samuel's checkers
program for the IBM 701, Daniel Bobrow's STUDENT,
Newell and Simon's Logic Theorist and Terry Winograd's
SHRDLU.

[25] DARPA pours money into undirected pure research into
AI during the 1960s:

• McCorduck 2004, pp. 131
• Crevier 1993, pp. 51, 64–65
• NRC 1999, pp. 204–205

[26] AI in England:

• Howe 1994

[27] Optimism of early AI:

• Herbert Simon quote: Simon 1965, p. 96 quoted in
Crevier 1993, p. 109.

• Marvin Minsky quote: Minsky 1967, p. 2 quoted
in Crevier 1993, p. 109.

[28] See The problems (in History of artificial intelligence)

[29] Lighthill 1973.

[30] First AI Winter, Mansfield Amendment, Lighthill report

• Crevier 1993, pp. 115–117
• Russell & Norvig 2003, p. 22
• NRC 1999, pp. 212–213
• Howe 1994

[31] Expert systems:

• ACM 1998, I.2.1
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Chapter 3

Information theory

Not to be confused with information science.

Information theory is a branch of applied mathematics,
electrical engineering, and computer science involving
the quantification of information. Information theory was
developed by Claude E. Shannon to find fundamental lim-
its on signal processing operations such as compressing
data and on reliably storing and communicating data.
Since its inception it has broadened to find applications in
many other areas, including statistical inference, natural
language processing, cryptography, neurobiology,[1] the
evolution[2] and function[3] of molecular codes, model se-
lection in ecology,[4] thermal physics,[5] quantum com-
puting, linguistics, plagiarism detection,[6] pattern recog-
nition, anomaly detection and other forms of data analy-
sis.[7]

A key measure of information is entropy, which is usually
expressed by the average number of bits needed to store
or communicate one symbol in a message. Entropy quan-
tifies the uncertainty involved in predicting the value of a
random variable. For example, specifying the outcome of
a fair coin flip (two equally likely outcomes) provides less
information (lower entropy) than specifying the outcome
from a roll of a die (six equally likely outcomes).
Applications of fundamental topics of information the-
ory include lossless data compression (e.g. ZIP files),
lossy data compression (e.g. MP3s and JPEGs), and
channel coding (e.g. for Digital Subscriber Line (DSL)).
The field is at the intersection of mathematics, statistics,
computer science, physics, neurobiology, and electrical
engineering. Its impact has been crucial to the success
of the Voyager missions to deep space, the invention
of the compact disc, the feasibility of mobile phones,
the development of the Internet, the study of linguistics
and of human perception, the understanding of black
holes, and numerous other fields. Important sub-fields
of information theory are source coding, channel coding,
algorithmic complexity theory, algorithmic information
theory, information-theoretic security, and measures of
information.

3.1 Overview

Information theory studies the transmission, processing,
utilization, and extraction of information. Abstractly, in-
formation can be thought of as the resolution of uncer-
tainty. In the case of communication of information over
a noisy channel, this abstract concept was made concrete
in 1948 by Claude Shannon in A Mathematical Theory
of Communication, in which “information” is thought of
as a set of possible messages, where the goal is to send
these messages over a noisy channel, and then to have the
receiver reconstruct the message with low probability of
error, in spite of the channel noise. Shannon’s main re-
sult, the Noisy-channel coding theorem showed that, in
the limit of many channel uses, the rate of information
that is asymptotically achievable equal to the Channel ca-
pacity, a quantity dependent merely on the statistics of
the channel over which the messages are sent.
Information theory is closely associated with a collection
of pure and applied disciplines that have been investi-
gated and reduced to engineering practice under a va-
riety of rubrics throughout the world over the past half
century or more: adaptive systems, anticipatory systems,
artificial intelligence, complex systems, complexity sci-
ence, cybernetics, informatics, machine learning, along
with systems sciences of many descriptions. Informa-
tion theory is a broad and deep mathematical theory, with
equally broad and deep applications, amongst which is the
vital field of coding theory.
Coding theory is concerned with finding explicit methods,
called codes, for increasing the efficiency and reducing
the error rate of data communication over noisy chan-
nels to near the Channel capacity. These codes can be
roughly subdivided into data compression (source coding)
and error-correction (channel coding) techniques. In the
latter case, it took many years to find the methods Shan-
non’s work proved were possible. A third class of infor-
mation theory codes are cryptographic algorithms (both
codes and ciphers). Concepts, methods and results from
coding theory and information theory are widely used in
cryptography and cryptanalysis. See the article ban (unit)
for a historical application.

Information theory is also used in information retrieval,
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intelligence gathering, gambling, statistics, and even in
musical composition.

3.2 Historical background

Main article: History of information theory

The landmark event that established the discipline of in-
formation theory, and brought it to immediate worldwide
attention, was the publication of Claude E. Shannon's
classic paper "A Mathematical Theory of Communica-
tion" in the Bell System Technical Journal in July and Oc-
tober 1948.
Prior to this paper, limited information-theoretic ideas
had been developed at Bell Labs, all implicitly assuming
events of equal probability. Harry Nyquist's 1924 paper,
Certain Factors Affecting Telegraph Speed, contains a the-
oretical section quantifying “intelligence” and the “line
speed” at which it can be transmitted by a communica-
tion system, giving the relation W = K logm (recalling
Boltzmann’s constant), where W is the speed of transmis-
sion of intelligence, m is the number of different voltage
levels to choose from at each time step, and K is a con-
stant. Ralph Hartley's 1928 paper, Transmission of Infor-
mation, uses the word information as a measurable quan-
tity, reflecting the receiver’s ability to distinguish one se-
quence of symbols from any other, thus quantifying infor-
mation asH = logSn = n logS , where S was the num-
ber of possible symbols, and n the number of symbols in
a transmission. The unit of information was therefore the
decimal digit, much later renamed the hartley in his hon-
our as a unit or scale or measure of information. Alan
Turing in 1940 used similar ideas as part of the statistical
analysis of the breaking of the German second world war
Enigma ciphers.
Much of the mathematics behind information theory
with events of different probabilities were developed for
the field of thermodynamics by Ludwig Boltzmann and
J. Willard Gibbs. Connections between information-
theoretic entropy and thermodynamic entropy, includ-
ing the important contributions by Rolf Landauer in the
1960s, are explored in Entropy in thermodynamics and
information theory.
In Shannon’s revolutionary and groundbreaking paper,
the work for which had been substantially completed at
Bell Labs by the end of 1944, Shannon for the first time
introduced the qualitative and quantitative model of com-
munication as a statistical process underlying information
theory, opening with the assertion that

“The fundamental problem of communication
is that of reproducing at one point, either ex-
actly or approximately, a message selected at
another point.”

With it came the ideas of

• the information entropy and redundancy of a source,
and its relevance through the source coding theorem;

• the mutual information, and the channel capacity of
a noisy channel, including the promise of perfect
loss-free communication given by the noisy-channel
coding theorem;

• the practical result of the Shannon–Hartley law for
the channel capacity of a Gaussian channel; as well
as

• the bit—a new way of seeing the most fundamental
unit of information.

3.3 Quantities of information

Main article: Quantities of information

Information theory is based on probability theory and
statistics. Information theory often concerns itself with
measures of information of the distributions associated
with random variables. Important quantities of informa-
tion are entropy, a measure of information in a single
random variable, and mutual information, a measure of
information in common between two random variables.
The former quantity is a property of the probability dis-
tribution of a random variable and gives a limit on the rate
at which data generated by independent samples with the
given distribution can be reliably compressed. The latter
is a property of the joint distribution of two random vari-
able, and is the maximum rate of reliable communication
across a noisy channel in the limit of long block lengths,
when the channel statistics are determined by the joint
distribution.
The choice of logarithmic base in the following formulae
determines the unit of information entropy that is used.
A common unit of information is the bit, based on the
binary logarithm. Other units include the nat, which is
based on the natural logarithm, and the hartley, which is
based on the common logarithm.
In what follows, an expression of the form p log p is
considered by convention to be equal to zero whenever
p = 0. This is justified because limp→0+ p log p = 0 for
any logarithmic base.

3.3.1 Entropy

The entropy, H , of a discrete random variable X in-
tuitively is a measure of the amount of uncertainty asso-
ciated with the value of X when only its distribution is
known. So, for example, if the distribution associated
with a random variable was a constant distribution, (i.e.
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Entropy of a Bernoulli trial as a function of success probability,
often called the binary entropy function, Hb(p) . The entropy
is maximized at 1 bit per trial when the two possible outcomes are
equally probable, as in an unbiased coin toss.

equal to some known value with probability 1 ), then en-
tropy is minimal, and equal to 0 . Furthermore, in the
case of a distribution restricted to take on a finite number
of values, entropy is maximized with a uniform distribu-
tion over the values that the distribution takes on.
Suppose one transmits 1000 bits (0s and 1s). If the value
of each these bits is known to the receiver (has a specific
value with certainty) ahead of transmission, it is clear that
no information is transmitted. If, however, each bit is
independently equally likely to be 0 or 1, 1000 shannons
of information (also often called bits, in the information
theoretic sense) have been transmitted. Between these
two extremes, information can be quantified as follows.
If X is the set of all messages {x1, ..., xn} that X could
be, and p(x) is the probability of some x ∈ X , then the
entropy, H , of X is defined:[8]

H(X) = EX [I(x)] = −
∑
x∈X

p(x) log p(x).

(Here, I(x) is the self-information, which is the entropy
contribution of an individual message, and EX is the
expected value.) A property of entropy is that it is max-
imized when all the messages in the message space are
equiprobable p(x) = 1/n ,—i.e., most unpredictable—
in which case H(X) = logn .
The special case of information entropy for a random
variable with two outcomes is the binary entropy func-
tion, usually taken to the logarithmic base 2, thus having
the shannon (Sh) as unit:

Hb(p) = −p log2 p− (1− p) log2(1− p).

3.3.2 Joint entropy

The joint entropy of two discrete random variables X
and Y is merely the entropy of their pairing: (X,Y ) .
This implies that if X and Y are independent, then their
joint entropy is the sum of their individual entropies.
For example, if (X,Y ) represents the position of a chess
piece — X the row and Y the column, then the joint
entropy of the row of the piece and the column of the
piece will be the entropy of the position of the piece.

H(X,Y ) = EX,Y [− log p(x, y)] = −
∑
x,y

p(x, y) log p(x, y)

Despite similar notation, joint entropy should not be con-
fused with cross entropy.

3.3.3 Conditional entropy (equivocation)

The conditional entropy or conditional uncertainty of
X given random variable Y (also called the equivocation
ofX about Y ) is the average conditional entropy over Y
:[9]

H(X|Y ) = EY [H(X|y)] = −
∑
y∈Y

p(y)
∑
x∈X

p(x|y) log p(x|y) = −
∑
x,y

p(x, y) log p(x, y)
p(y)

.

Because entropy can be conditioned on a random vari-
able or on that random variable being a certain value, care
should be taken not to confuse these two definitions of
conditional entropy, the former of which is in more com-
mon use. A basic property of this form of conditional
entropy is that:

H(X|Y ) = H(X,Y )−H(Y ).

3.3.4 Mutual information (transinforma-
tion)

Mutual information measures the amount of informa-
tion that can be obtained about one random variable by
observing another. It is important in communication
where it can be used to maximize the amount of infor-
mation shared between sent and received signals. The
mutual information of X relative to Y is given by:

I(X;Y ) = EX,Y [SI(x, y)] =
∑
x,y

p(x, y) log p(x, y)

p(x) p(y)

where SI (Specific mutual Information) is the pointwise
mutual information.
A basic property of the mutual information is that
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I(X;Y ) = H(X)−H(X|Y ).

That is, knowing Y, we can save an average of I(X;Y )
bits in encoding X compared to not knowing Y.
Mutual information is symmetric:

I(X;Y ) = I(Y ;X) = H(X) +H(Y )−H(X,Y ).

Mutual information can be expressed as the average
Kullback–Leibler divergence (information gain) between
the posterior probability distribution of X given the value
of Y and the prior distribution on X:

I(X;Y ) = Ep(y)[DKL(p(X|Y = y)∥p(X))].

In other words, this is a measure of how much, on the av-
erage, the probability distribution on X will change if we
are given the value of Y. This is often recalculated as the
divergence from the product of the marginal distributions
to the actual joint distribution:

I(X;Y ) = DKL(p(X,Y )∥p(X)p(Y )).

Mutual information is closely related to the log-likelihood
ratio test in the context of contingency tables and the
multinomial distribution and to Pearson’s χ2 test: mutual
information can be considered a statistic for assessing in-
dependence between a pair of variables, and has a well-
specified asymptotic distribution.

3.3.5 Kullback–Leibler divergence (infor-
mation gain)

The Kullback–Leibler divergence (or information di-
vergence, information gain, or relative entropy) is a
way of comparing two distributions: a “true” probability
distribution p(X), and an arbitrary probability distribution
q(X). If we compress data in a manner that assumes q(X)
is the distribution underlying some data, when, in real-
ity, p(X) is the correct distribution, the Kullback–Leibler
divergence is the number of average additional bits per
datum necessary for compression. It is thus defined

DKL(p(X)∥q(X)) =
∑
x∈X

−p(x) log q(x)−
∑
x∈X

−p(x) log p(x) =
∑
x∈X

p(x) log p(x)
q(x)

.

Although it is sometimes used as a 'distance metric', KL
divergence is not a true metric since it is not symmetric
and does not satisfy the triangle inequality (making it a
semi-quasimetric).

3.3.6 Kullback–Leibler divergence of a
prior from the truth

Another interpretation of KL divergence is this: suppose
a number X is about to be drawn randomly from a discrete
set with probability distribution p(x). If Alice knows the
true distribution p(x), while Bob believes (has a prior) that
the distribution is q(x), then Bob will be more surprised
than Alice, on average, upon seeing the value of X. The
KL divergence is the (objective) expected value of Bob’s
(subjective) surprisal minus Alice’s surprisal, measured in
bits if the log is in base 2. In this way, the extent to which
Bob’s prior is “wrong” can be quantified in terms of how
“unnecessarily surprised” it’s expected to make him.

3.3.7 Other quantities

Other important information theoretic quantities include
Rényi entropy (a generalization of entropy), differential
entropy (a generalization of quantities of information to
continuous distributions), and the conditional mutual in-
formation.

3.4 Coding theory

Main article: Coding theory
Coding theory is one of the most important and direct

A picture showing scratches on the readable surface of a CD-R.
Music and data CDs are coded using error correcting codes and
thus can still be read even if they have minor scratches using error
detection and correction.

applications of information theory. It can be subdivided
into source coding theory and channel coding theory. Us-
ing a statistical description for data, information theory
quantifies the number of bits needed to describe the data,
which is the information entropy of the source.

• Data compression (source coding): There are two
formulations for the compression problem:

1. lossless data compression: the data must be recon-
structed exactly;

2. lossy data compression: allocates bits needed to re-
construct the data, within a specified fidelity level
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measured by a distortion function. This subset of
Information theory is called rate–distortion theory.

• Error-correcting codes (channel coding): While
data compression removes as much redundancy as
possible, an error correcting code adds just the right
kind of redundancy (i.e., error correction) needed
to transmit the data efficiently and faithfully across
a noisy channel.

This division of coding theory into compression and
transmission is justified by the information transmission
theorems, or source–channel separation theorems that
justify the use of bits as the universal currency for infor-
mation in many contexts. However, these theorems only
hold in the situation where one transmitting user wishes
to communicate to one receiving user. In scenarios with
more than one transmitter (the multiple-access channel),
more than one receiver (the broadcast channel) or inter-
mediary “helpers” (the relay channel), or more general
networks, compression followed by transmission may no
longer be optimal. Network information theory refers to
these multi-agent communication models.

3.4.1 Source theory

Any process that generates successive messages can be
considered a source of information. A memoryless
source is one in which each message is an independent
identically distributed random variable, whereas the
properties of ergodicity and stationarity impose less re-
strictive constraints. All such sources are stochastic.
These terms are well studied in their own right outside
information theory.

Rate

Information rate is the average entropy per symbol. For
memoryless sources, this is merely the entropy of each
symbol, while, in the case of a stationary stochastic pro-
cess, it is

r = lim
n→∞

H(Xn|Xn−1, Xn−2, Xn−3, . . .);

that is, the conditional entropy of a symbol given all the
previous symbols generated. For the more general case
of a process that is not necessarily stationary, the average
rate is

r = lim
n→∞

1

n
H(X1, X2, . . . Xn);

that is, the limit of the joint entropy per symbol. For
stationary sources, these two expressions give the same
result.[10]

It is common in information theory to speak of the “rate”
or “entropy” of a language. This is appropriate, for exam-
ple, when the source of information is English prose. The
rate of a source of information is related to its redundancy
and how well it can be compressed, the subject of source
coding.

3.4.2 Channel capacity

Main article: Channel capacity

Communications over a channel—such as an ethernet
cable—is the primary motivation of information theory.
As anyone who’s ever used a telephone (mobile or land-
line) knows, however, such channels often fail to produce
exact reconstruction of a signal; noise, periods of silence,
and other forms of signal corruption often degrade qual-
ity. How much information can one hope to communicate
over a noisy (or otherwise imperfect) channel?
Consider the communications process over a discrete
channel. A simple model of the process is shown below:

Transmitter Receiver
Channel

(noisy)x y 

Here X represents the space of messages transmitted,
and Y the space of messages received during a unit time
over our channel. Let p(y|x) be the conditional probabil-
ity distribution function of Y given X. We will consider
p(y|x) to be an inherent fixed property of our communi-
cations channel (representing the nature of the noise of
our channel). Then the joint distribution of X and Y is
completely determined by our channel and by our choice
of f(x) , the marginal distribution of messages we choose
to send over the channel. Under these constraints, we
would like to maximize the rate of information, or the
signal, we can communicate over the channel. The ap-
propriate measure for this is the mutual information, and
this maximum mutual information is called the channel
capacity and is given by:

C = max
f
I(X;Y ).

This capacity has the following property related to com-
municating at information rate R (where R is usually bits
per symbol). For any information rate R < C and cod-
ing error ε > 0, for large enough N, there exists a code of
length N and rate ≥ R and a decoding algorithm, such that
the maximal probability of block error is ≤ ε; that is, it
is always possible to transmit with arbitrarily small block
error. In addition, for any rate R > C, it is impossible to
transmit with arbitrarily small block error.
Channel coding is concerned with finding such nearly
optimal codes that can be used to transmit data over a
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noisy channel with a small coding error at a rate near the
channel capacity.

Capacity of particular channel models

• A continuous-time analog communications channel
subject to Gaussian noise — see Shannon–Hartley
theorem.

• A binary symmetric channel (BSC) with crossover
probability p is a binary input, binary output channel
that flips the input bit with probability p. The BSC
has a capacity of 1 − Hb(p) bits per channel use,
where Hb is the binary entropy function to the base
2 logarithm:

0

1

0

1

1 – p

1 – p

p
p

• A binary erasure channel (BEC) with erasure prob-
ability p is a binary input, ternary output channel.
The possible channel outputs are 0, 1, and a third
symbol 'e' called an erasure. The erasure represents
complete loss of information about an input bit. The
capacity of the BEC is 1 - p bits per channel use.

0

1

0

1

1 – p

1 – p

p
e

p

3.5 Applications to other fields

3.5.1 Intelligence uses and secrecy applica-
tions

Information theoretic concepts apply to cryptography and
cryptanalysis. Turing's information unit, the ban, was
used in the Ultra project, breaking the German Enigma
machine code and hastening the end of World War II in

Europe. Shannon himself defined an important concept
now called the unicity distance. Based on the redundancy
of the plaintext, it attempts to give a minimum amount of
ciphertext necessary to ensure unique decipherability.
Information theory leads us to believe it is much more
difficult to keep secrets than it might first appear. A
brute force attack can break systems based on asymmetric
key algorithms or on most commonly used methods of
symmetric key algorithms (sometimes called secret key
algorithms), such as block ciphers. The security of all
such methods currently comes from the assumption that
no known attack can break them in a practical amount of
time.
Information theoretic security refers to methods such as
the one-time pad that are not vulnerable to such brute
force attacks. In such cases, the positive conditional
mutual information between the plaintext and ciphertext
(conditioned on the key) can ensure proper transmis-
sion, while the unconditional mutual information between
the plaintext and ciphertext remains zero, resulting in
absolutely secure communications. In other words, an
eavesdropper would not be able to improve his or her
guess of the plaintext by gaining knowledge of the ci-
phertext but not of the key. However, as in any other
cryptographic system, care must be used to correctly ap-
ply even information-theoretically secure methods; the
Venona project was able to crack the one-time pads of
the Soviet Union due to their improper reuse of key ma-
terial.

3.5.2 Pseudorandom number generation

Pseudorandom number generators are widely available
in computer language libraries and application pro-
grams. They are, almost universally, unsuited to cryp-
tographic use as they do not evade the deterministic na-
ture of modern computer equipment and software. A
class of improved random number generators is termed
cryptographically secure pseudorandom number gener-
ators, but even they require random seeds external to
the software to work as intended. These can be ob-
tained via extractors, if done carefully. The measure
of sufficient randomness in extractors is min-entropy, a
value related to Shannon entropy through Rényi entropy;
Rényi entropy is also used in evaluating randomness in
cryptographic systems. Although related, the distinctions
among these measures mean that a random variable with
high Shannon entropy is not necessarily satisfactory for
use in an extractor and so for cryptography uses.

3.5.3 Seismic exploration

One early commercial application of information theory
was in the field of seismic oil exploration. Work in this
field made it possible to strip off and separate the un-
wanted noise from the desired seismic signal. Informa-
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tion theory and digital signal processing offer a major im-
provement of resolution and image clarity over previous
analog methods.[11]

3.5.4 Semiotics

Concepts from information theory such as redundancy
and code control have been used by semioticians such as
Umberto Eco and Rossi-Landi to explain ideology as a
form of message transmission whereby a dominant social
class emits its message by using signs that exhibit a high
degree of redundancy such that only one message is de-
coded among a selection of competing ones.[12]

3.5.5 Miscellaneous applications

Information theory also has applications in gambling and
investing, black holes, bioinformatics, and music.

3.6 See also

• Algorithmic probability

• Algorithmic information theory

• Bayesian inference

• Communication theory

• Constructor theory - a generalization of information
theory that includes quantum information

• Inductive probability

• Minimum message length

• Minimum description length

• List of important publications

• Philosophy of information

3.6.1 Applications

• Active networking

• Cryptanalysis

• Cryptography

• Cybernetics

• Entropy in thermodynamics and information theory

• Gambling

• Intelligence (information gathering)

• Seismic exploration

3.6.2 History

• Hartley, R.V.L.

• History of information theory

• Shannon, C.E.

• Timeline of information theory

• Yockey, H.P.

3.6.3 Theory

• Coding theory

• Detection theory

• Estimation theory

• Fisher information

• Information algebra

• Information asymmetry

• Information field theory

• Information geometry

• Information theory and measure theory

• Kolmogorov complexity

• Logic of information

• Network coding

• Philosophy of Information

• Quantum information science

• Semiotic information theory

• Source coding

• Unsolved Problems

3.6.4 Concepts

• Ban (unit)

• Channel capacity

• Channel (communications)

• Communication source

• Conditional entropy

• Covert channel

• Decoder

• Differential entropy

• Encoder
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• Information entropy

• Joint entropy

• Kullback–Leibler divergence

• Mutual information

• Pointwise mutual information (PMI)

• Receiver (information theory)

• Redundancy

• Rényi entropy

• Self-information

• Unicity distance

• Variety
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Chapter 4

Computational science

Not to be confused with computer science.

Computational science (also scientific computing or
scientific computation) is concerned with construct-
ing mathematical models and quantitative analysis tech-
niques and using computers to analyze and solve scientific
problems.[1] In practical use, it is typically the application
of computer simulation and other forms of computation
from numerical analysis and theoretical computer science
to problems in various scientific disciplines.
The field is different from theory and laboratory exper-
iment which are the traditional forms of science and
engineering. The scientific computing approach is to gain
understanding, mainly through the analysis of mathemat-
ical models implemented on computers.
Scientists and engineers develop computer programs,
application software, that model systems being studied
and run these programs with various sets of input pa-
rameters. In some cases, these models require massive
amounts of calculations (usually floating-point) and are
often executed on supercomputers or distributed comput-
ing platforms.
Numerical analysis is an important underpinning for tech-
niques used in computational science.

4.1 Applications of computational
science

Problem domains for computational science/scientific
computing include:

4.1.1 Numerical simulations

Numerical simulations have different objectives depend-
ing on the nature of the task being simulated:

• Reconstruct and understand known events (e.g.,
earthquake, tsunamis and other natural disasters).

• Predict future or unobserved situations (e.g.,
weather, sub-atomic particle behaviour, and

primordial explosions).

4.1.2 Model fitting and data analysis

• Appropriately tune models or solve equations to re-
flect observations, subject to model constraints (e.g.
oil exploration geophysics, computational linguis-
tics).

• Use graph theory to model networks, such as those
connecting individuals, organizations, websites, and
biological systems.

4.1.3 Computational optimization

Main article: Mathematical optimization

• Optimize known scenarios (e.g., technical and man-
ufacturing processes, front-end engineering).

• Machine learning

4.2 Methods and algorithms

Algorithms and mathematical methods used in compu-
tational science are varied. Commonly applied methods
include:

• Numerical analysis

• Application of Taylor series as convergent and
asymptotic series

• Computing derivatives by Automatic differentiation
(AD)

• Computing derivatives by finite differences

• Graph theoretic suites

• High order difference approximations via Taylor se-
ries and Richardson extrapolation
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• Methods of integration on a uniform mesh:
rectangle rule (also called midpoint rule), trapezoid
rule, Simpson’s rule

• Runge Kutta method for solving ordinary differen-
tial equations

• Monte Carlo methods

• Molecular dynamics

• Linear programming

• Branch and cut

• Branch and Bound

• Numerical linear algebra

• Computing the LU factors by Gaussian elimination

• Cholesky factorizations

• Discrete Fourier transform and applications.

• Newton’s method

• Time stepping methods for dynamical systems

Programming languages and computer algebra systems
commonly used for the more mathematical aspects of
scientific computing applications include R (program-
ming language), TK Solver, MATLAB, Mathematica,[2]

SciLab, GNU Octave, Python (programming language)
with SciPy, and PDL. The more computationally inten-
sive aspects of scientific computing will often use some
variation of C or Fortran and optimized algebra libraries
such as BLAS or LAPACK.
Computational science application programs often model
real-world changing conditions, such as weather, air flow
around a plane, automobile body distortions in a crash,
the motion of stars in a galaxy, an explosive device, etc.
Such programs might create a 'logical mesh' in computer
memory where each item corresponds to an area in space
and contains information about that space relevant to the
model. For example in weather models, each item might
be a square kilometer; with land elevation, current wind
direction, humidity, temperature, pressure, etc. The pro-
gram would calculate the likely next state based on the
current state, in simulated time steps, solving equations
that describe how the system operates; and then repeat
the process to calculate the next state.
The term computational scientist is used to describe
someone skilled in scientific computing. This person is
usually a scientist, an engineer or an applied mathemati-
cian who applies high-performance computing in differ-
ent ways to advance the state-of-the-art in their respective
applied disciplines in physics, chemistry or engineering.
Scientific computing has increasingly also impacted on
other areas including economics, biology and medicine.

Computational science is now commonly considered a
third mode of science, complementing and adding to
experimentation/observation and theory.[3] The essence
of computational science is numerical algorithm[4] and/or
computational mathematics. In fact, substantial effort in
computational sciences has been devoted to the develop-
ment of algorithms, the efficient implementation in pro-
gramming languages, and validation of computational re-
sults. A collection of problems and solutions in compu-
tational science can be found in Steeb, Hardy, Hardy and
Stoop, 2004.[5]

4.3 Reproducibility and open re-
search computing

The complexity of computational methods is a threat to
the reproducibility of research. Jon Claerbout has be-
come prominent for pointing out that reproducible re-
search requires archiving and documenting all raw data
and all code used to obtain a result.[6][7][8] Nick Barnes, in
the Science Code Manifesto, proposed five principles that
should be followed when software is used in open science
publication.[9] Tomi Kauppinen et al. established and de-
fined Linked Open Science, an approach to interconnect
scientific assets to enable transparent, reproducible and
transdisciplinary research.[10]

4.4 Journals

Most scientific journals do not accept software papers be-
cause a description of a reasonably mature software usu-
ally does not meet the criterion of novelty. Outside com-
puter science itself, there are only few journals dedicated
to scientific software. Established journals like Elsevier's
Computer Physics Communications publish papers that
are not open-access (though the described software usu-
ally is). To fill this gap, a new journal entitled Open re-
search computation was announced in 2010;[11] it closed
in 2012 without having published a single paper, for a
lack of submissions probably due to excessive quality
requirements.[12] A new initiative was launched in 2012,
the Journal of Open Research Software.[13]

4.5 Education

Scientific computation is most often studied through an
applied mathematics or computer science program, or
within a standard mathematics, sciences, or engineering
program. At some institutions a specialization in scien-
tific computation can be earned as a “minor” within an-
other program (which may be at varying levels). How-
ever, there are increasingly many bachelor’s and master’s
programs in computational science. Some schools also
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offer the Ph.D. in computational science, computational
engineering, computational science and engineering, or
scientific computation.
There are also programs in areas such as computational
physics, computational chemistry, etc.

4.6 Related fields
• Bioinformatics

• Cheminformatics

• Chemometrics

• Computational archaeology

• Computational biology

• Computational chemistry

• Computational economics

• Computational electromagnetics

• Computational engineering

• Computational finance

• Computational fluid dynamics

• Computational forensics

• Computational geophysics

• Computational informatics

• Computational intelligence

• Computational law

• Computational linguistics

• Computational mathematics

• Computational mechanics

• Computational neuroscience

• Computational particle physics

• Computational physics

• Computational sociology

• Computational statistics

• Computer algebra

• Environmental simulation

• Financial modeling

• Geographic information system (GIS)

• High performance computing

• Machine learning

• Network analysis

• Neuroinformatics

• Numerical linear algebra

• Numerical weather prediction

• Pattern recognition

• Scientific visualization

4.7 See also

• Computational science and engineering

• Comparison of computer algebra systems

• List of molecular modeling software

• List of numerical analysis software

• List of statistical packages

• Timeline of scientific computing

• Simulated reality
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Chapter 5

Exploratory data analysis

In statistics, exploratory data analysis (EDA) is an ap-
proach to analyzing data sets to summarize their main
characteristics, often with visual methods. A statistical
model can be used or not, but primarily EDA is for see-
ing what the data can tell us beyond the formal model-
ing or hypothesis testing task. Exploratory data analysis
was promoted by John Tukey to encourage statisticians to
explore the data, and possibly formulate hypotheses that
could lead to new data collection and experiments. EDA
is different from initial data analysis (IDA),[1] which fo-
cuses more narrowly on checking assumptions required
for model fitting and hypothesis testing, and handling
missing values and making transformations of variables
as needed. EDA encompasses IDA.

5.1 Overview

Tukey defined data analysis in 1961 as: "[P]rocedures for
analyzing data, techniques for interpreting the results of
such procedures, ways of planning the gathering of data
to make its analysis easier, more precise or more accu-
rate, and all the machinery and results of (mathematical)
statistics which apply to analyzing data.”[2]

Tukey’s championing of EDA encouraged the devel-
opment of statistical computing packages, especially S
at Bell Labs. The S programming language inspired
the systems 'S'-PLUS and R. This family of statistical-
computing environments featured vastly improved dy-
namic visualization capabilities, which allowed statisti-
cians to identify outliers, trends and patterns in data that
merited further study.
Tukey’s EDA was related to two other developments in
statistical theory: Robust statistics and nonparametric
statistics, both of which tried to reduce the sensitivity
of statistical inferences to errors in formulating statistical
models. Tukey promoted the use of five number sum-
mary of numerical data—the two extremes (maximum
and minimum), the median, and the quartiles—because
these median and quartiles, being functions of the
empirical distribution are defined for all distributions, un-
like the mean and standard deviation; moreover, the quar-
tiles and median are more robust to skewed or heavy-

tailed distributions than traditional summaries (the mean
and standard deviation). The packages S, S-PLUS, and
R included routines using resampling statistics, such as
Quenouille and Tukey’s jackknife and Efron  '  s bootstrap,
which are nonparametric and robust (for many problems).
Exploratory data analysis, robust statistics, nonparamet-
ric statistics, and the development of statistical program-
ming languages facilitated statisticians’ work on scien-
tific and engineering problems. Such problems included
the fabrication of semiconductors and the understand-
ing of communications networks, which concerned Bell
Labs. These statistical developments, all championed
by Tukey, were designed to complement the analytic
theory of testing statistical hypotheses, particularly the
Laplacian tradition’s emphasis on exponential families.[3]

5.2 EDA development

Data science process flowchart

John W. Tukey wrote the book “Exploratory Data Anal-
ysis” in 1977.[4] Tukey held that too much emphasis in
statistics was placed on statistical hypothesis testing (con-
firmatory data analysis); more emphasis needed to be
placed on using data to suggest hypotheses to test. In par-
ticular, he held that confusing the two types of analyses
and employing them on the same set of data can lead to
systematic bias owing to the issues inherent in testing hy-
potheses suggested by the data.
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The objectives of EDA are to:

• Suggest hypotheses about the causes of observed
phenomena

• Assess assumptions on which statistical inference
will be based

• Support the selection of appropriate statistical tools
and techniques

• Provide a basis for further data collection through
surveys or experiments[5]

Many EDA techniques have been adopted into data min-
ing and are being taught to young students as a way to
introduce them to statistical thinking.[6]

5.3 Techniques

There are a number of tools that are useful for EDA, but
EDA is characterized more by the attitude taken than by
particular techniques.[7]

Typical graphical techniques used in EDA are:

• Box plot

• Histogram

• Multi-vari chart

• Run chart

• Pareto chart

• Scatter plot

• Stem-and-leaf plot

• Parallel coordinates

• Odds ratio

• Multidimensional scaling

• Targeted projection pursuit

• Principal component analysis

• Multilinear PCA

• Projection methods such as grand tour, guided tour
and manual tour

• Interactive versions of these plots

Typical quantitative techniques are:

• Median polish

• Trimean

• Ordination

5.4 History

Many EDA ideas can be traced back to earlier authors,
for example:

• Francis Galton emphasized order statistics and
quantiles.

• Arthur Lyon Bowley used precursors of the stemplot
and five-number summary (Bowley actually used
a "seven-figure summary", including the extremes,
deciles and quartiles, along with the median - see his
Elementary Manual of Statistics (3rd edn., 1920), p.
62 – he defines “the maximum and minimum, me-
dian, quartiles and two deciles” as the “seven posi-
tions”).

• Andrew Ehrenberg articulated a philosophy of data
reduction (see his book of the same name).

The Open University course Statistics in Society (MDST
242), took the above ideas and merged them with
Gottfried Noether's work, which introduced statistical in-
ference via coin-tossing and the median test.

5.5 Example

Findings from EDA are often orthogonal to the primary
analysis task. This is an example, described in more detail
in.[8] The analysis task is to find the variables which best
predict the tip that a dining party will give to the waiter.
The variables available are tip, total bill, gender, smoking
status, time of day, day of the week and size of the party.
The analysis task requires that a regression model be fit
with either tip or tip rate as the response variable. The
fitted model is
tip rate = 0.18 - 0.01×size
which says that as the size of the dining party increase
by one person tip will decrease by 1%. Making plots of
the data reveals other interesting features not described
by this model.

• Histogram of tips given by customers with bins equal
to $1 increments. Distribution of values is skewed
right and unimodal, which says that there are few
high tips, but lots of low tips.

• Histogram of tips given by customers with bins equal
to 10c increments. An interesting phenomenon is
visible, peaks in the counts at the full and half-dollar
amounts. This corresponds to customers rounding
tips. This is a behaviour that is common to other
types of purchases too, like gasoline.

• Scatterplot of tips vs bill. We would expect to see a
tight positive linear association, but instead see a lot
more variation. In particular, there are more points
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in the lower right than upper left. Points in the lower
right correspond to tips that are lower than expected,
and it is clear that more customers are cheap rather
than generous.

• Scatterplot of tips vs bill separately by gender and
smoking party. Smoking parties have a lot more
variability in the tips that they give. Males tend to
pay the (few) higher bills, and female non-smokers
tend to be very consistent tippers (with the exception
of three women).

What is learned from the graphics is different from what
could be learned by the modeling. You can say that these
pictures help the data tell us a story, that we have dis-
covered some features of tipping that perhaps we didn't
anticipate in advance.

5.6 Software

• GGobi is a free software for interactive data visual-
ization data visualization

• CMU-DAP (Carnegie-Mellon University Data
Analysis Package, FORTRAN source for EDA
tools with English-style command syntax, 1977).

• Data Applied, a comprehensive web-based data vi-
sualization and data mining environment.

• High-D for multivariate analysis using parallel coor-
dinates.

• JMP, an EDA package from SAS Institute.

• KNIME Konstanz Information Miner – Open-
Source data exploration platform based on Eclipse.

• Orange, an open-source data mining software suite.

• SOCR provides a large number of free Internet-
accessible.

• TinkerPlots (for upper elementary and middle
school students).

• Weka an open source data mining package that in-
cludes visualisation and EDA tools such as targeted
projection pursuit

5.7 See also

• Anscombe’s quartet, on importance of exploration

• Predictive analytics

• Structured data analysis (statistics)

• Configural frequency analysis

5.8 References
[1] Chatfield, C. (1995). Problem Solving: A Statistician’s

Guide (2nd ed.). Chapman and Hall. ISBN 0412606305.

[2] John Tukey-The Future of Data Analysis-July 1961

[3] “Conversation with John W. Tukey and Elizabeth
Tukey, Luisa T. Fernholz and Stephan Morgen-
thaler”. Statistical Science 15 (1): 79–94. 2000.
doi:10.1214/ss/1009212675.

[4] Tukey, John W. (1977). Exploratory Data Analysis. Pear-
son. ISBN 978-0201076165.

[5] Behrens-Principles and Procedures of Exploratory Data
Analysis-American Psychological Association-1997

[6] Konold, C. (1999). “Statistics goes to school”. Contem-
porary Psychology 44 (1): 81–82. doi:10.1037/001949.

[7] Tukey, John W. (1980). “We need both exploratory and
confirmatory”. The American Statistician 34 (1): 23–25.
doi:10.1080/00031305.1980.10482706.

[8] Cook, D. and Swayne, D.F. (with A. Buja, D. Temple
Lang, H. Hofmann, H. Wickham, M. Lawrence) (2007)
″Interactive and Dynamic Graphics for Data Analysis:
With R and GGobi″ Springer, 978-0387717616

5.9 Bibliography
• Andrienko, N & Andrienko, G (2005) Exploratory

Analysis of Spatial and Temporal Data. A Systematic
Approach. Springer. ISBN 3-540-25994-5

• Cook, D. and Swayne, D.F. (with A. Buja, D.
Temple Lang, H. Hofmann, H. Wickham, M.
Lawrence). Interactive and Dynamic Graphics for
Data Analysis: With R and GGobi. Springer. ISBN
9780387717616.

• Hoaglin, D C; Mosteller, F & Tukey, John Wilder
(Eds) (1985). Exploring Data Tables, Trends and
Shapes. ISBN 0-471-09776-4.

• Hoaglin, D C; Mosteller, F & Tukey, John Wilder
(Eds) (1983). Understanding Robust and Ex-
ploratory Data Analysis. ISBN 0-471-09777-2.

• Inselberg, Alfred (2009). Parallel Coordinates:
Visual Multidimensional Geometry and its Applica-
tions. London New York: Springer. ISBN 978-0-
387-68628-8.

• Leinhardt, G., Leinhardt, S., Exploratory Data
Analysis: New Tools for the Analysis of Empirical
Data, Review of Research in Education, Vol. 8,
1980 (1980), pp. 85–157.

• Martinez, W. L., Martinez, A. R., and Solka, J.
(2010). Exploratory Data Analysis with MAT-
LAB, second edition. Chapman & Hall/CRC. ISBN
9781439812204.

https://en.wikipedia.org/wiki/GGobi
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Interactive_data_visualization
https://en.wikipedia.org/wiki/Interactive_data_visualization
https://en.wikipedia.org/wiki/Data_visualization
https://en.wikipedia.org/wiki/Carnegie-Mellon_University
https://en.wikipedia.org/wiki/FORTRAN
https://en.wikipedia.org/wiki/Data_Applied
https://en.wikipedia.org/wiki/Macrofocus_High-D
https://en.wikipedia.org/wiki/JMP_(statistical_software)
https://en.wikipedia.org/wiki/SAS_Institute
https://en.wikipedia.org/wiki/KNIME
https://en.wikipedia.org/wiki/Orange_(software)
https://en.wikipedia.org/wiki/SOCR
https://en.wikipedia.org/wiki/TinkerPlots
https://en.wikipedia.org/wiki/Weka_(machine_learning)
https://en.wikipedia.org/wiki/Targeted_projection_pursuit
https://en.wikipedia.org/wiki/Targeted_projection_pursuit
https://en.wikipedia.org/wiki/Anscombe%2527s_quartet
https://en.wikipedia.org/wiki/Predictive_analytics
https://en.wikipedia.org/wiki/Structured_data_analysis_(statistics)
https://en.wikipedia.org/wiki/Configural_frequency_analysis
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0412606305
http://projecteuclid.org/download/pdf_1/euclid.aoms/1177704711
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1214%252Fss%252F1009212675
https://en.wikipedia.org/wiki/Exploratory_Data_Analysis
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0201076165
http://cll.stanford.edu/~willb/course/behrens97pm.pdf
http://cll.stanford.edu/~willb/course/behrens97pm.pdf
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1037%252F001949
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1080%252F00031305.1980.10482706
https://en.wikipedia.org/wiki/Special:BookSources/3540259945
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/9780387717616
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-471-09776-4
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-471-09777-2
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-387-68628-8
https://en.wikipedia.org/wiki/Special:BookSources/978-0-387-68628-8
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/9781439812204


5.10. EXTERNAL LINKS 53

• Theus, M., Urbanek, S. (2008), Interactive Graphics
for Data Analysis: Principles and Examples, CRC
Press, Boca Raton, FL, ISBN 978-1-58488-594-8

• Tucker, L; MacCallum, R. (1993). Exploratory Fac-
tor Analysis. .

• Tukey, John Wilder (1977). Exploratory Data Anal-
ysis. Addison-Wesley. ISBN 0-201-07616-0.

• Velleman, P. F.; Hoaglin, D. C. (1981). Applica-
tions, Basics and Computing of Exploratory Data
Analysis. ISBN 0-87150-409-X.

• Young, F. W. Valero-Mora, P. and Friendly M.
(2006) Visual Statistics: Seeing your data with Dy-
namic Interactive Graphics. Wiley ISBN 978-0-
471-68160-1

5.10 External links
• Carnegie Mellon University – free online course on

EDA

https://en.wikipedia.org/wiki/Special:BookSources/9781584885948
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-201-07616-0
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-87150-409-X
http://www.uv.es/visualstats/Book
http://www.uv.es/visualstats/Book
https://en.wikipedia.org/wiki/Special:BookSources/9780471681601
https://en.wikipedia.org/wiki/Special:BookSources/9780471681601
http://oli.web.cmu.edu/openlearning/forstudents/freecourses/statistics
http://oli.web.cmu.edu/openlearning/forstudents/freecourses/statistics


Chapter 6

Predictive analytics

Predictive analytics encompasses a variety of statisti-
cal techniques from modeling, machine learning, and
data mining that analyze current and historical facts to
make predictions about future, or otherwise unknown,
events.[1][2]

In business, predictive models exploit patterns found in
historical and transactional data to identify risks and op-
portunities. Models capture relationships among many
factors to allow assessment of risk or potential associated
with a particular set of conditions, guiding decision mak-
ing for candidate transactions.[3]

The defining functional effect of these technical ap-
proaches is that predictive analytics provides a predictive
score (probability) for each individual (customer, em-
ployee, healthcare patient, product SKU, vehicle, com-
ponent, machine, or other organizational unit) in order
to determine, inform, or influence organizational pro-
cesses that pertain across large numbers of individuals,
such as in marketing, credit risk assessment, fraud detec-
tion, manufacturing, healthcare, and government opera-
tions including law enforcement.
Predictive analytics is used in actuarial science,[4]

marketing,[5] financial services,[6] insurance,
telecommunications,[7] retail,[8] travel,[9] healthcare,[10]

pharmaceuticals[11] and other fields.
One of the most well known applications is credit scor-
ing,[1] which is used throughout financial services. Scor-
ing models process a customer’s credit history, loan appli-
cation, customer data, etc., in order to rank-order individ-
uals by their likelihood of making future credit payments
on time.

6.1 Definition

Predictive analytics is an area of data mining that deals
with extracting information from data and using it to pre-
dict trends and behavior patterns. Often the unknown
event of interest is in the future, but predictive analyt-
ics can be applied to any type of unknown whether it be
in the past, present or future. For example, identifying
suspects after a crime has been committed, or credit card
fraud as it occurs.[12] The core of predictive analytics re-

lies on capturing relationships between explanatory vari-
ables and the predicted variables from past occurrences,
and exploiting them to predict the unknown outcome. It
is important to note, however, that the accuracy and us-
ability of results will depend greatly on the level of data
analysis and the quality of assumptions.
Predictive analytics is often defined as predicting at a
more detailed level of granularity, i.e., generating pre-
dictive scores (probabilities) for each individual organiza-
tional element. This distinguishes it from forecasting. For
example, “Predictive analytics—Technology that learns
from experience (data) to predict the future behavior of
individuals in order to drive better decisions.”[13]

6.2 Types

Generally, the term predictive analytics is used to mean
predictive modeling, “scoring” data with predictive mod-
els, and forecasting. However, people are increasingly
using the term to refer to related analytical disciplines,
such as descriptive modeling and decision modeling or
optimization. These disciplines also involve rigorous data
analysis, and are widely used in business for segmentation
and decision making, but have different purposes and the
statistical techniques underlying them vary.

6.2.1 Predictive models

Predictive models are models of the relation between the
specific performance of a unit in a sample and one or
more known attributes or features of the unit. The ob-
jective of the model is to assess the likelihood that a
similar unit in a different sample will exhibit the spe-
cific performance. This category encompasses models in
many areas, such as marketing, where they seek out subtle
data patterns to answer questions about customer perfor-
mance, or fraud detection models. Predictive models of-
ten perform calculations during live transactions, for ex-
ample, to evaluate the risk or opportunity of a given cus-
tomer or transaction, in order to guide a decision. With
advancements in computing speed, individual agent mod-
eling systems have become capable of simulating human
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behaviour or reactions to given stimuli or scenarios.
The available sample units with known attributes and
known performances is referred to as the “training sam-
ple.” The units in other samples, with known attributes
but unknown performances, are referred to as “out of
[training] sample” units. The out of sample bear no
chronological relation to the training sample units. For
example, the training sample may consists of literary at-
tributes of writings by Victorian authors, with known at-
tribution, and the out-of sample unit may be newly found
writing with unknown authorship; a predictive model may
aid in attributing a work to a known author. Another ex-
ample is given by analysis of blood splatter in simulated
crime scenes in which the out of sample unit is the ac-
tual blood splatter pattern from a crime scene. The out
of sample unit may be from the same time as the training
units, from a previous time, or from a future time.

6.2.2 Descriptive models

Descriptive models quantify relationships in data in a way
that is often used to classify customers or prospects into
groups. Unlike predictive models that focus on predicting
a single customer behavior (such as credit risk), descrip-
tive models identify many different relationships between
customers or products. Descriptive models do not rank-
order customers by their likelihood of taking a particular
action the way predictive models do. Instead, descriptive
models can be used, for example, to categorize customers
by their product preferences and life stage. Descriptive
modeling tools can be utilized to develop further models
that can simulate large number of individualized agents
and make predictions.

6.2.3 Decision models

Decision models describe the relationship between all the
elements of a decision — the known data (including re-
sults of predictive models), the decision, and the forecast
results of the decision — in order to predict the results of
decisions involving many variables. These models can be
used in optimization, maximizing certain outcomes while
minimizing others. Decision models are generally used to
develop decision logic or a set of business rules that will
produce the desired action for every customer or circum-
stance.

6.3 Applications

Although predictive analytics can be put to use in many
applications, we outline a few examples where predictive
analytics has shown positive impact in recent years.

6.3.1 Analytical customer relationship
management (CRM)

Analytical Customer Relationship Management is a fre-
quent commercial application of Predictive Analysis.
Methods of predictive analysis are applied to customer
data to pursue CRM objectives, which involve construct-
ing a holistic view of the customer no matter where their
information resides in the company or the department
involved. CRM uses predictive analysis in applications
for marketing campaigns, sales, and customer services to
name a few. These tools are required in order for a com-
pany to posture and focus their efforts effectively across
the breadth of their customer base. They must analyze
and understand the products in demand or have the po-
tential for high demand, predict customers’ buying habits
in order to promote relevant products at multiple touch
points, and proactively identify and mitigate issues that
have the potential to lose customers or reduce their abil-
ity to gain new ones. Analytical Customer Relationship
Management can be applied throughout the customers
lifecycle (acquisition, relationship growth, retention, and
win-back). Several of the application areas described be-
low (direct marketing, cross-sell, customer retention) are
part of Customer Relationship Managements.

6.3.2 Clinical decision support systems

Experts use predictive analysis in health care primarily to
determine which patients are at risk of developing certain
conditions, like diabetes, asthma, heart disease, and other
lifetime illnesses. Additionally, sophisticated clinical de-
cision support systems incorporate predictive analytics to
support medical decision making at the point of care. A
working definition has been proposed by Robert Hay-
ward of the Centre for Health Evidence: “Clinical Deci-
sion Support Systems link health observations with health
knowledge to influence health choices by clinicians for
improved health care.”

6.3.3 Collection analytics

Many portfolios have a set of delinquent customers who
do not make their payments on time. The financial insti-
tution has to undertake collection activities on these cus-
tomers to recover the amounts due. A lot of collection
resources are wasted on customers who are difficult or
impossible to recover. Predictive analytics can help opti-
mize the allocation of collection resources by identifying
the most effective collection agencies, contact strategies,
legal actions and other strategies to each customer, thus
significantly increasing recovery at the same time reduc-
ing collection costs.
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6.3.4 Cross-sell

Often corporate organizations collect and maintain abun-
dant data (e.g. customer records, sale transactions) as
exploiting hidden relationships in the data can provide a
competitive advantage. For an organization that offers
multiple products, predictive analytics can help analyze
customers’ spending, usage and other behavior, leading to
efficient cross sales, or selling additional products to cur-
rent customers.[2] This directly leads to higher profitabil-
ity per customer and stronger customer relationships.

6.3.5 Customer retention

With the number of competing services available, busi-
nesses need to focus efforts on maintaining continuous
consumer satisfaction, rewarding consumer loyalty and
minimizing customer attrition. In addition, small in-
creases in customer retention have been shown to in-
crease profits disproportionately. One study concluded
that a 5% increase in customer retention rates will in-
crease profits by 25% to 95%.[14] Businesses tend to re-
spond to customer attrition on a reactive basis, acting only
after the customer has initiated the process to terminate
service. At this stage, the chance of changing the cus-
tomer’s decision is almost impossible. Proper applica-
tion of predictive analytics can lead to a more proactive
retention strategy. By a frequent examination of a cus-
tomer’s past service usage, service performance, spending
and other behavior patterns, predictive models can de-
termine the likelihood of a customer terminating service
sometime soon.[7] An intervention with lucrative offers
can increase the chance of retaining the customer. Silent
attrition, the behavior of a customer to slowly but steadily
reduce usage, is another problem that many companies
face. Predictive analytics can also predict this behavior,
so that the company can take proper actions to increase
customer activity.

6.3.6 Direct marketing

When marketing consumer products and services, there is
the challenge of keeping up with competing products and
consumer behavior. Apart from identifying prospects,
predictive analytics can also help to identify the most ef-
fective combination of product versions, marketing ma-
terial, communication channels and timing that should be
used to target a given consumer. The goal of predictive
analytics is typically to lower the cost per order or cost
per action.

6.3.7 Fraud detection

Fraud is a big problem for many businesses and can be of
various types: inaccurate credit applications, fraudulent
transactions (both offline and online), identity thefts and

false insurance claims. These problems plague firms of
all sizes in many industries. Some examples of likely vic-
tims are credit card issuers, insurance companies,[15] re-
tail merchants, manufacturers, business-to-business sup-
pliers and even services providers. A predictive model
can help weed out the “bads” and reduce a business’s ex-
posure to fraud.
Predictive modeling can also be used to identify high-risk
fraud candidates in business or the public sector. Mark
Nigrini developed a risk-scoring method to identify audit
targets. He describes the use of this approach to detect
fraud in the franchisee sales reports of an international
fast-food chain. Each location is scored using 10 predic-
tors. The 10 scores are then weighted to give one final
overall risk score for each location. The same scoring ap-
proach was also used to identify high-risk check kiting
accounts, potentially fraudulent travel agents, and ques-
tionable vendors. A reasonably complex model was used
to identify fraudulent monthly reports submitted by divi-
sional controllers.[16]

The Internal Revenue Service (IRS) of the United States
also uses predictive analytics to mine tax returns and iden-
tify tax fraud.[15]

Recent advancements in technology have also introduced
predictive behavior analysis for web fraud detection. This
type of solution utilizes heuristics in order to study normal
web user behavior and detect anomalies indicating fraud
attempts.

6.3.8 Portfolio, product or economy-level
prediction

Often the focus of analysis is not the consumer but the
product, portfolio, firm, industry or even the economy.
For example, a retailer might be interested in predicting
store-level demand for inventory management purposes.
Or the Federal Reserve Board might be interested in pre-
dicting the unemployment rate for the next year. These
types of problems can be addressed by predictive ana-
lytics using time series techniques (see below). They can
also be addressed via machine learning approaches which
transform the original time series into a feature vector
space, where the learning algorithm finds patterns that
have predictive power.[17][18]

6.3.9 Risk management

When employing risk management techniques, the re-
sults are always to predict and benefit from a future sce-
nario. The Capital asset pricing model (CAP-M) “pre-
dicts” the best portfolio to maximize return, Probabilistic
Risk Assessment (PRA)--when combined with mini-
Delphi Techniques and statistical approaches yields ac-
curate forecasts and RiskAoA is a stand-alone predic-
tive tool.[19] These are three examples of approaches that
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can extend from project to market, and from near to
long term. Underwriting (see below) and other busi-
ness approaches identify risk management as a predictive
method.

6.3.10 Underwriting

Many businesses have to account for risk exposure due
to their different services and determine the cost needed
to cover the risk. For example, auto insurance providers
need to accurately determine the amount of premium to
charge to cover each automobile and driver. A financial
company needs to assess a borrower’s potential and abil-
ity to pay before granting a loan. For a health insurance
provider, predictive analytics can analyze a few years of
past medical claims data, as well as lab, pharmacy and
other records where available, to predict how expensive
an enrollee is likely to be in the future. Predictive analyt-
ics can help underwrite these quantities by predicting the
chances of illness, default, bankruptcy, etc. Predictive
analytics can streamline the process of customer acquisi-
tion by predicting the future risk behavior of a customer
using application level data.[4] Predictive analytics in the
form of credit scores have reduced the amount of time it
takes for loan approvals, especially in the mortgage mar-
ket where lending decisions are now made in a matter of
hours rather than days or even weeks. Proper predictive
analytics can lead to proper pricing decisions, which can
help mitigate future risk of default.

6.4 Technology and big data influ-
ences

Big data is a collection of data sets that are so large
and complex that they become awkward to work with
using traditional database management tools. The vol-
ume, variety and velocity of big data have introduced
challenges across the board for capture, storage, search,
sharing, analysis, and visualization. Examples of big data
sources include web logs, RFID, sensor data, social net-
works, Internet search indexing, call detail records, mil-
itary surveillance, and complex data in astronomic, bio-
geochemical, genomics, and atmospheric sciences. Big
Data is the core of most predictive analytic services of-
fered by IT organizations.[20] Thanks to technological ad-
vances in computer hardware — faster CPUs, cheaper
memory, and MPP architectures — and new technolo-
gies such as Hadoop, MapReduce, and in-database and
text analytics for processing big data, it is now feasible to
collect, analyze, and mine massive amounts of structured
and unstructured data for new insights.[15] Today, explor-
ing big data and using predictive analytics is within reach
of more organizations than ever before and new methods
that are capable for handling such datasets are proposed
[21] [22]

6.5 Analytical Techniques

The approaches and techniques used to conduct predic-
tive analytics can broadly be grouped into regression tech-
niques and machine learning techniques.

6.5.1 Regression techniques

Regression models are the mainstay of predictive analyt-
ics. The focus lies on establishing a mathematical equa-
tion as a model to represent the interactions between the
different variables in consideration. Depending on the
situation, there are a wide variety of models that can be
applied while performing predictive analytics. Some of
them are briefly discussed below.

Linear regression model

The linear regression model analyzes the relationship be-
tween the response or dependent variable and a set of in-
dependent or predictor variables. This relationship is ex-
pressed as an equation that predicts the response variable
as a linear function of the parameters. These parameters
are adjusted so that a measure of fit is optimized. Much
of the effort in model fitting is focused on minimizing the
size of the residual, as well as ensuring that it is randomly
distributed with respect to the model predictions.
The goal of regression is to select the parameters of the
model so as to minimize the sum of the squared residu-
als. This is referred to as ordinary least squares (OLS)
estimation and results in best linear unbiased estimates
(BLUE) of the parameters if and only if the Gauss-
Markov assumptions are satisfied.
Once the model has been estimated we would be inter-
ested to know if the predictor variables belong in the
model – i.e. is the estimate of each variable’s contribution
reliable? To do this we can check the statistical signifi-
cance of the model’s coefficients which can be measured
using the t-statistic. This amounts to testing whether the
coefficient is significantly different from zero. How well
the model predicts the dependent variable based on the
value of the independent variables can be assessed by us-
ing the R² statistic. It measures predictive power of the
model i.e. the proportion of the total variation in the de-
pendent variable that is “explained” (accounted for) by
variation in the independent variables.

Discrete choice models

Multivariate regression (above) is generally used when
the response variable is continuous and has an unbounded
range. Often the response variable may not be continuous
but rather discrete. While mathematically it is feasible to
apply multivariate regression to discrete ordered depen-
dent variables, some of the assumptions behind the theory
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of multivariate linear regression no longer hold, and there
are other techniques such as discrete choice models which
are better suited for this type of analysis. If the dependent
variable is discrete, some of those superior methods are
logistic regression, multinomial logit and probit models.
Logistic regression and probit models are used when the
dependent variable is binary.

Logistic regression

For more details on this topic, see logistic regression.

In a classification setting, assigning outcome probabilities
to observations can be achieved through the use of a logis-
tic model, which is basically a method which transforms
information about the binary dependent variable into an
unbounded continuous variable and estimates a regular
multivariate model (See Allison’s Logistic Regression for
more information on the theory of Logistic Regression).
The Wald and likelihood-ratio test are used to test the
statistical significance of each coefficient b in the model
(analogous to the t tests used in OLS regression; see
above). A test assessing the goodness-of-fit of a classi-
fication model is the “percentage correctly predicted”.

Multinomial logistic regression

An extension of the binary logit model to cases where
the dependent variable has more than 2 categories is the
multinomial logit model. In such cases collapsing the data
into two categories might not make good sense or may
lead to loss in the richness of the data. The multinomial
logit model is the appropriate technique in these cases,
especially when the dependent variable categories are not
ordered (for examples colors like red, blue, green). Some
authors have extended multinomial regression to include
feature selection/importance methods such as Random
multinomial logit.

Probit regression

Probit models offer an alternative to logistic regres-
sion for modeling categorical dependent variables. Even
though the outcomes tend to be similar, the underlying
distributions are different. Probit models are popular in
social sciences like economics.
A good way to understand the key difference between
probit and logit models is to assume that there is a latent
variable z.
We do not observe z but instead observe y which takes the
value 0 or 1. In the logit model we assume that y follows a
logistic distribution. In the probit model we assume that y
follows a standard normal distribution. Note that in social
sciences (e.g. economics), probit is often used to model

situations where the observed variable y is continuous but
takes values between 0 and 1.

Logit versus probit

The Probit model has been around longer than the logit
model. They behave similarly, except that the logistic dis-
tribution tends to be slightly flatter tailed. One of the rea-
sons the logit model was formulated was that the probit
model was computationally difficult due to the require-
ment of numerically calculating integrals. Modern com-
puting however has made this computation fairly simple.
The coefficients obtained from the logit and probit model
are fairly close. However, the odds ratio is easier to in-
terpret in the logit model.
Practical reasons for choosing the probit model over the
logistic model would be:

• There is a strong belief that the underlying distribu-
tion is normal

• The actual event is not a binary outcome (e.g.,
bankruptcy status) but a proportion (e.g., proportion
of population at different debt levels).

Time series models

Time series models are used for predicting or forecasting
the future behavior of variables. These models account
for the fact that data points taken over time may have an
internal structure (such as autocorrelation, trend or sea-
sonal variation) that should be accounted for. As a result
standard regression techniques cannot be applied to time
series data and methodology has been developed to de-
compose the trend, seasonal and cyclical component of
the series. Modeling the dynamic path of a variable can
improve forecasts since the predictable component of the
series can be projected into the future.
Time series models estimate difference equations con-
taining stochastic components. Two commonly used
forms of these models are autoregressive models (AR)
and moving average (MA) models. The Box-Jenkins
methodology (1976) developed by George Box and G.M.
Jenkins combines the AR and MA models to produce
the ARMA (autoregressive moving average) model which
is the cornerstone of stationary time series analysis.
ARIMA (autoregressive integrated moving average mod-
els) on the other hand are used to describe non-stationary
time series. Box and Jenkins suggest differencing a non
stationary time series to obtain a stationary series to
which an ARMA model can be applied. Non stationary
time series have a pronounced trend and do not have a
constant long-run mean or variance.
Box and Jenkins proposed a three stage methodology
which includes: model identification, estimation and val-
idation. The identification stage involves identifying if
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the series is stationary or not and the presence of sea-
sonality by examining plots of the series, autocorrelation
and partial autocorrelation functions. In the estimation
stage, models are estimated using non-linear time series
or maximum likelihood estimation procedures. Finally
the validation stage involves diagnostic checking such as
plotting the residuals to detect outliers and evidence of
model fit.
In recent years time series models have become
more sophisticated and attempt to model condi-
tional heteroskedasticity with models such as ARCH
(autoregressive conditional heteroskedasticity) and
GARCH (generalized autoregressive conditional het-
eroskedasticity) models frequently used for financial time
series. In addition time series models are also used to
understand inter-relationships among economic variables
represented by systems of equations using VAR (vector
autoregression) and structural VAR models.

Survival or duration analysis

Survival analysis is another name for time to event anal-
ysis. These techniques were primarily developed in the
medical and biological sciences, but they are also widely
used in the social sciences like economics, as well as in
engineering (reliability and failure time analysis).
Censoring and non-normality, which are characteristic of
survival data, generate difficulty when trying to analyze
the data using conventional statistical models such as mul-
tiple linear regression. The normal distribution, being a
symmetric distribution, takes positive as well as negative
values, but duration by its very nature cannot be negative
and therefore normality cannot be assumed when dealing
with duration/survival data. Hence the normality assump-
tion of regression models is violated.
The assumption is that if the data were not censored it
would be representative of the population of interest. In
survival analysis, censored observations arise whenever
the dependent variable of interest represents the time to
a terminal event, and the duration of the study is limited
in time.
An important concept in survival analysis is the hazard
rate, defined as the probability that the event will occur
at time t conditional on surviving until time t. Another
concept related to the hazard rate is the survival function
which can be defined as the probability of surviving to
time t.
Most models try to model the hazard rate by choosing
the underlying distribution depending on the shape of the
hazard function. A distribution whose hazard function
slopes upward is said to have positive duration depen-
dence, a decreasing hazard shows negative duration de-
pendence whereas constant hazard is a process with no
memory usually characterized by the exponential distri-
bution. Some of the distributional choices in survival

models are: F, gamma, Weibull, log normal, inverse nor-
mal, exponential etc. All these distributions are for a non-
negative random variable.
Duration models can be parametric, non-parametric or
semi-parametric. Some of the models commonly used
are Kaplan-Meier and Cox proportional hazard model
(non parametric).

Classification and regression trees

Main article: decision tree learning

Globally-optimal classification tree analysis (GO-CTA)
(also called hierarchical optimal discriminant analysis) is
a generalization of optimal discriminant analysis that may
be used to identify the statistical model that has maxi-
mum accuracy for predicting the value of a categorical
dependent variable for a dataset consisting of categori-
cal and continuous variables. The output of HODA is a
non-orthogonal tree that combines categorical variables
and cut points for continuous variables that yields max-
imum predictive accuracy, an assessment of the exact
Type I error rate, and an evaluation of potential cross-
generalizability of the statistical model. Hierarchical op-
timal discriminant analysis may be thought of as a gener-
alization of Fisher’s linear discriminant analysis. Optimal
discriminant analysis is an alternative to ANOVA (analy-
sis of variance) and regression analysis, which attempt to
express one dependent variable as a linear combination of
other features or measurements. However, ANOVA and
regression analysis give a dependent variable that is a nu-
merical variable, while hierarchical optimal discriminant
analysis gives a dependent variable that is a class variable.
Classification and regression trees (CART) are a non-
parametric decision tree learning technique that produces
either classification or regression trees, depending on
whether the dependent variable is categorical or numeric,
respectively.
Decision trees are formed by a collection of rules based
on variables in the modeling data set:

• Rules based on variables’ values are selected to get
the best split to differentiate observations based on
the dependent variable

• Once a rule is selected and splits a node into two, the
same process is applied to each “child” node (i.e. it
is a recursive procedure)

• Splitting stops when CART detects no further gain
can be made, or some pre-set stopping rules are met.
(Alternatively, the data are split as much as possible
and then the tree is later pruned.)

Each branch of the tree ends in a terminal node. Each
observation falls into one and exactly one terminal node,
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and each terminal node is uniquely defined by a set of
rules.
A very popular method for predictive analytics is Leo
Breiman’s Random forests or derived versions of this
technique like Random multinomial logit.

Multivariate adaptive regression splines

Multivariate adaptive regression splines (MARS) is a non-
parametric technique that builds flexible models by fitting
piecewise linear regressions.
An important concept associated with regression splines
is that of a knot. Knot is where one local regression model
gives way to another and thus is the point of intersection
between two splines.
In multivariate and adaptive regression splines, basis
functions are the tool used for generalizing the search for
knots. Basis functions are a set of functions used to repre-
sent the information contained in one or more variables.
Multivariate and Adaptive Regression Splines model al-
most always creates the basis functions in pairs.
Multivariate and adaptive regression spline approach de-
liberately overfits the model and then prunes to get to the
optimal model. The algorithm is computationally very in-
tensive and in practice we are required to specify an upper
limit on the number of basis functions.

6.5.2 Machine learning techniques

Machine learning, a branch of artificial intelligence, was
originally employed to develop techniques to enable com-
puters to learn. Today, since it includes a number of
advanced statistical methods for regression and classifi-
cation, it finds application in a wide variety of fields in-
cluding medical diagnostics, credit card fraud detection,
face and speech recognition and analysis of the stock mar-
ket. In certain applications it is sufficient to directly pre-
dict the dependent variable without focusing on the un-
derlying relationships between variables. In other cases,
the underlying relationships can be very complex and the
mathematical form of the dependencies unknown. For
such cases, machine learning techniques emulate human
cognition and learn from training examples to predict fu-
ture events.
A brief discussion of some of these methods used com-
monly for predictive analytics is provided below. A de-
tailed study of machine learning can be found in Mitchell
(1997).

Neural networks

Neural networks are nonlinear sophisticated model-
ing techniques that are able to model complex func-
tions. They can be applied to problems of prediction,

classification or control in a wide spectrum of fields such
as finance, cognitive psychology/neuroscience, medicine,
engineering, and physics.
Neural networks are used when the exact nature of the re-
lationship between inputs and output is not known. A key
feature of neural networks is that they learn the relation-
ship between inputs and output through training. There
are three types of training in neural networks used by
different networks, supervised and unsupervised training,
reinforcement learning, with supervised being the most
common one.
Some examples of neural network training techniques
are backpropagation, quick propagation, conjugate gra-
dient descent, projection operator, Delta-Bar-Delta etc.
Some unsupervised network architectures are multilayer
perceptrons, Kohonen networks, Hopfield networks, etc.

Multilayer Perceptron (MLP)

The Multilayer Perceptron (MLP) consists of an input
and an output layer with one or more hidden layers of
nonlinearly-activating nodes or sigmoid nodes. This is
determined by the weight vector and it is necessary to
adjust the weights of the network. The backpropagation
employs gradient fall to minimize the squared error be-
tween the network output values and desired values for
those outputs. The weights adjusted by an iterative pro-
cess of repetitive present of attributes. Small changes in
the weight to get the desired values are done by the pro-
cess called training the net and is done by the training set
(learning rule).

Radial basis functions

A radial basis function (RBF) is a function which has built
into it a distance criterion with respect to a center. Such
functions can be used very efficiently for interpolation
and for smoothing of data. Radial basis functions have
been applied in the area of neural networks where they
are used as a replacement for the sigmoidal transfer func-
tion. Such networks have 3 layers, the input layer, the
hidden layer with the RBF non-linearity and a linear out-
put layer. The most popular choice for the non-linearity
is the Gaussian. RBF networks have the advantage of not
being locked into local minima as do the feed-forward
networks such as the multilayer perceptron.

Support vector machines

Support Vector Machines (SVM) are used to detect and
exploit complex patterns in data by clustering, classifying
and ranking the data. They are learning machines that are
used to perform binary classifications and regression es-
timations. They commonly use kernel based methods to
apply linear classification techniques to non-linear classi-
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fication problems. There are a number of types of SVM
such as linear, polynomial, sigmoid etc.

Naïve Bayes

Naïve Bayes based on Bayes conditional probability rule
is used for performing classification tasks. Naïve Bayes
assumes the predictors are statistically independent which
makes it an effective classification tool that is easy to in-
terpret. It is best employed when faced with the problem
of ‘curse of dimensionality’ i.e. when the number of pre-
dictors is very high.

k-nearest neighbours

The nearest neighbour algorithm (KNN) belongs to the
class of pattern recognition statistical methods. The
method does not impose a priori any assumptions about
the distribution from which the modeling sample is
drawn. It involves a training set with both positive and
negative values. A new sample is classified by calculat-
ing the distance to the nearest neighbouring training case.
The sign of that point will determine the classification of
the sample. In the k-nearest neighbour classifier, the k
nearest points are considered and the sign of the major-
ity is used to classify the sample. The performance of
the kNN algorithm is influenced by three main factors:
(1) the distance measure used to locate the nearest neigh-
bours; (2) the decision rule used to derive a classifica-
tion from the k-nearest neighbours; and (3) the number
of neighbours used to classify the new sample. It can be
proved that, unlike other methods, this method is univer-
sally asymptotically convergent, i.e.: as the size of the
training set increases, if the observations are independent
and identically distributed (i.i.d.), regardless of the dis-
tribution from which the sample is drawn, the predicted
class will converge to the class assignment that minimizes
misclassification error. See Devroy et al.

Geospatial predictive modeling

Conceptually, geospatial predictive modeling is rooted in
the principle that the occurrences of events being mod-
eled are limited in distribution. Occurrences of events
are neither uniform nor random in distribution – there are
spatial environment factors (infrastructure, sociocultural,
topographic, etc.) that constrain and influence where the
locations of events occur. Geospatial predictive modeling
attempts to describe those constraints and influences by
spatially correlating occurrences of historical geospatial
locations with environmental factors that represent those
constraints and influences. Geospatial predictive model-
ing is a process for analyzing events through a geographic
filter in order to make statements of likelihood for event
occurrence or emergence.

6.6 Tools

Historically, using predictive analytics tools—as well as
understanding the results they delivered—required ad-
vanced skills. However, modern predictive analytics tools
are no longer restricted to IT specialists. As more orga-
nizations adopt predictive analytics into decision-making
processes and integrate it into their operations, they are
creating a shift in the market toward business users as the
primary consumers of the information. Business users
want tools they can use on their own. Vendors are re-
sponding by creating new software that removes the math-
ematical complexity, provides user-friendly graphic in-
terfaces and/or builds in short cuts that can, for example,
recognize the kind of data available and suggest an appro-
priate predictive model.[23] Predictive analytics tools have
become sophisticated enough to adequately present and
dissect data problems, so that any data-savvy informa-
tion worker can utilize them to analyze data and retrieve
meaningful, useful results.[2] For example, modern tools
present findings using simple charts, graphs, and scores
that indicate the likelihood of possible outcomes.[24]

There are numerous tools available in the marketplace
that help with the execution of predictive analytics. These
range from those that need very little user sophistication
to those that are designed for the expert practitioner. The
difference between these tools is often in the level of cus-
tomization and heavy data lifting allowed.
Notable open source predictive analytic tools include:

• scikit-learn

• KNIME

• OpenNN

• Orange

• R

• Weka

• GNU Octave

• Apache Mahout

Notable commercial predictive analytic tools include:

• Alpine Data Labs

• BIRT Analytics

• Angoss KnowledgeSTUDIO

• IBM SPSS Statistics and IBM SPSS Modeler

• KXEN Modeler

• Mathematica

• MATLAB
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• Minitab

• Neural Designer

• Oracle Data Mining (ODM)

• Pervasive

• Predixion Software

• RapidMiner

• RCASE

• Revolution Analytics

• SAP

• SAS and SAS Enterprise Miner

• STATA

• STATISTICA

• TIBCO

The most popular commercial predictive analytics soft-
ware packages according to the Rexer Analytics Sur-
vey for 2013 are IBM SPSS Modeler, SAS Enterprise
Miner, and Dell Statistica <http://www.rexeranalytics.
com/Data-Miner-Survey-2013-Intro.html>

6.6.1 PMML

In an attempt to provide a standard language for express-
ing predictive models, the Predictive Model Markup Lan-
guage (PMML) has been proposed. Such an XML-based
language provides a way for the different tools to de-
fine predictive models and to share these between PMML
compliant applications. PMML 4.0 was released in June,
2009.

6.7 Criticism

There are plenty of skeptics when it comes to comput-
ers and algorithms abilities to predict the future, includ-
ing Gary King, a professor from Harvard University and
the director of the Institute for Quantitative Social Sci-
ence. [25] People are influenced by their environment in
innumerable ways. Trying to understand what people will
do next assumes that all the influential variables can be
known and measured accurately. “People’s environments
change even more quickly than they themselves do. Ev-
erything from the weather to their relationship with their
mother can change the way people think and act. All of
those variables are unpredictable. How they will impact
a person is even less predictable. If put in the exact same
situation tomorrow, they may make a completely differ-
ent decision. This means that a statistical prediction is
only valid in sterile laboratory conditions, which suddenly
isn't as useful as it seemed before.” [26]

6.8 See also

• Criminal Reduction Utilising Statistical History

• Data mining

• Learning analytics

• Odds algorithm

• Pattern recognition

• Prescriptive analytics

• Predictive modeling

• RiskAoA a predictive tool for discriminating future
decisions.
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Chapter 7

Business intelligence

Business intelligence (BI) is the set of techniques and
tools for the transformation of raw data into meaningful
and useful information for business analysis purposes. BI
technologies are capable of handling large amounts of un-
structured data to help identify, develop and otherwise
create new strategic business opportunities. The goal of
BI is to allow for the easy interpretation of these large vol-
umes of data. Identifying new opportunities and imple-
menting an effective strategy based on insights can pro-
vide businesses with a competitive market advantage and
long-term stability.[1]

BI technologies provide historical, current and predictive
views of business operations. Common functions of busi-
ness intelligence technologies are reporting, online ana-
lytical processing, analytics, data mining, process mining,
complex event processing, business performance man-
agement, benchmarking, text mining, predictive analytics
and prescriptive analytics.
BI can be used to support a wide range of business de-
cisions ranging from operational to strategic. Basic op-
erating decisions include product positioning or pricing.
Strategic business decisions include priorities, goals and
directions at the broadest level. In all cases, BI is most ef-
fective when it combines data derived from the market in
which a company operates (external data) with data from
company sources internal to the business such as financial
and operations data (internal data). When combined, ex-
ternal and internal data can provide a more complete pic-
ture which, in effect, creates an “intelligence” that cannot
be derived by any singular set of data.[2]

7.1 Components

Business intelligence is made up of an increasing number
of components including:

• Multidimensional aggregation and allocation

• Denormalization, tagging and standardization

• Realtime reporting with analytical alert

• A method of interfacing with unstructured data
sources

• Group consolidation, budgeting and rolling forecasts

• Statistical inference and probabilistic simulation

• Key performance indicators optimization

• Version control and process management

• Open item management

7.2 History

The term “Business Intelligence” was originally coined by
Richard Millar Devens’ in the ‘Cyclopædia of Commer-
cial and Business Anecdotes’ from 1865. Devens used
the term to describe how the banker, Sir Henry Fur-
nese, gained profit by receiving and acting upon infor-
mation about his environment, prior to his competitors.
“Throughout Holland, Flanders, France, and Germany,
he maintained a complete and perfect train of business in-
telligence. The news of the many battles fought was thus
received first by him, and the fall of Namur added to his
profits, owing to his early receipt of the news.” (Devens,
(1865), p. 210). The ability to collect and react accord-
ingly based on the information retrieved, an ability that
Furnese excelled in, is today still at the very heart of BI.[3]

In a 1958 article, IBM researcher Hans Peter Luhn used
the term business intelligence. He employed the Web-
ster’s dictionary definition of intelligence: “the ability
to apprehend the interrelationships of presented facts in
such a way as to guide action towards a desired goal.”[4]

Business intelligence as it is understood today is said to
have evolved from the decision support systems (DSS)
that began in the 1960s and developed throughout the
mid-1980s. DSS originated in the computer-aided mod-
els created to assist with decision making and planning.
From DSS, data warehouses, Executive Information Sys-
tems, OLAP and business intelligence came into focus
beginning in the late 80s.
In 1988, an Italian-Dutch-French-English consortium or-
ganized an international meeting on the Multiway Data
Analysis in Rome.[5] The ultimate goal is to reduce the
multiple dimensions down to one or two (by detecting
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the patterns within the data) that can then be presented
to human decision-makers.
In 1989, Howard Dresner (later a Gartner Group an-
alyst) proposed “business intelligence” as an umbrella
term to describe “concepts and methods to improve
business decision making by using fact-based support
systems.”[6] It was not until the late 1990s that this us-
age was widespread.[7]

7.3 Data warehousing

Often BI applications use data gathered from a data ware-
house (DW) or from a data mart, and the concepts of
BI and DW sometimes combine as "BI/DW"[8] or as
"BIDW". A data warehouse contains a copy of analyt-
ical data that facilitates decision support. However, not
all data warehouses serve for business intelligence, nor do
all business intelligence applications require a data ware-
house.
To distinguish between the concepts of business intelli-
gence and data warehouses, Forrester Research defines
business intelligence in one of two ways:

1. Using a broad definition: “Business Intelligence
is a set of methodologies, processes, architec-
tures, and technologies that transform raw data into
meaningful and useful information used to enable
more effective strategic, tactical, and operational in-
sights and decision-making.”[9] Under this defini-
tion, business intelligence also includes technologies
such as data integration, data quality, data warehous-
ing, master-data management, text- and content-
analytics, and many others that the market some-
times lumps into the "Information Management"
segment. Therefore, Forrester refers to data prepa-
ration and data usage as two separate but closely
linked segments of the business-intelligence archi-
tectural stack.

2. Forrester defines the narrower business-intelligence
market as, "...referring to just the top layers of the BI
architectural stack such as reporting, analytics and
dashboards.”[10]

7.4 Comparison with competitive
intelligence

Though the term business intelligence is sometimes a
synonym for competitive intelligence (because they both
support decision making), BI uses technologies, pro-
cesses, and applications to analyze mostly internal, struc-
tured data and business processes while competitive in-
telligence gathers, analyzes and disseminates information

with a topical focus on company competitors. If under-
stood broadly, business intelligence can include the subset
of competitive intelligence.[11]

7.5 Comparison with business an-
alytics

Business intelligence and business analytics are some-
times used interchangeably, but there are alternate
definitions.[12] One definition contrasts the two, stat-
ing that the term business intelligence refers to collect-
ing business data to find information primarily through
asking questions, reporting, and online analytical pro-
cesses. Business analytics, on the other hand, uses statis-
tical and quantitative tools for explanatory and predictive
modeling.[13]

In an alternate definition, Thomas Davenport, professor
of information technology and management at Babson
College argues that business intelligence should be di-
vided into querying, reporting, Online analytical process-
ing (OLAP), an “alerts” tool, and business analytics. In
this definition, business analytics is the subset of BI fo-
cusing on statistics, prediction, and optimization, rather
than the reporting functionality.[14]

7.6 Applications in an enterprise

Business intelligence can be applied to the following busi-
ness purposes, in order to drive business value.

1. Measurement – program that creates a hierarchy
of performance metrics (see also Metrics Refer-
ence Model) and benchmarking that informs busi-
ness leaders about progress towards business goals
(business process management).

2. Analytics – program that builds quantitative pro-
cesses for a business to arrive at optimal deci-
sions and to perform business knowledge discovery.
Frequently involves: data mining, process mining,
statistical analysis, predictive analytics, predictive
modeling, business process modeling, data lineage,
complex event processing and prescriptive analytics.

3. Reporting/enterprise reporting – program that
builds infrastructure for strategic reporting to serve
the strategic management of a business, not opera-
tional reporting. Frequently involves data visualiza-
tion, executive information system and OLAP.

4. Collaboration/collaboration platform – program that
gets different areas (both inside and outside the busi-
ness) to work together through data sharing and
electronic data interchange.
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5. Knowledge management – program to make the
company data-driven through strategies and prac-
tices to identify, create, represent, distribute, and
enable adoption of insights and experiences that are
true business knowledge. Knowledge management
leads to learning management and regulatory com-
pliance.

In addition to the above, business intelligence can provide
a pro-active approach, such as alert functionality that im-
mediately notifies the end-user if certain conditions are
met. For example, if some business metric exceeds a
pre-defined threshold, the metric will be highlighted in
standard reports, and the business analyst may be alerted
via e-mail or another monitoring service. This end-to-
end process requires data governance, which should be
handled by the expert.

7.7 Prioritization of projects

It can be difficult to provide a positive business case for
business intelligence initiatives, and often the projects
must be prioritized through strategic initiatives. BI
projects can attain higher prioritization within the orga-
nization if managers consider the following:

• As described by Kimball[15] the BI manager must
determine the tangible benefits such as eliminated
cost of producing legacy reports.

• Data access for the entire organization must be
enforced.[16] In this way even a small benefit, such
as a few minutes saved, makes a difference when
multiplied by the number of employees in the entire
organization.

• As described by Ross, Weil & Roberson for En-
terprise Architecture,[17] managers should also con-
sider letting the BI project be driven by other busi-
ness initiatives with excellent business cases. To
support this approach, the organization must have
enterprise architects who can identify suitable busi-
ness projects.

• Using a structured and quantitative methodology to
create defensible prioritization in line with the ac-
tual needs of the organization, such as a weighted
decision matrix.[18]

7.8 Success factors of implementa-
tion

According to Kimball et al., there are three critical areas
that organizations should assess before getting ready to do
a BI project:[19]

1. The level of commitment and sponsorship of the
project from senior management

2. The level of business need for creating a BI imple-
mentation

3. The amount and quality of business data available.

7.8.1 Business sponsorship

The commitment and sponsorship of senior management
is according to Kimball et al., the most important criteria
for assessment.[20] This is because having strong manage-
ment backing helps overcome shortcomings elsewhere in
the project. However, as Kimball et al. state: “even the
most elegantly designed DW/BI system cannot overcome
a lack of business [management] sponsorship”.[21]

It is important that personnel who participate in the
project have a vision and an idea of the benefits and draw-
backs of implementing a BI system. The best business
sponsor should have organizational clout and should be
well connected within the organization. It is ideal that the
business sponsor is demanding but also able to be realis-
tic and supportive if the implementation runs into delays
or drawbacks. The management sponsor also needs to
be able to assume accountability and to take responsibil-
ity for failures and setbacks on the project. Support from
multiple members of the management ensures the project
does not fail if one person leaves the steering group. How-
ever, having many managers work together on the project
can also mean that there are several different interests that
attempt to pull the project in different directions, such as
if different departments want to put more emphasis on
their usage. This issue can be countered by an early and
specific analysis of the business areas that benefit the most
from the implementation. All stakeholders in the project
should participate in this analysis in order for them to feel
invested in the project and to find common ground.
Another management problem that may be encountered
before the start of an implementation is an overly aggres-
sive business sponsor. Problems of scope creep occur
when the sponsor requests data sets that were not spec-
ified in the original planning phase.

7.8.2 Business needs

Because of the close relationship with senior manage-
ment, another critical thing that must be assessed before
the project begins is whether or not there is a business
need and whether there is a clear business benefit by do-
ing the implementation.[22] The needs and benefits of the
implementation are sometimes driven by competition and
the need to gain an advantage in the market. Another rea-
son for a business-driven approach to implementation of
BI is the acquisition of other organizations that enlarge
the original organization it can sometimes be beneficial to
implement DW or BI in order to create more oversight.

https://en.wikipedia.org/wiki/Knowledge_management
https://en.wikipedia.org/wiki/Learning_management
https://en.wikipedia.org/wiki/Regulatory_compliance
https://en.wikipedia.org/wiki/Regulatory_compliance
https://en.wiktionary.org/wiki/sponsor
https://en.wikipedia.org/wiki/Scope_creep


7.9. USER ASPECT 67

Companies that implement BI are often large, multina-
tional organizations with diverse subsidiaries.[23] A well-
designed BI solution provides a consolidated view of key
business data not available anywhere else in the organiza-
tion, giving management visibility and control over mea-
sures that otherwise would not exist.

7.8.3 Amount and quality of available data

Without proper data, or with too little quality data, any
BI implementation fails; it does not matter how good the
management sponsorship or business-driven motivation
is. Before implementation it is a good idea to do data pro-
filing. This analysis identifies the “content, consistency
and structure [..]”[22] of the data. This should be done as
early as possible in the process and if the analysis shows
that data is lacking, put the project on hold temporarily
while the IT department figures out how to properly col-
lect data.
When planning for business data and business intelligence
requirements, it is always advisable to consider specific
scenarios that apply to a particular organization, and then
select the business intelligence features best suited for the
scenario.
Often, scenarios revolve around distinct business pro-
cesses, each built on one or more data sources. These
sources are used by features that present that data as in-
formation to knowledge workers, who subsequently act
on that information. The business needs of the organiza-
tion for each business process adopted correspond to the
essential steps of business intelligence. These essential
steps of business intelligence include but are not limited
to:

1. Go through business data sources in order to collect
needed data

2. Convert business data to information and present ap-
propriately

3. Query and analyze data

4. Act on the collected data

The quality aspect in business intelligence should cover
all the process from the source data to the final reporting.
At each step, the quality gates are different:

1. Source Data:

• Data Standardization: make data comparable
(same unit, same pattern...)

• Master Data Management: unique referential

2. Operational Data Store (ODS):

• Data Cleansing: detect & correct inaccurate
data

• Data Profiling: check inappropriate value,
null/empty

3. Data warehouse:

• Completeness: check that all expected data are
loaded

• Referential integrity: unique and existing ref-
erential over all sources

• Consistency between sources: check consoli-
dated data vs sources

4. Reporting:

• Uniqueness of indicators: only one share dic-
tionary of indicators

• Formula accuracy: local reporting formula
should be avoided or checked

7.9 User aspect

Some considerations must be made in order to success-
fully integrate the usage of business intelligence systems
in a company. Ultimately the BI system must be accepted
and utilized by the users in order for it to add value to the
organization.[24][25] If the usability of the system is poor,
the users may become frustrated and spend a consider-
able amount of time figuring out how to use the system
or may not be able to really use the system. If the system
does not add value to the users´ mission, they simply don't
use it.[25]

To increase user acceptance of a BI system, it can be ad-
visable to consult business users at an early stage of the
DW/BI lifecycle, for example at the requirements gather-
ing phase.[24] This can provide an insight into the business
process and what the users need from the BI system.
There are several methods for gathering this information,
such as questionnaires and interview sessions.
When gathering the requirements from the business users,
the local IT department should also be consulted in order
to determine to which degree it is possible to fulfill the
business’s needs based on the available data.[24]

Taking a user-centered approach throughout the design
and development stage may further increase the chance
of rapid user adoption of the BI system.[25]

Besides focusing on the user experience offered by the
BI applications, it may also possibly motivate the users to
utilize the system by adding an element of competition.
Kimball[24] suggests implementing a function on the Busi-
ness Intelligence portal website where reports on system
usage can be found. By doing so, managers can see how
well their departments are doing and compare themselves
to others and this may spur them to encourage their staff
to utilize the BI system even more.
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In a 2007 article, H. J. Watson gives an example of how
the competitive element can act as an incentive.[26] Wat-
son describes how a large call centre implemented per-
formance dashboards for all call agents, with monthly in-
centive bonuses tied to performance metrics. Also, agents
could compare their performance to other team members.
The implementation of this type of performance mea-
surement and competition significantly improved agent
performance.
BI chances of success can be improved by involving
senior management to help make BI a part of the
organizational culture, and by providing the users with
necessary tools, training, and support.[26] Training en-
courages more people to use the BI application.[24]

Providing user support is necessary to maintain the BI
system and resolve user problems.[25] User support can
be incorporated in many ways, for example by creating
a website. The website should contain great content and
tools for finding the necessary information. Furthermore,
helpdesk support can be used. The help desk can be
manned by power users or the DW/BI project team.[24]

7.10 BI Portals

ABusiness Intelligence portal (BI portal) is the primary
access interface for Data Warehouse (DW) and Business
Intelligence (BI) applications. The BI portal is the user’s
first impression of the DW/BI system. It is typically a
browser application, from which the user has access to
all the individual services of the DW/BI system, reports
and other analytical functionality. The BI portal must be
implemented in such a way that it is easy for the users of
the DW/BI application to call on the functionality of the
application.[27]

The BI portal’s main functionality is to provide a naviga-
tion system of the DW/BI application. This means that
the portal has to be implemented in a way that the user
has access to all the functions of the DW/BI application.
The most common way to design the portal is to custom fit
it to the business processes of the organization for which
the DW/BI application is designed, in that way the portal
can best fit the needs and requirements of its users.[28]

The BI portal needs to be easy to use and understand,
and if possible have a look and feel similar to other ap-
plications or web content of the organization the DW/BI
application is designed for (consistency).
The following is a list of desirable features for web portals
in general and BI portals in particular:

Usable User should easily find what they need in the BI
tool.

Content Rich The portal is not just a report printing
tool, it should contain more functionality such as ad-
vice, help, support information and documentation.

Clean The portal should be designed so it is easily un-
derstandable and not over complex as to confuse the
users

Current The portal should be updated regularly.

Interactive The portal should be implemented in a way
that makes it easy for the user to use its functionality
and encourage them to use the portal. Scalability
and customization give the user the means to fit the
portal to each user.

Value Oriented It is important that the user has the feel-
ing that the DW/BI application is a valuable resource
that is worth working on.

7.11 Marketplace

There are a number of business intelligence vendors, of-
ten categorized into the remaining independent “pure-
play” vendors and consolidated “megavendors” that have
entered the market through a recent trend[29] of acquisi-
tions in the BI industry.[30] The business intelligence mar-
ket is gradually growing. In 2012 business intelligence
services brought in $13.1 billion in revenue.[31]

Some companies adopting BI software decide to pick and
choose from different product offerings (best-of-breed)
rather than purchase one comprehensive integrated solu-
tion (full-service).[32]

7.11.1 Industry-specific

Specific considerations for business intelligence systems
have to be taken in some sectors such as governmental
banking regulations. The information collected by bank-
ing institutions and analyzed with BI software must be
protected from some groups or individuals, while being
fully available to other groups or individuals. Therefore,
BI solutions must be sensitive to those needs and be flex-
ible enough to adapt to new regulations and changes to
existing law.

7.12 Semi-structured or unstruc-
tured data

Businesses create a huge amount of valuable informa-
tion in the form of e-mails, memos, notes from call-
centers, news, user groups, chats, reports, web-pages,
presentations, image-files, video-files, and marketing ma-
terial and news. According to Merrill Lynch, more than
85% of all business information exists in these forms.
These information types are called either semi-structured
or unstructured data. However, organizations often only
use these documents once.[33]
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The management of semi-structured data is recognized
as a major unsolved problem in the information technol-
ogy industry.[34] According to projections from Gartner
(2003), white collar workers spend anywhere from 30 to
40 percent of their time searching, finding and assessing
unstructured data. BI uses both structured and unstruc-
tured data, but the former is easy to search, and the latter
contains a large quantity of the information needed for
analysis and decision making.[34][35] Because of the diffi-
culty of properly searching, finding and assessing unstruc-
tured or semi-structured data, organizations may not draw
upon these vast reservoirs of information, which could
influence a particular decision, task or project. This can
ultimately lead to poorly informed decision making.[33]

Therefore, when designing a business intelligence/DW-
solution, the specific problems associated with semi-
structured and unstructured data must be accommodated
for as well as those for the structured data.[35]

7.12.1 Unstructured data vs. semi-
structured data

Unstructured and semi-structured data have different
meanings depending on their context. In the context of
relational database systems, unstructured data cannot be
stored in predictably ordered columns and rows. One type
of unstructured data is typically stored in a BLOB (bi-
nary large object), a catch-all data type available in most
relational database management systems. Unstructured
data may also refer to irregularly or randomly repeated
column patterns that vary from row to row within each
file or document.
Many of these data types, however, like e-mails, word
processing text files, PPTs, image-files, and video-files
conform to a standard that offers the possibility of meta-
data. Metadata can include information such as author
and time of creation, and this can be stored in a rela-
tional database. Therefore, it may be more accurate to
talk about this as semi-structured documents or data,[34]

but no specific consensus seems to have been reached.
Unstructured data can also simply be the knowledge that
business users have about future business trends. Busi-
ness forecasting naturally aligns with the BI system be-
cause business users think of their business in aggregate
terms. Capturing the business knowledge that may only
exist in the minds of business users provides some of the
most important data points for a complete BI solution.

7.12.2 Problems with semi-structured or
unstructured data

There are several challenges to developing BI with semi-
structured data. According to Inmon & Nesavich,[36]

some of those are:

1. Physically accessing unstructured textual data – un-
structured data is stored in a huge variety of formats.

2. Terminology – Among researchers and analysts,
there is a need to develop a standardized terminol-
ogy.

3. Volume of data – As stated earlier, up to 85% of all
data exists as semi-structured data. Couple that with
the need for word-to-word and semantic analysis.

4. Searchability of unstructured textual data – A sim-
ple search on some data, e.g. apple, results in links
where there is a reference to that precise search
term. (Inmon & Nesavich, 2008)[36] gives an exam-
ple: “a search is made on the term felony. In a sim-
ple search, the term felony is used, and everywhere
there is a reference to felony, a hit to an unstructured
document is made. But a simple search is crude.
It does not find references to crime, arson, murder,
embezzlement, vehicular homicide, and such, even
though these crimes are types of felonies.”

7.12.3 The use of metadata

To solve problems with searchability and assessment of
data, it is necessary to know something about the content.
This can be done by adding context through the use of
metadata.[33] Many systems already capture some meta-
data (e.g. filename, author, size, etc.), but more useful
would be metadata about the actual content – e.g. sum-
maries, topics, people or companies mentioned. Two
technologies designed for generating metadata about con-
tent are automatic categorization and information extrac-
tion.

7.13 Future

A 2009 paper predicted[37] these developments in the
business intelligence market:

• Because of lack of information, processes, and tools,
through 2012, more than 35 percent of the top 5,000
global companies regularly fail to make insightful
decisions about significant changes in their business
and markets.

• By 2012, business units will control at least 40 per-
cent of the total budget for business intelligence.

• By 2012, one-third of analytic applications ap-
plied to business processes will be delivered through
coarse-grained application mashups.

A 2009 Information Management special report pre-
dicted the top BI trends: "green computing, social
networking services, data visualization, mobile BI,
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predictive analytics, composite applications, cloud com-
puting and multitouch.”.[38] Research undertaken in 2014
indicated that employees are more likely to have access
to, and more likely to engage with, cloud-based BI tools
than traditional tools.[39]

Other business intelligence trends include the following:

• Third party SOA-BI products increasingly address
ETL issues of volume and throughput.

• Companies embrace in-memory processing, 64-bit
processing, and pre-packaged analytic BI applica-
tions.

• Operational applications have callable BI compo-
nents, with improvements in response time, scaling,
and concurrency.

• Near or real time BI analytics is a baseline expecta-
tion.

• Open source BI software replaces vendor offerings.

Other lines of research include the combined study of
business intelligence and uncertain data.[40][41] In this
context, the data used is not assumed to be precise, accu-
rate and complete. Instead, data is considered uncertain
and therefore this uncertainty is propagated to the results
produced by BI.
According to a study by the Aberdeen Group, there has
been increasing interest in Software-as-a-Service (SaaS)
business intelligence over the past years, with twice as
many organizations using this deployment approach as
one year ago – 15% in 2009 compared to 7% in 2008.[42]

An article by InfoWorld’s Chris Kanaracus points out
similar growth data from research firm IDC, which pre-
dicts the SaaS BI market will grow 22 percent each year
through 2013 thanks to increased product sophistication,
strained IT budgets, and other factors.[43]

An analysis of top 100 Business Intelligence and Ana-
lytics scores and ranks the firms based on several open
variables [44]

7.14 See also
• Accounting intelligence

• Analytic applications

• Artificial intelligence marketing

• Business Intelligence 2.0

• Business process discovery

• Business process management

• Business activity monitoring

• Business service management

• Customer dynamics

• Data Presentation Architecture

• Data visualization

• Decision engineering

• Enterprise planning systems

• Document intelligence

• Integrated business planning

• Location intelligence

• Media intelligence

• Meteorological intelligence

• Mobile business intelligence

• Multiway Data Analysis

• Operational intelligence

• Business Information Systems

• Business intelligence tools

• Process mining

• Real-time business intelligence

• Runtime intelligence

• Sales intelligence

• Spend management

• Test and learn
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Chapter 8

Analytics

For the ice hockey term, see Analytics (ice hockey).

Analytics is the discovery and communication of mean-
ingful patterns in data. Especially valuable in areas rich
with recorded information, analytics relies on the simul-
taneous application of statistics, computer programming
and operations research to quantify performance. Ana-
lytics often favors data visualization to communicate in-
sight.
Firms may commonly apply analytics to business data,
to describe, predict, and improve business performance.
Specifically, areas within analytics include predictive an-
alytics, enterprise decision management, retail analyt-
ics, store assortment and stock-keeping unit optimiza-
tion, marketing optimization and marketing mix mod-
eling, web analytics, sales force sizing and optimiza-
tion, price and promotion modeling, predictive science,
credit risk analysis, and fraud analytics. Since analyt-
ics can require extensive computation (see big data), the
algorithms and software used for analytics harness the
most current methods in computer science, statistics, and
mathematics.[1]

8.1 Analytics vs. analysis

Analytics is a multidimensional discipline. There is ex-
tensive use of mathematics and statistics, the use of de-
scriptive techniques and predictive models to gain valu-
able knowledge from data—data analysis. The insights
from data are used to recommend action or to guide de-
cision making rooted in business context. Thus, analyt-
ics is not so much concerned with individual analyses or
analysis steps, but with the entire methodology. There is a
pronounced tendency to use the term analytics in business
settings e.g. text analytics vs. the more generic text min-
ing to emphasize this broader perspective. . There is an
increasing use of the term advanced analytics, typically
used to describe the technical aspects of analytics, espe-
cially in the emerging fields such as the use of machine
learning techniques like neural networks to do predictive
modeling.

8.2 Examples

8.2.1 Marketing optimization

Marketing has evolved from a creative process into a
highly data-driven process. Marketing organizations use
analytics to determine the outcomes of campaigns or ef-
forts and to guide decisions for investment and consumer
targeting. Demographic studies, customer segmentation,
conjoint analysis and other techniques allow marketers
to use large amounts of consumer purchase, survey and
panel data to understand and communicate marketing
strategy.
Web analytics allows marketers to collect session-level in-
formation about interactions on a website using an oper-
ation called sessionization. Google Analytics is an exam-
ple of a popular free analytics tools that marketers use
for this purpose. Those interactions provide the web an-
alytics information systems with the information to track
the referrer, search keywords, IP address, and activities
of the visitor. With this information, a marketer can im-
prove the marketing campaigns, site creative content, and
information architecture.
Analysis techniques frequently used in marketing include
marketing mix modeling, pricing and promotion anal-
yses, sales force optimization, customer analytics e.g.:
segmentation. Web analytics and optimization of web
sites and online campaigns now frequently work hand in
hand with the more traditional marketing analysis tech-
niques. A focus on digital media has slightly changed
the vocabulary so that marketing mix modeling is com-
monly referred to as attribution modeling in the digital or
Marketing mix modeling context.
These tools and techniques support both strategic mar-
keting decisions (such as how much overall to spend on
marketing and how to allocate budgets across a portfo-
lio of brands and the marketing mix) and more tactical
campaign support in terms of targeting the best poten-
tial customer with the optimal message in the most cost
effective medium at the ideal time.
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8.2.2 Portfolio analysis

A common application of business analytics is portfolio
analysis. In this, a bank or lending agency has a collec-
tion of accounts of varying value and risk. The accounts
may differ by the social status (wealthy, middle-class,
poor, etc.) of the holder, the geographical location, its
net value, and many other factors. The lender must bal-
ance the return on the loan with the risk of default for each
loan. The question is then how to evaluate the portfolio
as a whole.
The least risk loan may be to the very wealthy, but there
are a very limited number of wealthy people. On the
other hand there are many poor that can be lent to, but
at greater risk. Some balance must be struck that maxi-
mizes return and minimizes risk. The analytics solution
may combine time series analysis with many other issues
in order to make decisions on when to lend money to these
different borrower segments, or decisions on the interest
rate charged to members of a portfolio segment to cover
any losses among members in that segment.

8.2.3 Risk analytics

Predictive models in the banking industry are developed
to bring certainty across the risk scores for individual
customers. Credit scores are built to predict individual’s
delinquency behaviour and widely used to evaluate the
credit worthiness of each applicant. Furthermore, risk
analyses are carried out in the scientific world and the in-
surance industry.

8.2.4 Digital analytics

Digital analytics is a set of business and technical activ-
ities that define, create, collect, verify or transform digi-
tal data into reporting, research, analyses, recommenda-
tions, optimizations, predictions, and automations.[2]

8.2.5 Security analytics

Security analytics refers to information technology (IT)
solutions that gather and analyze security events to bring
situational awareness and enable IT staff to understand
and analyze events that pose the greatest risk.[3] Solutions
in this area include Security information and event man-
agement solutions and user behavior analytics solutions.

8.2.6 Software analytics

Main article: Software analytics

Software analytics is the process of collecting information
about the way a piece of software is used and produced.

8.3 Challenges

In the industry of commercial analytics software, an em-
phasis has emerged on solving the challenges of analyzing
massive, complex data sets, often when such data is in a
constant state of change. Such data sets are commonly re-
ferred to as big data. Whereas once the problems posed
by big data were only found in the scientific community,
today big data is a problem for many businesses that op-
erate transactional systems online and, as a result, amass
large volumes of data quickly.[4]

The analysis of unstructured data types is another
challenge getting attention in the industry. Unstruc-
tured data differs from structured data in that its for-
mat varies widely and cannot be stored in traditional
relational databases without significant effort at data
transformation.[5] Sources of unstructured data, such as
email, the contents of word processor documents, PDFs,
geospatial data, etc., are rapidly becoming a relevant
source of business intelligence for businesses, govern-
ments and universities.[6] For example, in Britain the dis-
covery that one company was illegally selling fraudulent
doctor’s notes in order to assist people in defrauding em-
ployers and insurance companies,[7] is an opportunity for
insurance firms to increase the vigilance of their unstruc-
tured data analysis. The McKinsey Global Institute es-
timates that big data analysis could save the American
health care system $300 billion per year and the Euro-
pean public sector €250 billion.[8]

These challenges are the current inspiration for much of
the innovation in modern analytics information systems,
giving birth to relatively new machine analysis concepts
such as complex event processing, full text search and
analysis, and even new ideas in presentation.[9] One such
innovation is the introduction of grid-like architecture in
machine analysis, allowing increases in the speed of mas-
sively parallel processing by distributing the workload to
many computers all with equal access to the complete
data set.[10]

Analytics is increasingly used in education, particularly
at the district and government office levels. However,
the complexity of student performance measures presents
challenges when educators try to understand and use an-
alytics to discern patterns in student performance, pre-
dict graduation likelihood, improve chances of student
success, etc. For example, in a study involving districts
known for strong data use, 48% of teachers had difficulty
posing questions prompted by data, 36% did not compre-
hend given data, and 52% incorrectly interpreted data.[11]

To combat this, some analytics tools for educators ad-
here to an over-the-counter data format (embedding la-
bels, supplemental documentation, and a help system, and
making key package/display and content decisions) to im-
prove educators’ understanding and use of the analytics
being displayed.[12]

One more emerging challenge is dynamic regulatory
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needs. For example, in the banking industry, Basel III
and future capital adequacy needs are likely to make even
smaller banks adopt internal risk models. In such cases,
cloud computing and open source R (programming lan-
guage) can help smaller banks to adopt risk analytics and
support branch level monitoring by applying predictive
analytics.

8.4 Risks

The main risk for the people is discrimination like Price
discrimination or Statistical discrimination.
There is also the risk that a developer could profit from
the ideas or work done by users, like this example: Users
could write new ideas in a note taking app, which could
then be sent as a custom event, and the developers could
profit from those ideas. This can happen because the
ownership of content is usually unclear in the law.[13]

If a user’s identity is not protected, there are more risks;
for example, the risk that private information about users
is made public on the internet.
In the extreme, there is the risk that governments could
gather too much private information, now that the gov-
ernments are giving themselves more powers to access
citizens’ information.
Further information: Telecommunications data retention

8.5 See also
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Chapter 9

Data mining

Not to be confused with analytics, information extrac-
tion, or data analysis.

Data mining (the analysis step of the “Knowledge Dis-
covery in Databases” process, or KDD),[1] an interdisci-
plinary subfield of computer science,[2][3][4] is the com-
putational process of discovering patterns in large data
sets involving methods at the intersection of artificial in-
telligence, machine learning, statistics, and database sys-
tems.[2] The overall goal of the data mining process is
to extract information from a data set and transform it
into an understandable structure for further use.[2] Aside
from the raw analysis step, it involves database and
data management aspects, data pre-processing, model
and inference considerations, interestingness metrics,
complexity considerations, post-processing of discovered
structures, visualization, and online updating.[2]

The term is a misnomer, because the goal is the ex-
traction of patterns and knowledge from large amount
of data, not the extraction of data itself.[5] It also is
a buzzword[6] and is frequently applied to any form of
large-scale data or information processing (collection,
extraction, warehousing, analysis, and statistics) as well
as any application of computer decision support sys-
tem, including artificial intelligence, machine learning,
and business intelligence. The popular book “Data min-
ing: Practical machine learning tools and techniques with
Java”[7] (which covers mostly machine learning material)
was originally to be named just “Practical machine learn-
ing”, and the term “data mining” was only added for mar-
keting reasons.[8] Often the more general terms "(large
scale) data analysis", or "analytics" – or when referring to
actual methods, artificial intelligence and machine learn-
ing – are more appropriate.
The actual data mining task is the automatic or semi-
automatic analysis of large quantities of data to ex-
tract previously unknown, interesting patterns such as
groups of data records (cluster analysis), unusual records
(anomaly detection), and dependencies (association rule
mining). This usually involves using database techniques
such as spatial indices. These patterns can then be seen
as a kind of summary of the input data, and may be used
in further analysis or, for example, in machine learning
and predictive analytics. For example, the data mining

step might identify multiple groups in the data, which can
then be used to obtain more accurate prediction results
by a decision support system. Neither the data collection,
data preparation, nor result interpretation and reporting
are part of the data mining step, but do belong to the over-
all KDD process as additional steps.
The related terms data dredging, data fishing, and data
snooping refer to the use of data mining methods to sam-
ple parts of a larger population data set that are (or may
be) too small for reliable statistical inferences to be made
about the validity of any patterns discovered. These
methods can, however, be used in creating new hypothe-
ses to test against the larger data populations.

9.1 Etymology

In the 1960s, statisticians used terms like “Data Fish-
ing” or “Data Dredging” to refer to what they consid-
ered the bad practice of analyzing data without an a-priori
hypothesis. The term “Data Mining” appeared around
1990 in the database community. For a short time in
1980s, a phrase “database mining"™, was used, but since
it was trademarked by HNC, a San Diego-based com-
pany, to pitch their Database Mining Workstation;[9] re-
searchers consequently turned to “data mining”. Other
terms used include Data Archaeology, Information Har-
vesting, Information Discovery, Knowledge Extraction,
etc. Gregory Piatetsky-Shapiro coined the term “Knowl-
edge Discovery in Databases” for the first workshop on
the same topic (KDD-1989) and this term became more
popular in AI and Machine Learning Community. How-
ever, the term data mining became more popular in the
business and press communities.[10] Currently, Data Min-
ing and Knowledge Discovery are used interchangeably.
Since about 2007, “Predictive Analytics” and since 2011,
“Data Science” terms were also used to describe this field.

9.2 Background

The manual extraction of patterns from data has occurred
for centuries. Early methods of identifying patterns in
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data include Bayes’ theorem (1700s) and regression anal-
ysis (1800s). The proliferation, ubiquity and increas-
ing power of computer technology has dramatically in-
creased data collection, storage, and manipulation abil-
ity. As data sets have grown in size and complexity, di-
rect “hands-on” data analysis has increasingly been aug-
mented with indirect, automated data processing, aided
by other discoveries in computer science, such as neural
networks, cluster analysis, genetic algorithms (1950s),
decision trees and decision rules (1960s), and support
vector machines (1990s). Data mining is the process
of applying these methods with the intention of uncov-
ering hidden patterns[11] in large data sets. It bridges
the gap from applied statistics and artificial intelligence
(which usually provide the mathematical background) to
database management by exploiting the way data is stored
and indexed in databases to execute the actual learning
and discovery algorithms more efficiently, allowing such
methods to be applied to ever larger data sets.

9.2.1 Research and evolution

The premier professional body in the field is the
Association for Computing Machinery's (ACM) Special
Interest Group (SIG) on Knowledge Discovery and Data
Mining (SIGKDD).[12][13] Since 1989 this ACM SIG has
hosted an annual international conference and published
its proceedings,[14] and since 1999 it has published a bian-
nual academic journal titled “SIGKDD Explorations”.[15]

Computer science conferences on data mining include:

• CIKM Conference – ACM Conference on Informa-
tion and Knowledge Management

• DMIN Conference – International Conference on
Data Mining

• DMKD Conference – Research Issues on Data Min-
ing and Knowledge Discovery

• ECDM Conference – European Conference on Data
Mining

• ECML-PKDD Conference – European Conference
on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases

• EDM Conference – International Conference on
Educational Data Mining

• ICDM Conference – IEEE International Conference
on Data Mining

• KDD Conference – ACM SIGKDD Conference on
Knowledge Discovery and Data Mining

• MLDM Conference – Machine Learning and Data
Mining in Pattern Recognition

• PAKDD Conference – The annual Pacific-Asia
Conference on Knowledge Discovery and Data Min-
ing

• PAW Conference – Predictive Analytics World

• SDM Conference – SIAM International Conference
on Data Mining (SIAM)

• SSTD Symposium – Symposium on Spatial and
Temporal Databases

• WSDM Conference – ACM Conference on Web
Search and Data Mining

Data mining topics are also present on many data man-
agement/database conferences such as the ICDE Con-
ference, SIGMOD Conference and International Confer-
ence on Very Large Data Bases

9.3 Process

The Knowledge Discovery in Databases (KDD) pro-
cess is commonly defined with the stages:

(1) Selection
(2) Pre-processing
(3) Transformation
(4) Data Mining

(5) Interpretation/Evaluation.[1]

It exists, however, in many variations on this theme, such
as the Cross Industry Standard Process for Data Mining
(CRISP-DM) which defines six phases:

(1) Business Understanding
(2) Data Understanding
(3) Data Preparation
(4) Modeling
(5) Evaluation
(6) Deployment

or a simplified process such as (1) pre-processing, (2) data
mining, and (3) results validation.
Polls conducted in 2002, 2004, and 2007 show that
the CRISP-DM methodology is the leading methodology
used by data miners.[16][17][18] The only other data mining
standard named in these polls was SEMMA. However, 3-
4 times as many people reported using CRISP-DM. Sev-
eral teams of researchers have published reviews of data
mining process models,[19][20] and Azevedo and Santos
conducted a comparison of CRISP-DM and SEMMA in
2008.[21]
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9.3.1 Pre-processing

Before data mining algorithms can be used, a target data
set must be assembled. As data mining can only uncover
patterns actually present in the data, the target data set
must be large enough to contain these patterns while re-
maining concise enough to be mined within an acceptable
time limit. A common source for data is a data mart or
data warehouse. Pre-processing is essential to analyze the
multivariate data sets before data mining. The target set
is then cleaned. Data cleaning removes the observations
containing noise and those with missing data.

9.3.2 Data mining

Data mining involves six common classes of tasks:[1]

• Anomaly detection (Outlier/change/deviation de-
tection) – The identification of unusual data records,
that might be interesting or data errors that require
further investigation.

• Association rule learning (Dependency modelling)
– Searches for relationships between variables. For
example a supermarket might gather data on cus-
tomer purchasing habits. Using association rule
learning, the supermarket can determine which
products are frequently bought together and use this
information for marketing purposes. This is some-
times referred to as market basket analysis.

• Clustering – is the task of discovering groups and
structures in the data that are in some way or an-
other “similar”, without using known structures in
the data.

• Classification – is the task of generalizing known
structure to apply to new data. For example, an e-
mail program might attempt to classify an e-mail as
“legitimate” or as “spam”.

• Regression – attempts to find a function which mod-
els the data with the least error.

• Summarization – providing a more compact repre-
sentation of the data set, including visualization and
report generation.

9.3.3 Results validation

Data mining can unintentionally be misused, and can then
produce results which appear to be significant; but which
do not actually predict future behavior and cannot be
reproduced on a new sample of data and bear little use.
Often this results from investigating too many hypotheses
and not performing proper statistical hypothesis testing.

A simple version of this problem in machine learning is
known as overfitting, but the same problem can arise at
different phases of the process and thus a train/test split
- when applicable at all - may not be sufficient to prevent
this from happening.
The final step of knowledge discovery from data is to ver-
ify that the patterns produced by the data mining algo-
rithms occur in the wider data set. Not all patterns found
by the data mining algorithms are necessarily valid. It is
common for the data mining algorithms to find patterns
in the training set which are not present in the general
data set. This is called overfitting. To overcome this, the
evaluation uses a test set of data on which the data min-
ing algorithm was not trained. The learned patterns are
applied to this test set, and the resulting output is com-
pared to the desired output. For example, a data mining
algorithm trying to distinguish “spam” from “legitimate”
emails would be trained on a training set of sample e-
mails. Once trained, the learned patterns would be ap-
plied to the test set of e-mails on which it had not been
trained. The accuracy of the patterns can then be mea-
sured from how many e-mails they correctly classify. A
number of statistical methods may be used to evaluate the
algorithm, such as ROC curves.
If the learned patterns do not meet the desired standards,
subsequently it is necessary to re-evaluate and change the
pre-processing and data mining steps. If the learned pat-
terns do meet the desired standards, then the final step is
to interpret the learned patterns and turn them into knowl-
edge.

9.4 Standards

There have been some efforts to define standards for
the data mining process, for example the 1999 Euro-
pean Cross Industry Standard Process for Data Mining
(CRISP-DM 1.0) and the 2004 Java Data Mining stan-
dard (JDM 1.0). Development on successors to these pro-
cesses (CRISP-DM 2.0 and JDM 2.0) was active in 2006,
but has stalled since. JDM 2.0 was withdrawn without
reaching a final draft.
For exchanging the extracted models – in particular for
use in predictive analytics – the key standard is the
Predictive Model Markup Language (PMML), which is
an XML-based language developed by the Data Min-
ing Group (DMG) and supported as exchange format by
many data mining applications. As the name suggests, it
only covers prediction models, a particular data mining
task of high importance to business applications. How-
ever, extensions to cover (for example) subspace cluster-
ing have been proposed independently of the DMG.[22]
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9.5 Notable uses

See also: Category:Applied data mining.

9.5.1 Games

Since the early 1960s, with the availability of oracles
for certain combinatorial games, also called tablebases
(e.g. for 3x3-chess) with any beginning configuration,
small-board dots-and-boxes, small-board-hex, and cer-
tain endgames in chess, dots-and-boxes, and hex; a new
area for data mining has been opened. This is the ex-
traction of human-usable strategies from these oracles.
Current pattern recognition approaches do not seem to
fully acquire the high level of abstraction required to be
applied successfully. Instead, extensive experimentation
with the tablebases – combined with an intensive study
of tablebase-answers to well designed problems, and with
knowledge of prior art (i.e., pre-tablebase knowledge) –
is used to yield insightful patterns. Berlekamp (in dots-
and-boxes, etc.) and John Nunn (in chess endgames) are
notable examples of researchers doing this work, though
they were not – and are not – involved in tablebase gen-
eration.

9.5.2 Business

In business, data mining is the analysis of historical busi-
ness activities, stored as static data in data warehouse
databases. The goal is to reveal hidden patterns and
trends. Data mining software uses advanced pattern
recognition algorithms to sift through large amounts of
data to assist in discovering previously unknown strate-
gic business information. Examples of what businesses
use data mining for include performing market analysis
to identify new product bundles, finding the root cause
of manufacturing problems, to prevent customer attrition
and acquire new customers, cross-selling to existing cus-
tomers, and profiling customers with more accuracy.[23]

• In today’s world raw data is being collected by com-
panies at an exploding rate. For example, Walmart
processes over 20 million point-of-sale transactions
every day. This information is stored in a centralized
database, but would be useless without some type of
data mining software to analyze it. If Walmart ana-
lyzed their point-of-sale data with data mining tech-
niques they would be able to determine sales trends,
develop marketing campaigns, and more accurately
predict customer loyalty.[24][25]

• Every time a credit card or a store loyalty card is
being used, or a warranty card is being filled, data
is being collected about the users behavior. Many
people find the amount of information stored about

us from companies, such as Google, Facebook, and
Amazon, disturbing and are concerned about pri-
vacy. Although there is the potential for our per-
sonal data to be used in harmful, or unwanted, ways
it is also being used to make our lives better. For
example, Ford and Audi hope to one day collect in-
formation about customer driving patterns so they
can recommend safer routes and warn drivers about
dangerous road conditions.[26]

• Data mining in customer relationship management
applications can contribute significantly to the bot-
tom line. Rather than randomly contacting a
prospect or customer through a call center or send-
ing mail, a company can concentrate its efforts on
prospects that are predicted to have a high likeli-
hood of responding to an offer. More sophisticated
methods may be used to optimize resources across
campaigns so that one may predict to which channel
and to which offer an individual is most likely to re-
spond (across all potential offers). Additionally, so-
phisticated applications could be used to automate
mailing. Once the results from data mining (po-
tential prospect/customer and channel/offer) are de-
termined, this “sophisticated application” can either
automatically send an e-mail or a regular mail. Fi-
nally, in cases where many people will take an action
without an offer, "uplift modeling" can be used to
determine which people have the greatest increase in
response if given an offer. Uplift modeling thereby
enables marketers to focus mailings and offers on
persuadable people, and not to send offers to peo-
ple who will buy the product without an offer. Data
clustering can also be used to automatically discover
the segments or groups within a customer data set.

• Businesses employing data mining may see a return
on investment, but also they recognize that the num-
ber of predictive models can quickly become very
large. For example, rather than using one model to
predict how many customers will churn, a business
may choose to build a separate model for each region
and customer type. In situations where a large num-
ber of models need to be maintained, some busi-
nesses turn to more automated data mining method-
ologies.

• Data mining can be helpful to human resources
(HR) departments in identifying the characteristics
of their most successful employees. Information ob-
tained – such as universities attended by highly suc-
cessful employees – can help HR focus recruiting ef-
forts accordingly. Additionally, Strategic Enterprise
Management applications help a company trans-
late corporate-level goals, such as profit and margin
share targets, into operational decisions, such as pro-
duction plans and workforce levels.[27]
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• Market basket analysis, relates to data-mining use
in retail sales. If a clothing store records the pur-
chases of customers, a data mining system could
identify those customers who favor silk shirts over
cotton ones. Although some explanations of rela-
tionships may be difficult, taking advantage of it
is easier. The example deals with association rules
within transaction-based data. Not all data are trans-
action based and logical, or inexact rules may also be
present within a database.

• Market basket analysis has been used to identify the
purchase patterns of the Alpha Consumer. Analyz-
ing the data collected on this type of user has allowed
companies to predict future buying trends and fore-
cast supply demands.

• Data mining is a highly effective tool in the catalog
marketing industry. Catalogers have a rich database
of history of their customer transactions for millions
of customers dating back a number of years. Data
mining tools can identify patterns among customers
and help identify the most likely customers to re-
spond to upcoming mailing campaigns.

• Data mining for business applications can be inte-
grated into a complex modeling and decision mak-
ing process.[28] Reactive business intelligence (RBI)
advocates a “holistic” approach that integrates data
mining, modeling, and interactive visualization into
an end-to-end discovery and continuous innova-
tion process powered by human and automated
learning.[29]

• In the area of decision making, the RBI approach
has been used to mine knowledge that is progres-
sively acquired from the decision maker, and then
self-tune the decision method accordingly.[30] The
relation between the quality of a data mining sys-
tem and the amount of investment that the deci-
sion maker is willing to make was formalized by
providing an economic perspective on the value
of “extracted knowledge” in terms of its payoff to
the organization[28] This decision-theoretic classi-
fication framework[28] was applied to a real-world
semiconductor wafer manufacturing line, where
decision rules for effectively monitoring and con-
trolling the semiconductor wafer fabrication line
were developed.[31]

• An example of data mining related to an integrated-
circuit (IC) production line is described in the
paper “Mining IC Test Data to Optimize VLSI
Testing.”[32] In this paper, the application of data
mining and decision analysis to the problem of die-
level functional testing is described. Experiments
mentioned demonstrate the ability to apply a system

of mining historical die-test data to create a proba-
bilistic model of patterns of die failure. These pat-
terns are then utilized to decide, in real time, which
die to test next and when to stop testing. This system
has been shown, based on experiments with histori-
cal test data, to have the potential to improve profits
on mature IC products. Other examples[33][34] of the
application of data mining methodologies in semi-
conductor manufacturing environments suggest that
data mining methodologies may be particularly use-
ful when data is scarce, and the various physical and
chemical parameters that affect the process exhibit
highly complex interactions. Another implication is
that on-line monitoring of the semiconductor man-
ufacturing process using data mining may be highly
effective.

9.5.3 Science and engineering

In recent years, data mining has been used widely in the
areas of science and engineering, such as bioinformatics,
genetics, medicine, education and electrical power engi-
neering.

• In the study of human genetics, sequence mining
helps address the important goal of understand-
ing the mapping relationship between the inter-
individual variations in human DNA sequence and
the variability in disease susceptibility. In simple
terms, it aims to find out how the changes in an
individual’s DNA sequence affects the risks of de-
veloping common diseases such as cancer, which is
of great importance to improving methods of diag-
nosing, preventing, and treating these diseases. One
data mining method that is used to perform this task
is known as multifactor dimensionality reduction.[35]

• In the area of electrical power engineering, data
mining methods have been widely used for condition
monitoring of high voltage electrical equipment.
The purpose of condition monitoring is to obtain
valuable information on, for example, the status of
the insulation (or other important safety-related pa-
rameters). Data clustering techniques – such as the
self-organizing map (SOM), have been applied to
vibration monitoring and analysis of transformer on-
load tap-changers (OLTCS). Using vibration mon-
itoring, it can be observed that each tap change
operation generates a signal that contains informa-
tion about the condition of the tap changer contacts
and the drive mechanisms. Obviously, different tap
positions will generate different signals. However,
there was considerable variability amongst normal
condition signals for exactly the same tap position.
SOM has been applied to detect abnormal condi-
tions and to hypothesize about the nature of the
abnormalities.[36]
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• Data mining methods have been applied to dissolved
gas analysis (DGA) in power transformers. DGA, as
a diagnostics for power transformers, has been avail-
able for many years. Methods such as SOM has been
applied to analyze generated data and to determine
trends which are not obvious to the standard DGA
ratio methods (such as Duval Triangle).[36]

• In educational research, where data mining has
been used to study the factors leading students to
choose to engage in behaviors which reduce their
learning,[37] and to understand factors influencing
university student retention.[38] A similar exam-
ple of social application of data mining is its use
in expertise finding systems, whereby descriptors
of human expertise are extracted, normalized, and
classified so as to facilitate the finding of experts,
particularly in scientific and technical fields. In this
way, data mining can facilitate institutional memory.

• Data mining methods of biomedical data facili-
tated by domain ontologies,[39] mining clinical trial
data,[40] and traffic analysis using SOM.[41]

• In adverse drug reaction surveillance, the Uppsala
Monitoring Centre has, since 1998, used data min-
ing methods to routinely screen for reporting pat-
terns indicative of emerging drug safety issues in
the WHO global database of 4.6 million suspected
adverse drug reaction incidents.[42] Recently, simi-
lar methodology has been developed to mine large
collections of electronic health records for tempo-
ral patterns associating drug prescriptions to medi-
cal diagnoses.[43]

• Data mining has been applied to software artifacts
within the realm of software engineering: Mining
Software Repositories.

9.5.4 Human rights

Data mining of government records – particularly records
of the justice system (i.e., courts, prisons) – enables the
discovery of systemic human rights violations in connec-
tion to generation and publication of invalid or fraudulent
legal records by various government agencies.[44][45]

9.5.5 Medical data mining

Some machine learning algorithms can be applied in
medical field as second-opinion diagnostic tools and as
tools for the knowledge extraction phase in the process
of knowledge discovery in databases. One of these classi-
fiers (called Prototype exemplar learning classifier (PEL-
C)[46] is able to discover syndromes as well as atypical
clinical cases.

In 2011, the case of Sorrell v. IMS Health, Inc., decided
by the Supreme Court of the United States, ruled that
pharmacies may share information with outside compa-
nies. This practice was authorized under the 1st Amend-
ment of the Constitution, protecting the “freedom of
speech.”[47] However, the passage of the Health Informa-
tion Technology for Economic and Clinical Health Act
(HITECH Act) helped to initiate the adoption of the elec-
tronic health record (EHR) and supporting technology in
the United States.[48] The HITECH Act was signed into
law on February 17, 2009 as part of the American Recov-
ery and Reinvestment Act (ARRA) and helped to open
the door to medical data mining.[49] Prior to the signing
of this law, estimates of only 20% of United States-based
physicians were utilizing electronic patient records.[48]

Søren Brunak notes that “the patient record becomes as
information-rich as possible” and thereby “maximizes the
data mining opportunities.”[48] Hence, electronic patient
records further expands the possibilities regarding medi-
cal data mining thereby opening the door to a vast source
of medical data analysis.

9.5.6 Spatial data mining

Spatial data mining is the application of data mining
methods to spatial data. The end objective of spatial data
mining is to find patterns in data with respect to geog-
raphy. So far, data mining and Geographic Information
Systems (GIS) have existed as two separate technologies,
each with its own methods, traditions, and approaches to
visualization and data analysis. Particularly, most con-
temporary GIS have only very basic spatial analysis func-
tionality. The immense explosion in geographically ref-
erenced data occasioned by developments in IT, digital
mapping, remote sensing, and the global diffusion of GIS
emphasizes the importance of developing data-driven in-
ductive approaches to geographical analysis and model-
ing.
Data mining offers great potential benefits for GIS-based
applied decision-making. Recently, the task of integrat-
ing these two technologies has become of critical impor-
tance, especially as various public and private sector or-
ganizations possessing huge databases with thematic and
geographically referenced data begin to realize the huge
potential of the information contained therein. Among
those organizations are:

• offices requiring analysis or dissemination of geo-
referenced statistical data

• public health services searching for explanations of
disease clustering

• environmental agencies assessing the impact of
changing land-use patterns on climate change

• geo-marketing companies doing customer segmen-
tation based on spatial location.
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Challenges in Spatial mining: Geospatial data reposito-
ries tend to be very large. Moreover, existing GIS datasets
are often splintered into feature and attribute compo-
nents that are conventionally archived in hybrid data man-
agement systems. Algorithmic requirements differ sub-
stantially for relational (attribute) data management and
for topological (feature) data management.[50] Related to
this is the range and diversity of geographic data for-
mats, which present unique challenges. The digital ge-
ographic data revolution is creating new types of data
formats beyond the traditional “vector” and “raster” for-
mats. Geographic data repositories increasingly include
ill-structured data, such as imagery and geo-referenced
multi-media.[51]

There are several critical research challenges in geo-
graphic knowledge discovery and data mining. Miller and
Han[52] offer the following list of emerging research top-
ics in the field:

• Developing and supporting geographic data
warehouses (GDW’s): Spatial properties are often
reduced to simple aspatial attributes in mainstream
data warehouses. Creating an integrated GDW re-
quires solving issues of spatial and temporal data in-
teroperability – including differences in semantics,
referencing systems, geometry, accuracy, and posi-
tion.

• Better spatio-temporal representations in geo-
graphic knowledge discovery: Current geographic
knowledge discovery (GKD) methods generally use
very simple representations of geographic objects
and spatial relationships. Geographic data min-
ing methods should recognize more complex geo-
graphic objects (i.e., lines and polygons) and rela-
tionships (i.e., non-Euclidean distances, direction,
connectivity, and interaction through attributed ge-
ographic space such as terrain). Furthermore, the
time dimension needs to be more fully integrated
into these geographic representations and relation-
ships.

• Geographic knowledge discovery using diverse
data types: GKD methods should be developed
that can handle diverse data types beyond the tradi-
tional raster and vector models, including imagery
and geo-referenced multimedia, as well as dynamic
data types (video streams, animation).

9.5.7 Temporal data mining

Data may contain attributes generated and recorded at
different times. In this case finding meaningful relation-
ships in the data may require considering the temporal
order of the attributes. A temporal relationship may in-
dicate a causal relationship, or simply an association.

9.5.8 Sensor data mining

Wireless sensor networks can be used for facilitating the
collection of data for spatial data mining for a variety of
applications such as air pollution monitoring.[53] A char-
acteristic of such networks is that nearby sensor nodes
monitoring an environmental feature typically register
similar values. This kind of data redundancy due to the
spatial correlation between sensor observations inspires
the techniques for in-network data aggregation and min-
ing. By measuring the spatial correlation between data
sampled by different sensors, a wide class of specialized
algorithms can be developed to develop more efficient
spatial data mining algorithms.[54]

9.5.9 Visual data mining

In the process of turning from analogical into digi-
tal, large data sets have been generated, collected, and
stored discovering statistical patterns, trends and infor-
mation which is hidden in data, in order to build pre-
dictive patterns. Studies suggest visual data mining is
faster and much more intuitive than is traditional data
mining.[55][56][57] See also Computer vision.

9.5.10 Music data mining

Data mining techniques, and in particular co-occurrence
analysis, has been used to discover relevant similarities
among music corpora (radio lists, CD databases) for pur-
poses including classifying music into genres in a more
objective manner.[58]

9.5.11 Surveillance

Data mining has been used by the U.S. government. Pro-
grams include the Total Information Awareness (TIA)
program, Secure Flight (formerly known as Computer-
Assisted Passenger Prescreening System (CAPPS II)),
Analysis, Dissemination, Visualization, Insight, Seman-
tic Enhancement (ADVISE),[59] and the Multi-state Anti-
Terrorism Information Exchange (MATRIX).[60] These
programs have been discontinued due to controversy over
whether they violate the 4th Amendment to the United
States Constitution, although many programs that were
formed under them continue to be funded by different
organizations or under different names.[61]

In the context of combating terrorism, two particularly
plausible methods of data mining are “pattern mining”
and “subject-based data mining”.

9.5.12 Pattern mining

“Pattern mining” is a data mining method that involves
finding existing patterns in data. In this context patterns
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often means association rules. The original motivation
for searching association rules came from the desire to
analyze supermarket transaction data, that is, to examine
customer behavior in terms of the purchased products.
For example, an association rule “beer ⇒ potato chips
(80%)" states that four out of five customers that bought
beer also bought potato chips.
In the context of pattern mining as a tool to identify
terrorist activity, the National Research Council pro-
vides the following definition: “Pattern-based data min-
ing looks for patterns (including anomalous data patterns)
that might be associated with terrorist activity — these
patterns might be regarded as small signals in a large
ocean of noise.”[62][63][64] Pattern Mining includes new
areas such a Music Information Retrieval (MIR) where
patterns seen both in the temporal and non temporal
domains are imported to classical knowledge discovery
search methods.

9.5.13 Subject-based data mining

“Subject-based data mining” is a data mining method
involving the search for associations between individu-
als in data. In the context of combating terrorism, the
National Research Council provides the following defi-
nition: “Subject-based data mining uses an initiating in-
dividual or other datum that is considered, based on other
information, to be of high interest, and the goal is to de-
termine what other persons or financial transactions or
movements, etc., are related to that initiating datum.”[63]

9.5.14 Knowledge grid

Knowledge discovery “On the Grid” generally refers to
conducting knowledge discovery in an open environment
using grid computing concepts, allowing users to inte-
grate data from various online data sources, as well make
use of remote resources, for executing their data mining
tasks. The earliest example was the Discovery Net,[65][66]

developed at Imperial College London, which won the
“Most Innovative Data-Intensive Application Award” at
the ACM SC02 (Supercomputing 2002) conference and
exhibition, based on a demonstration of a fully interactive
distributed knowledge discovery application for a bioin-
formatics application. Other examples include work con-
ducted by researchers at the University of Calabria, who
developed a Knowledge Grid architecture for distributed
knowledge discovery, based on grid computing.[67][68]

9.6 Privacy concerns and ethics

While the term “data mining” itself has no ethical im-
plications, it is often associated with the mining of in-
formation in relation to peoples’ behavior (ethical and
otherwise).[69]

The ways in which data mining can be used can in some
cases and contexts raise questions regarding privacy, le-
gality, and ethics.[70] In particular, data mining govern-
ment or commercial data sets for national security or law
enforcement purposes, such as in the Total Information
Awareness Program or in ADVISE, has raised privacy
concerns.[71][72]

Data mining requires data preparation which can uncover
information or patterns which may compromise confiden-
tiality and privacy obligations. A common way for this
to occur is through data aggregation. Data aggregation
involves combining data together (possibly from various
sources) in a way that facilitates analysis (but that also
might make identification of private, individual-level data
deducible or otherwise apparent).[73] This is not data min-
ing per se, but a result of the preparation of data before
– and for the purposes of – the analysis. The threat to an
individual’s privacy comes into play when the data, once
compiled, cause the data miner, or anyone who has access
to the newly compiled data set, to be able to identify spe-
cific individuals, especially when the data were originally
anonymous.[74][75][76]

It is recommended that an individual is made aware of the
following before data are collected:[73]

• the purpose of the data collection and any (known)
data mining projects;

• how the data will be used;

• who will be able to mine the data and use the data
and their derivatives;

• the status of security surrounding access to the data;

• how collected data can be updated.

Data may also be modified so as to become anonymous,
so that individuals may not readily be identified.[73] How-
ever, even “de-identified"/"anonymized” data sets can po-
tentially contain enough information to allow identifica-
tion of individuals, as occurred when journalists were
able to find several individuals based on a set of search
histories that were inadvertently released by AOL.[77]

9.6.1 Situation in Europe

Europe has rather strong privacy laws, and efforts are un-
derway to further strengthen the rights of the consumers.
However, the U.S.-E.U. Safe Harbor Principles currently
effectively expose European users to privacy exploitation
by U.S. companies. As a consequence of Edward Snow-
den's Global surveillance disclosure, there has been in-
creased discussion to revoke this agreement, as in partic-
ular the data will be fully exposed to the National Security
Agency, and attempts to reach an agreement have failed.
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9.6.2 Situation in the United States

In the United States, privacy concerns have been ad-
dressed by the US Congress via the passage of regulatory
controls such as the Health Insurance Portability and Ac-
countability Act (HIPAA). The HIPAA requires individ-
uals to give their “informed consent” regarding informa-
tion they provide and its intended present and future uses.
According to an article in Biotech Business Week', "'[i]n
practice, HIPAA may not offer any greater protection than
the longstanding regulations in the research arena,' says
the AAHC. More importantly, the rule’s goal of protection
through informed consent is undermined by the complexity
of consent forms that are required of patients and partic-
ipants, which approach a level of incomprehensibility to
average individuals.”[78] This underscores the necessity for
data anonymity in data aggregation and mining practices.

U.S. information privacy legislation such as HIPAA and
the Family Educational Rights and Privacy Act (FERPA)
applies only to the specific areas that each such law ad-
dresses. Use of data mining by the majority of businesses
in the U.S. is not controlled by any legislation.

9.7 Copyright Law

9.7.1 Situation in Europe

Due to a lack of flexibilities in European copyright and
database law, the mining of in-copyright works such
as web mining without the permission of the copyright
owner is not legal. Where a database is pure data in Eu-
rope there is likely to be no copyright, but database rights
may exist so data mining becomes subject to regulations
by the Database Directive. On the recommendation of
the Hargreaves review this led to the UK government to
amend its copyright law in 2014[79] to allow content min-
ing as a limitation and exception. Only the second coun-
try in the world to do so after Japan, which introduced an
exception in 2009 for data mining. However due to the
restriction of the Copyright Directive, the UK exception
only allows content mining for non-commercial purposes.
UK copyright law also does not allow this provision to
be overridden by contractual terms and conditions. The
European Commission facilitated stakeholder discussion
on text and data mining in 2013, under the title of Li-
cences for Europe.[80] The focus on the solution to this
legal issue being licences and not limitations and excep-
tions led to representatives of universities, researchers,
libraries, civil society groups and open access publishers
to leave the stakeholder dialogue in May 2013.[81]

9.7.2 Situation in the United States

By contrast to Europe, the flexible nature of US copyright
law, and in particular fair use means that content mining

in America, as well as other fair use countries such as Is-
rael, Taiwan and South Korea is viewed as being legal. As
content mining is transformative, that is it does not sup-
plant the original work, it is viewed as being lawful under
fair use. For example as part of the Google Book settle-
ment the presiding judge on the case ruled that Google’s
digitisation project of in-copyright books was lawful, in
part because of the transformative uses that the digitisa-
tion project displayed - one being text and data mining.[82]

9.8 Software

See also: Category:Data mining and machine learning
software.

9.8.1 Free open-source data mining soft-
ware and applications

• Carrot2: Text and search results clustering frame-
work.

• Chemicalize.org: A chemical structure miner and
web search engine.

• ELKI: A university research project with advanced
cluster analysis and outlier detection methods writ-
ten in the Java language.

• GATE: a natural language processing and language
engineering tool.

• KNIME: The Konstanz Information Miner, a user
friendly and comprehensive data analytics frame-
work.

• ML-Flex: A software package that enables users
to integrate with third-party machine-learning pack-
ages written in any programming language, exe-
cute classification analyses in parallel across multi-
ple computing nodes, and produce HTML reports
of classification results.

• MLPACK library: a collection of ready-to-use ma-
chine learning algorithms written in the C++ lan-
guage.

• Massive Online Analysis (MOA): a real-time big
data stream mining with concept drift tool in the
Java programming language.

• NLTK (Natural Language Toolkit): A suite of li-
braries and programs for symbolic and statistical
natural language processing (NLP) for the Python
language.

• OpenNN: Open neural networks library.
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• Orange: A component-based data mining and
machine learning software suite written in the
Python language.

• R: A programming language and software environ-
ment for statistical computing, data mining, and
graphics. It is part of the GNU Project.

• SCaViS: Java cross-platform data analysis frame-
work developed at Argonne National Laboratory.

• SenticNet API: A semantic and affective resource
for opinion mining and sentiment analysis.

• Tanagra: A visualisation-oriented data mining soft-
ware, also for teaching.

• Torch: An open source deep learning library for the
Lua programming language and scientific comput-
ing framework with wide support for machine learn-
ing algorithms.

• UIMA: The UIMA (Unstructured Information
Management Architecture) is a component frame-
work for analyzing unstructured content such as text,
audio and video – originally developed by IBM.

• Weka: A suite of machine learning software appli-
cations written in the Java programming language.

9.8.2 Commercial data-mining software
and applications

• Angoss KnowledgeSTUDIO: data mining tool pro-
vided by Angoss.

• Clarabridge: enterprise class text analytics solution.

• HP Vertica Analytics Platform: data mining soft-
ware provided by HP.

• IBM SPSS Modeler: data mining software provided
by IBM.

• KXEN Modeler: data mining tool provided by
KXEN.

• Grapheme: data mining and visualization software
provided by iChrome.

• LIONsolver: an integrated software application for
data mining, business intelligence, and modeling
that implements the Learning and Intelligent Opti-
mizatioN (LION) approach.

• Microsoft Analysis Services: data mining software
provided by Microsoft.

• NetOwl: suite of multilingual text and entity analyt-
ics products that enable data mining.

• Oracle Data Mining: data mining software by
Oracle.

• RapidMiner: An environment for machine learning
and data mining experiments.

• SAS Enterprise Miner: data mining software pro-
vided by the SAS Institute.

• STATISTICA Data Miner: data mining software
provided by StatSoft.

• Qlucore Omics Explorer: data mining software pro-
vided by Qlucore.

9.8.3 Marketplace surveys

Several researchers and organizations have conducted re-
views of data mining tools and surveys of data miners.
These identify some of the strengths and weaknesses of
the software packages. They also provide an overview
of the behaviors, preferences and views of data miners.
Some of these reports include:

• 2011 Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery[83]

• Rexer Analytics Data Miner Surveys (2007–
2013)[84]

• Forrester Research 2010 Predictive Analytics and
Data Mining Solutions report[85]

• Gartner 2008 “Magic Quadrant” report[86]

• Robert A. Nisbet’s 2006 Three Part Series of arti-
cles “Data Mining Tools: Which One is Best For
CRM?"[87]

• Haughton et al.'s 2003 Review of Data Mining Soft-
ware Packages in The American Statistician[88]

• Goebel & Gruenwald 1999 “A Survey of Data
Mining a Knowledge Discovery Software Tools” in
SIGKDD Explorations[89]

9.9 See also

Methods

• Anomaly/outlier/change detection

• Association rule learning

• Classification

• Cluster analysis

• Decision tree

• Factor analysis

• Genetic algorithms
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• Intention mining

• Multilinear subspace learning

• Neural networks

• Regression analysis

• Sequence mining

• Structured data analysis

• Support vector machines

• Text mining

• Online analytical processing (OLAP)

Application domains

• Analytics

• Bioinformatics

• Business intelligence

• Data analysis

• Data warehouse

• Decision support system

• Drug discovery

• Exploratory data analysis

• Predictive analytics

• Web mining

Application examples

See also: Category:Applied data mining.

• Customer analytics

• Data mining in agriculture

• Data mining in meteorology

• Educational data mining

• National Security Agency

• Police-enforced ANPR in the UK

• Quantitative structure–activity relationship

• Surveillance / Mass surveillance (e.g., Stellar Wind)

Related topics

Data mining is about analyzing data; for information
about extracting information out of data, see:

• Data integration

• Data transformation

• Electronic discovery

• Information extraction

• Information integration

• Named-entity recognition

• Profiling (information science)

• Web scraping
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Chapter 10

Big data

This article is about large collections of data. For the
graph database, see Graph database. For the band, see
Big Data (band).
Big data is a broad term for data sets so large or com-

Visualization of dailyWikipedia edits created by IBM. At multiple
terabytes in size, the text and images ofWikipedia are an example
of big data.

Growth of and Digitization of Global Information Storage Ca-
pacity Source

plex that traditional data processing applications are in-
adequate. Challenges include analysis, capture, data cu-
ration, search, sharing, storage, transfer, visualization,
and information privacy. The term often refers simply to

the use of predictive analytics or other certain advanced
methods to extract value from data, and seldom to a par-
ticular size of data set. Accuracy in big data may lead
to more confident decision making. And better decisions
can mean greater operational efficiency, cost reductions
and reduced risk.
Analysis of data sets can find new correlations, to “spot
business trends, prevent diseases, combat crime and so
on.”[1] Scientists, business executives, practitioners of
media and advertising and governments alike regularly
meet difficulties with large data sets in areas including
Internet search, finance and business informatics. Sci-
entists encounter limitations in e-Science work, includ-
ing meteorology, genomics,[2] connectomics, complex
physics simulations,[3] and biological and environmental
research.[4]

Data sets grow in size in part because they are increas-
ingly being gathered by cheap and numerous information-
sensing mobile devices, aerial (remote sensing), software
logs, cameras, microphones, radio-frequency identifica-
tion (RFID) readers, and wireless sensor networks.[5][6][7]

The world’s technological per-capita capacity to store in-
formation has roughly doubled every 40 months since the
1980s;[8] as of 2012, every day 2.5 exabytes (2.5×1018)
of data were created;[9] The challenge for large enter-
prises is determining who should own big data initiatives
that straddle the entire organization.[10]

Work with big data is necessarily uncommon; most anal-
ysis is of “PC size” data, on a desktop PC or notebook[11]

that can handle the available data set.
Relational database management systems and desktop
statistics and visualization packages often have difficulty
handling big data. The work instead requires “massively
parallel software running on tens, hundreds, or even thou-
sands of servers”.[12] What is considered “big data” varies
depending on the capabilities of the users and their tools,
and expanding capabilities make Big Data a moving tar-
get. Thus, what is considered to be “Big” in one year will
become ordinary in later years. “For some organizations,
facing hundreds of gigabytes of data for the first time may
trigger a need to reconsider data management options.
For others, it may take tens or hundreds of terabytes be-
fore data size becomes a significant consideration.”[13]
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10.1 Definition

Big data usually includes data sets with sizes beyond
the ability of commonly used software tools to capture,
curate, manage, and process data within a tolerable
elapsed time.[14] Big data “size” is a constantly moving
target, as of 2012 ranging from a few dozen terabytes to
many petabytes of data. Big data is a set of techniques
and technologies that require new forms of integration to
uncover large hidden values from large datasets that are
diverse, complex, and of a massive scale.[15]

In a 2001 research report[16] and related lectures, META
Group (now Gartner) analyst Doug Laney defined data
growth challenges and opportunities as being three-
dimensional, i.e. increasing volume (amount of data),
velocity (speed of data in and out), and variety (range of
data types and sources). Gartner, and now much of the
industry, continue to use this “3Vs” model for describing
big data.[17] In 2012, Gartner updated its definition as fol-
lows: “Big data is high volume, high velocity, and/or high
variety information assets that require new forms of pro-
cessing to enable enhanced decision making, insight dis-
covery and process optimization.”[18] Additionally, a new
V “Veracity” is added by some organizations to describe
it.[19]

If Gartner’s definition (the 3Vs) is still widely used, the
growing maturity of the concept fosters a more sound dif-
ference between big data and Business Intelligence, re-
garding data and their use:[20]

• Business Intelligence uses descriptive statistics with
data with high information density to measure
things, detect trends etc.;

• Big data uses inductive statistics and concepts from
nonlinear system identification [21] to infer laws (re-
gressions, nonlinear relationships, and causal ef-
fects) from large sets of data with low infor-
mation density[22] to reveal relationships, depen-
dencies and perform predictions of outcomes and
behaviors.[21][23]

A more recent, consensual definition states that “Big Data
represents the Information assets characterized by such
a High Volume, Velocity and Variety to require specific
Technology and Analytical Methods for its transforma-
tion into Value”.[24]

10.2 Characteristics

Big data can be described by the following characteristics:
Volume – The quantity of data that is generated is very
important in this context. It is the size of the data which
determines the value and potential of the data under con-
sideration and whether it can actually be considered Big

Data or not. The name ‘Big Data’ itself contains a term
which is related to size and hence the characteristic.
Variety - The next aspect of Big Data is its variety. This
means that the category to which Big Data belongs to is
also an essential fact that needs to be known by the data
analysts. This helps the people, who are closely analyzing
the data and are associated with it, to effectively use the
data to their advantage and thus upholding the importance
of the Big Data.
Velocity - The term ‘velocity’ in the context refers to the
speed of generation of data or how fast the data is gen-
erated and processed to meet the demands and the chal-
lenges which lie ahead in the path of growth and devel-
opment.
Variability - This is a factor which can be a problem for
those who analyse the data. This refers to the inconsis-
tency which can be shown by the data at times, thus ham-
pering the process of being able to handle and manage
the data effectively.
Veracity - The quality of the data being captured can vary
greatly. Accuracy of analysis depends on the veracity of
the source data.
Complexity - Data management can become a very com-
plex process, especially when large volumes of data come
from multiple sources. These data need to be linked, con-
nected and correlated in order to be able to grasp the in-
formation that is supposed to be conveyed by these data.
This situation, is therefore, termed as the ‘complexity’ of
Big Data.
Factory work and Cyber-physical systems may have a 6C
system:

1. Connection (sensor and networks),

2. Cloud (computing and data on demand),

3. Cyber (model and memory),

4. content/context (meaning and correlation),

5. community (sharing and collaboration), and

6. customization (personalization and value).

In this scenario and in order to provide useful insight to
the factory management and gain correct content, data
has to be processed with advanced tools (analytics and
algorithms) to generate meaningful information. Consid-
ering the presence of visible and invisible issues in an in-
dustrial factory, the information generation algorithm has
to be capable of detecting and addressing invisible issues
such as machine degradation, component wear, etc. in
the factory floor.[25][26]
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10.3 Architecture

In 2000, Seisint Inc. developed C++ based distributed file
sharing framework for data storage and querying. Struc-
tured, semi-structured and/or unstructured data is stored
and distributed across multiple servers. Querying of data
is done by modified C++ called ECL which uses ap-
ply scheme on read method to create structure of stored
data during time of query. In 2004 LexisNexis acquired
Seisint Inc.[27] and 2008 acquired ChoicePoint, Inc.[28]

and their high speed parallel processing platform. The
two platforms were merged into HPCC Systems and in
2011 was open sourced under Apache v2.0 License. Cur-
rently HPCC and Quantcast File System[29] are the only
publicly available platforms capable of analyzing multiple
exabytes of data.
In 2004, Google published a paper on a process called
MapReduce that used such an architecture. The MapRe-
duce framework provides a parallel processing model and
associated implementation to process huge amounts of
data. With MapReduce, queries are split and distributed
across parallel nodes and processed in parallel (the Map
step). The results are then gathered and delivered (the
Reduce step). The framework was very successful,[30]

so others wanted to replicate the algorithm. There-
fore, an implementation of the MapReduce framework
was adopted by an Apache open source project named
Hadoop.[31]

MIKE2.0 is an open approach to information manage-
ment that acknowledges the need for revisions due to
big data implications in an article titled “Big Data Solu-
tion Offering”.[32] The methodology addresses handling
big data in terms of useful permutations of data sources,
complexity in interrelationships, and difficulty in deleting
(or modifying) individual records.[33]

Recent studies show that the use of a multiple layer ar-
chitecture is an option for dealing with big data. The Dis-
tributed Parallel architecture distributes data across mul-
tiple processing units and parallel processing units pro-
vide data much faster, by improving processing speeds.
This type of architecture inserts data into a parallel
DBMS, which implements the use of MapReduce and
Hadoop frameworks. This type of framework looks to
make the processing power transparent to the end user by
using a front end application server.[34]

Big Data Analytics for Manufacturing Applications can
be based on a 5C architecture (connection, conversion,
cyber, cognition, and configuration).[35]

Big Data Lake - With the changing face of business and
IT sector, capturing and storage of data has emerged into
a sophisticated system. The big data lake allows an or-
ganization to shift its focus from centralized control to a
shared model to respond to the changing dynamics of in-
formation management. This enables quick segregation
of data into the data lake thereby reducing the overhead
time.[36]

10.4 Technologies

Big data requires exceptional technologies to efficiently
process large quantities of data within tolerable elapsed
times. A 2011 McKinsey report[37] suggests suit-
able technologies include A/B testing, crowdsourcing,
data fusion and integration, genetic algorithms, machine
learning, natural language processing, signal processing,
simulation, time series analysis and visualisation. Multi-
dimensional big data can also be represented as tensors,
which can be more efficiently handled by tensor-based
computation,[38] such as multilinear subspace learning.[39]

Additional technologies being applied to big data include
massively parallel-processing (MPP) databases, search-
based applications, data mining, distributed file systems,
distributed databases, cloud based infrastructure (appli-
cations, storage and computing resources) and the Inter-
net.
Some but not all MPP relational databases have the ability
to store and manage petabytes of data. Implicit is the
ability to load, monitor, back up, and optimize the use of
the large data tables in the RDBMS.[40]

DARPA’s Topological Data Analysis program seeks the
fundamental structure of massive data sets and in 2008
the technology went public with the launch of a company
called Ayasdi.[41]

The practitioners of big data analytics processes are
generally hostile to slower shared storage,[42] preferring
direct-attached storage (DAS) in its various forms from
solid state drive (SSD) to high capacity SATA disk
buried inside parallel processing nodes. The perception
of shared storage architectures—Storage area network
(SAN) and Network-attached storage (NAS) —is that
they are relatively slow, complex, and expensive. These
qualities are not consistent with big data analytics sys-
tems that thrive on system performance, commodity in-
frastructure, and low cost.
Real or near-real time information delivery is one of the
defining characteristics of big data analytics. Latency is
therefore avoided whenever and wherever possible. Data
in memory is good—data on spinning disk at the other
end of a FC SAN connection is not. The cost of a SAN
at the scale needed for analytics applications is very much
higher than other storage techniques.
There are advantages as well as disadvantages to shared
storage in big data analytics, but big data analytics prac-
titioners as of 2011 did not favour it.[43]

10.5 Applications

Big data has increased the demand of information man-
agement specialists in that Software AG, Oracle Corpo-
ration, IBM, Microsoft, SAP, EMC, HP and Dell have
spent more than $15 billion on software firms specializing

https://en.wikipedia.org/wiki/ECL_programming_language
https://en.wikipedia.org/wiki/LexisNexis
https://en.wikipedia.org/wiki/HPCC
https://en.wikipedia.org/wiki/Quantcast_File_System
https://en.wikipedia.org/wiki/MapReduce
https://en.wikipedia.org/wiki/Apache_Hadoop
https://en.wikipedia.org/wiki/MIKE2.0_Methodology
https://en.wikipedia.org/wiki/Permutation
https://en.wikipedia.org/wiki/Complexity
https://en.wikipedia.org/wiki/McKinsey_&_Company
https://en.wikipedia.org/wiki/A/B_testing
https://en.wikipedia.org/wiki/Crowdsourcing
https://en.wikipedia.org/wiki/Data_fusion
https://en.wikipedia.org/wiki/Data_integration
https://en.wikipedia.org/wiki/Genetic_algorithms
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Simulation
https://en.wikipedia.org/wiki/Time_series_analysis
https://en.wikipedia.org/wiki/Visualization_(computer_graphics)
https://en.wikipedia.org/wiki/Tensor
https://en.wikipedia.org/wiki/Multilinear_subspace_learning
https://en.wikipedia.org/wiki/Massive_parallel_processing
https://en.wikipedia.org/wiki/Search-based_application
https://en.wikipedia.org/wiki/Search-based_application
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Massive_parallel_processing
https://en.wikipedia.org/wiki/RDBMS
https://en.wikipedia.org/wiki/DARPA
https://en.wikipedia.org/wiki/Topological_Data_Analysis
https://en.wikipedia.org/wiki/Ayasdi
https://en.wikipedia.org/wiki/Direct-attached_storage
https://en.wikipedia.org/wiki/Ssd
https://en.wikipedia.org/wiki/Serial_ATA
https://en.wikipedia.org/wiki/Storage_area_network
https://en.wikipedia.org/wiki/Network-attached_storage
https://en.wikipedia.org/wiki/Fiber_connector
https://en.wikipedia.org/wiki/Storage_area_network
https://en.wikipedia.org/wiki/Storage_area_network
https://en.wikipedia.org/wiki/Software_AG
https://en.wikipedia.org/wiki/Oracle_Corporation
https://en.wikipedia.org/wiki/Oracle_Corporation
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/SAP_AG
https://en.wikipedia.org/wiki/EMC_Corporation
https://en.wikipedia.org/wiki/HP
https://en.wikipedia.org/wiki/Dell


94 CHAPTER 10. BIG DATA

Bus wrapped with SAP Big data parked outside IDF13.

in data management and analytics. In 2010, this industry
was worth more than $100 billion and was growing at al-
most 10 percent a year: about twice as fast as the software
business as a whole.[1]

Developed economies make increasing use of data-
intensive technologies. There are 4.6 billion mobile-
phone subscriptions worldwide and between 1 billion and
2 billion people accessing the internet.[1] Between 1990
and 2005, more than 1 billion people worldwide entered
the middle class which means more and more people who
gain money will become more literate which in turn leads
to information growth. The world’s effective capacity
to exchange information through telecommunication net-
works was 281 petabytes in 1986, 471 petabytes in 1993,
2.2 exabytes in 2000, 65 exabytes in 2007[8] and it is pre-
dicted that the amount of traffic flowing over the inter-
net will reach 667 exabytes annually by 2014.[1] It is esti-
mated that one third of the globally stored information is
in the form of alphanumeric text and still image data,[44]

which is the format most useful for most big data appli-
cations. This also shows the potential of yet unused data
(i.e. in the form of video and audio content).
While many vendors offer off-the-shelf solutions for
Big Data, experts recommend the development of in-
house solutions custom-tailored to solve the company’s
problem at hand if the company has sufficient technical
capabilities.[45]

10.5.1 Government

The use and adoption of Big Data within governmental
processes is beneficial and allows efficiencies in terms of
cost, productivity, and innovation. That said, this pro-
cess does not come without its flaws. Data analysis often
requires multiple parts of government (central and local)
to work in collaboration and create new and innovative
processes to deliver the desired outcome. Below are the
thought leading examples within the Governmental Big
Data space.

United States of America

• In 2012, the Obama administration announced the
Big Data Research and Development Initiative, to
explore how big data could be used to address im-
portant problems faced by the government.[46] The
initiative is composed of 84 different big data pro-
grams spread across six departments.[47]

• Big data analysis played a large role in Barack
Obama's successful 2012 re-election campaign.[48]

• The United States Federal Government owns six
of the ten most powerful supercomputers in the
world.[49]

• The Utah Data Center is a data center currently be-
ing constructed by the United States National Se-
curity Agency. When finished, the facility will be
able to handle a large amount of information col-
lected by the NSA over the Internet. The exact
amount of storage space is unknown, but more re-
cent sources claim it will be on the order of a few
exabytes.[50][51][52]

India

• Big data analysis was, in parts, responsible for the
BJP and its allies to win a highly successful Indian
General Election 2014.[53]

• The Indian Government utilises numerous tech-
niques to ascertain how the Indian electorate is re-
sponding to government action, as well as ideas for
policy augmentation

United Kingdom

Examples of uses of big data in public services:

• Data on prescription drugs: by connecting origin, lo-
cation and the time of each prescription, a research
unit was able to exemplify the considerable delay
between the release of any given drug, and a UK-
wide adaptation of the National Institute for Health
and Care Excellence guidelines. This suggests that
new/most up-to-date drugs take some time to filter
through to the general patient.

• Joining up data: a local authority blended data about
services, such as road gritting rotas, with services for
people at risk, such as 'meals on wheels’. The con-
nection of data allowed the local authority to avoid
any weather related delay.

10.5.2 International development

Research on the effective usage of information and com-
munication technologies for development (also known as
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ICT4D) suggests that big data technology can make im-
portant contributions but also present unique challenges
to International development.[54][55] Advancements in
big data analysis offer cost-effective opportunities to
improve decision-making in critical development areas
such as health care, employment, economic productiv-
ity, crime, security, and natural disaster and resource
management.[56][57][58] However, longstanding challenges
for developing regions such as inadequate technolog-
ical infrastructure and economic and human resource
scarcity exacerbate existing concerns with big data such
as privacy, imperfect methodology, and interoperability
issues.[56]

10.5.3 Manufacturing

Based on TCS 2013 Global Trend Study, improvements
in supply planning and product quality provide the great-
est benefit of big data for manufacturing.[59] Big data pro-
vides an infrastructure for transparency in manufacturing
industry, which is the ability to unravel uncertainties such
as inconsistent component performance and availability.
Predictive manufacturing as an applicable approach to-
ward near-zero downtime and transparency requires vast
amount of data and advanced prediction tools for a sys-
tematic process of data into useful information.[60] A con-
ceptual framework of predictive manufacturing begins
with data acquisition where different type of sensory data
is available to acquire such as acoustics, vibration, pres-
sure, current, voltage and controller data. Vast amount of
sensory data in addition to historical data construct the
big data in manufacturing. The generated big data acts
as the input into predictive tools and preventive strategies
such as Prognostics and Health Management (PHM).[61]

Cyber-Physical Models

Current PHM implementations mostly utilize data dur-
ing the actual usage while analytical algorithms can per-
form more accurately when more information through-
out the machine’s lifecycle, such as system configuration,
physical knowledge and working principles, are included.
There is a need to systematically integrate, manage and
analyze machinery or process data during different stages
of machine life cycle to handle data/information more ef-
ficiently and further achieve better transparency of ma-
chine health condition for manufacturing industry.
With such motivation a cyber-physical (coupled) model
scheme has been developed. Please see http://
www.imscenter.net/cyber-physical-platform The cou-
pled model is a digital twin of the real machine that oper-
ates in the cloud platform and simulates the health condi-
tion with an integrated knowledge from both data driven
analytical algorithms as well as other available physical
knowledge. It can also be described as a 5S systematic ap-
proach consisting of Sensing, Storage, Synchronization,

Synthesis and Service. The coupled model first constructs
a digital image from the early design stage. System infor-
mation and physical knowledge are logged during prod-
uct design, based on which a simulation model is built
as a reference for future analysis. Initial parameters may
be statistically generalized and they can be tuned using
data from testing or the manufacturing process using pa-
rameter estimation. After which, the simulation model
can be considered as a mirrored image of the real ma-
chine, which is able to continuously record and track ma-
chine condition during the later utilization stage. Finally,
with ubiquitous connectivity offered by cloud computing
technology, the coupled model also provides better ac-
cessibility of machine condition for factory managers in
cases where physical access to actual equipment or ma-
chine data is limited.[26][62]

10.5.4 Media

Internet of Things (IoT)

Main article: Internet of Things

To understand how the media utilises Big Data, it is first
necessary to provide some context into the mechanism
used for media process. It has been suggested by Nick
Couldry and Joseph Turow that practitioners in Media
and Advertising approach big data as many actionable
points of information about millions of individuals. The
industry appears to be moving away from the traditional
approach of using specific media environments such as
newspapers, magazines, or television shows and instead
tap into consumers with technologies that reach targeted
people at optimal times in optimal locations. The ulti-
mate aim is to serve, or convey, a message or content that
is (statistically speaking) in line with the consumers mind-
set. For example, publishing environments are increas-
ingly tailoring messages (advertisements) and content (ar-
ticles) to appeal to consumers that have been exclusively
gleaned through various data-mining activities.[63]

• Targeting of consumers (for advertising by mar-
keters)

• Data-capture

Big Data and the IoT work in conjunction. From a media
perspective, data is the key derivative of device inter con-
nectivity and allows accurate targeting. The Internet of
Things, with the help of big data, therefore transforms the
media industry, companies and even governments, open-
ing up a new era of economic growth and competitive-
ness. The intersection of people, data and intelligent al-
gorithms have far-reaching impacts on media efficiency.
The wealth of data generated allows an elaborate layer on
the present targeting mechanisms of the industry.
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Technology

• eBay.com uses two data warehouses at 7.5 petabytes
and 40PB as well as a 40PB Hadoop cluster for
search, consumer recommendations, and merchan-
dising. Inside eBay’s 90PB data warehouse

• Amazon.com handles millions of back-end opera-
tions every day, as well as queries from more than
half a million third-party sellers. The core technol-
ogy that keeps Amazon running is Linux-based and
as of 2005 they had the world’s three largest Linux
databases, with capacities of 7.8 TB, 18.5 TB, and
24.7 TB.[64]

• Facebook handles 50 billion photos from its user
base.[65]

• As of August 2012, Google was handling roughly
100 billion searches per month.[66]

• Oracle NoSQL Database has been tested to past the
1M ops/sec mark with 8 shards and proceeded to hit
1.2M ops/sec with 10 shards.[67]

10.5.5 Private sector

Retail

• Walmart handles more than 1 million customer
transactions every hour, which are imported into
databases estimated to contain more than 2.5
petabytes (2560 terabytes) of data – the equivalent
of 167 times the information contained in all the
books in the US Library of Congress.[1]

Retail Banking

• FICO Card Detection System protects accounts
world-wide.[68]

• The volume of business data worldwide, across all
companies, doubles every 1.2 years, according to
estimates.[69][70]

Real Estate

• Windermere Real Estate uses anonymous GPS sig-
nals from nearly 100 million drivers to help new
home buyers determine their typical drive times
to and from work throughout various times of the
day.[71]

10.5.6 Science

The Large Hadron Collider experiments represent about
150 million sensors delivering data 40 million times per

second. There are nearly 600 million collisions per sec-
ond. After filtering and refraining from recording more
than 99.99995% [72] of these streams, there are 100 col-
lisions of interest per second.[73][74][75]

• As a result, only working with less than 0.001% of
the sensor stream data, the data flow from all four
LHC experiments represents 25 petabytes annual
rate before replication (as of 2012). This becomes
nearly 200 petabytes after replication.

• If all sensor data were to be recorded in LHC, the
data flow would be extremely hard to work with. The
data flow would exceed 150 million petabytes annual
rate, or nearly 500 exabytes per day, before replica-
tion. To put the number in perspective, this is equiv-
alent to 500 quintillion (5×1020) bytes per day, al-
most 200 times more than all the other sources com-
bined in the world.

The Square Kilometre Array is a telescope which consists
of millions of antennas and is expected to be operational
by 2024. Collectively, these antennas are expected to
gather 14 exabytes and store one petabyte per day.[76][77]

It is considered to be one of the most ambitious scientific
projects ever undertaken.

Science and Research

• When the Sloan Digital Sky Survey (SDSS) began
collecting astronomical data in 2000, it amassed
more in its first few weeks than all data collected
in the history of astronomy. Continuing at a rate
of about 200 GB per night, SDSS has amassed
more than 140 terabytes of information. When
the Large Synoptic Survey Telescope, successor to
SDSS, comes online in 2016 it is anticipated to ac-
quire that amount of data every five days.[1]

• Decoding the human genome originally took 10
years to process, now it can be achieved in less than a
day: the DNA sequencers have divided the sequenc-
ing cost by 10,000 in the last ten years, which is 100
times cheaper than the reduction in cost predicted
by Moore’s Law.[78]

• The NASA Center for Climate Simulation (NCCS)
stores 32 petabytes of climate observations and sim-
ulations on the Discover supercomputing cluster.[79]

10.6 Research activities

Encrypted search and cluster formation in big data was
demonstrated in March 2014 at the American Society
of Engineering Education. Gautam Siwach engaged at
Tackling the challenges of Big Data by MIT Computer
Science and Artificial Intelligence Laboratory and Dr.
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Amir Esmailpour at UNH Research Group investigated
the key features of big data as formation of clusters and
their interconnections. They focused on the security of
big data and the actual orientation of the term towards
the presence of different type of data in an encrypted
form at cloud interface by providing the raw definitions
and real time examples within the technology. Moreover,
they proposed an approach for identifying the encoding
technique to advance towards an expedited search over
encrypted text leading to the security enhancements in
big data.[80]

In March 2012, The White House announced a national
“Big Data Initiative” that consisted of six Federal depart-
ments and agencies committing more than $200 million
to big data research projects.[81]

The initiative included a National Science Foundation
“Expeditions in Computing” grant of $10 million over
5 years to the AMPLab[82] at the University of Califor-
nia, Berkeley.[83] The AMPLab also received funds from
DARPA, and over a dozen industrial sponsors and uses
big data to attack a wide range of problems from predict-
ing traffic congestion[84] to fighting cancer.[85]

The White House Big Data Initiative also included a com-
mitment by the Department of Energy to provide $25
million in funding over 5 years to establish the Scalable
Data Management, Analysis and Visualization (SDAV)
Institute,[86] led by the Energy Department’s Lawrence
Berkeley National Laboratory. The SDAV Institute aims
to bring together the expertise of six national laborato-
ries and seven universities to develop new tools to help
scientists manage and visualize data on the Department’s
supercomputers.
The U.S. state of Massachusetts announced the Mas-
sachusetts Big Data Initiative in May 2012, which pro-
vides funding from the state government and private
companies to a variety of research institutions.[87] The
Massachusetts Institute of Technology hosts the Intel Sci-
ence and Technology Center for Big Data in the MIT
Computer Science and Artificial Intelligence Laboratory,
combining government, corporate, and institutional fund-
ing and research efforts.[88]

The European Commission is funding the 2-year-long Big
Data Public Private Forum through their Seventh Frame-
work Program to engage companies, academics and other
stakeholders in discussing big data issues. The project
aims to define a strategy in terms of research and innova-
tion to guide supporting actions from the European Com-
mission in the successful implementation of the big data
economy. Outcomes of this project will be used as input
for Horizon 2020, their next framework program.[89]

The British government announced in March 2014 the
founding of the Alan Turing Institute, named after the
computer pioneer and code-breaker, which will focus on
new ways of collecting and analysing large sets of data.[90]

At the University of Waterloo Stratford Campus Cana-

dian Open Data Experience (CODE) Inspiration Day,
it was demonstrated how using data visualization tech-
niques can increase the understanding and appeal of big
data sets in order to communicate a story to the world.[91]

In order to make manufacturing more competitive in
the United States (and globe), there is a need to in-
tegrate more American ingenuity and innovation into
manufacturing ; Therefore, National Science Founda-
tion has granted the Industry University cooperative re-
search center for Intelligent Maintenance Systems (IMS)
at university of Cincinnati to focus on developing ad-
vanced predictive tools and techniques to be applicable
in a big data environment.[61][92] In May 2013, IMS Cen-
ter held an industry advisory board meeting focusing on
big data where presenters from various industrial compa-
nies discussed their concerns, issues and future goals in
Big Data environment.
Computational social sciences — Anyone can use Appli-
cation Programming Interfaces (APIs) provided by Big
Data holders, such as Google and Twitter, to do research
in the social and behavioral sciences.[93] Often these APIs
are provided for free.[93] Tobias Preis et al. used Google
Trends data to demonstrate that Internet users from coun-
tries with a higher per capita gross domestic product
(GDP) are more likely to search for information about
the future than information about the past. The findings
suggest there may be a link between online behaviour and
real-world economic indicators.[94][95][96] The authors of
the study examined Google queries logs made by ratio of
the volume of searches for the coming year (‘2011’) to the
volume of searches for the previous year (‘2009’), which
they call the ‘future orientation index’.[97] They compared
the future orientation index to the per capita GDP of
each country and found a strong tendency for countries
in which Google users enquire more about the future to
exhibit a higher GDP. The results hint that there may po-
tentially be a relationship between the economic success
of a country and the information-seeking behavior of its
citizens captured in big data.
Tobias Preis and his colleagues Helen Susannah Moat
and H. Eugene Stanley introduced a method to iden-
tify online precursors for stock market moves, using
trading strategies based on search volume data pro-
vided by Google Trends.[98] Their analysis of Google
search volume for 98 terms of varying financial rele-
vance, published in Scientific Reports,[99] suggests that
increases in search volume for financially relevant
search terms tend to precede large losses in financial
markets.[100][101][102][103][104][105][106][107]

10.7 Critique

Critiques of the big data paradigm come in two flavors,
those that question the implications of the approach itself,
and those that question the way it is currently done.
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Cartoon critical of big data application, by T. Gregorius

10.7.1 Critiques of the big data paradigm

“A crucial problem is that we do not know much about
the underlying empirical micro-processes that lead to the
emergence of the[se] typical network characteristics of
Big Data”.[14] In their critique, Snijders, Matzat, and
Reips point out that often very strong assumptions are
made about mathematical properties that may not at all
reflect what is really going on at the level of micro-
processes. Mark Graham has leveled broad critiques at
Chris Anderson's assertion that big data will spell the end
of theory: focusing in particular on the notion that big
data will always need to be contextualized in their social,
economic and political contexts.[108] Even as companies
invest eight- and nine-figure sums to derive insight from
information streaming in from suppliers and customers,
less than 40% of employees have sufficiently mature pro-
cesses and skills to do so. To overcome this insight deficit,
“big data”, no matter how comprehensive or well ana-
lyzed, needs to be complemented by “big judgment”, ac-
cording to an article in the Harvard Business Review.[109]

Much in the same line, it has been pointed out that the
decisions based on the analysis of big data are inevitably
“informed by the world as it was in the past, or, at best, as
it currently is”.[56] Fed by a large number of data on past
experiences, algorithms can predict future development
if the future is similar to the past. If the systems dynam-
ics of the future change, the past can say little about the
future. For this, it would be necessary to have a thor-
ough understanding of the systems dynamic, which im-
plies theory.[110] As a response to this critique it has been
suggested to combine big data approaches with computer
simulations, such as agent-based models[56] and Complex
Systems.[111] Agent-based models are increasingly get-
ting better in predicting the outcome of social complexi-

ties of even unknown future scenarios through computer
simulations that are based on a collection of mutually in-
terdependent algorithms.[112][113] In addition, use of mul-
tivariate methods that probe for the latent structure of
the data, such as factor analysis and cluster analysis, have
proven useful as analytic approaches that go well beyond
the bi-variate approaches (cross-tabs) typically employed
with smaller data sets.
In health and biology, conventional scientific approaches
are based on experimentation. For these approaches, the
limiting factor is the relevant data that can confirm or
refute the initial hypothesis.[114] A new postulate is ac-
cepted now in biosciences: the information provided by
the data in huge volumes (omics) without prior hypoth-
esis is complementary and sometimes necessary to con-
ventional approaches based on experimentation. In the
massive approaches it is the formulation of a relevant hy-
pothesis to explain the data that is the limiting factor.
The search logic is reversed and the limits of induction
(“Glory of Science and Philosophy scandal”, C. D. Broad,
1926) are to be considered.
Privacy advocates are concerned about the threat to pri-
vacy represented by increasing storage and integration of
personally identifiable information; expert panels have re-
leased various policy recommendations to conform prac-
tice to expectations of privacy.[115][116][117]

10.7.2 Critiques of big data execution

Big data has been called a “fad” in scientific research
and its use was even made fun of as an absurd prac-
tice in a satirical example on “pig data”.[93] Researcher
danah boyd has raised concerns about the use of big
data in science neglecting principles such as choosing a
representative sample by being too concerned about ac-
tually handling the huge amounts of data.[118] This ap-
proach may lead to results bias in one way or another.
Integration across heterogeneous data resources—some
that might be considered “big data” and others not—
presents formidable logistical as well as analytical chal-
lenges, but many researchers argue that such integrations
are likely to represent the most promising new frontiers
in science.[119] In the provocative article “Critical Ques-
tions for Big Data”,[120] the authors title big data a part
of mythology: “large data sets offer a higher form of in-
telligence and knowledge [...], with the aura of truth, ob-
jectivity, and accuracy”. Users of big data are often “lost
in the sheer volume of numbers”, and “working with Big
Data is still subjective, and what it quantifies does not
necessarily have a closer claim on objective truth”.[120]

Recent developments in BI domain, such as pro-active
reporting especially target improvements in usability of
Big Data, through automated filtering of non-useful data
and correlations.[121]

Big data analysis is often shallow compared to analysis of
smaller data sets.[122] In many big data projects, there is
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no large data analysis happening, but the challenge is the
extract, transform, load part of data preprocessing.[122]

Big data is a buzzword and a “vague term”,[123] but at the
same time an “obsession”[123] with entrepreneurs, consul-
tants, scientists and the media. Big data showcases such
as Google Flu Trends failed to deliver good predictions
in recent years, overstating the flu outbreaks by a factor
of two. Similarly, Academy awards and election predic-
tions solely based on Twitter were more often off than on
target. Big data often poses the same challenges as small
data; and adding more data does not solve problems of
bias, but may emphasize other problems. In particular
data sources such as Twitter are not representative of the
overall population, and results drawn from such sources
may then lead to wrong conclusions. Google Translate -
which is based on big data statistical analysis of text - does
a remarkably good job at translating web pages. How-
ever, results from specialized domains may be dramati-
cally skewed. On the other hand, big data may also in-
troduce new problems, such as the multiple comparisons
problem: simultaneously testing a large set of hypothe-
ses is likely to produce many false results that mistak-
enly appear to be significant. Ioannidis argued that “most
published research findings are false” [124] due to essen-
tially the same effect: when many scientific teams and re-
searchers each perform many experiments (i.e. process a
big amount of scientific data; although not with big data
technology), the likelihood of a “significant” result being
actually false grows fast - even more so, when only posi-
tive results are published.

10.8 See also

• Apache Accumulo

• Apache Hadoop

• Big Data to Knowledge

• Data Defined Storage

• Data mining

• Cask (company)

• Cloudera

• HPCC Systems

• Intelligent Maintenance Systems

• Internet of Things

• MapReduce

• Hortonworks

• Oracle NoSQL Database

• Nonlinear system identification

• Operations research

• Programming with Big Data in R (a series of R pack-
ages)

• Sqrrl

• Supercomputer

• Talend

• Transreality gaming

• Tuple space

• Unstructured data
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Chapter 11

Euclidean distance

In mathematics, the Euclidean distance or Euclidean
metric is the “ordinary” (i.e straight line) distance be-
tween two points in Euclidean space. With this distance,
Euclidean space becomes a metric space. The associ-
ated norm is called theEuclidean norm. Older literature
refers to the metric as Pythagorean metric. A general-
ized term for the Euclidean norm is the L2 norm or L2

distance.

11.1 Definition

The Euclidean distance between points p and q is the
length of the line segment connecting them ( pq ).
In Cartesian coordinates, if p = (p1, p2,..., pn) and q =
(q1, q2,..., qn) are two points in Euclidean n-space, then
the distance (d) from p to q, or from q to p is given by
the Pythagorean formula:

The position of a point in a Euclidean n-space is a
Euclidean vector. So, p and q are Euclidean vectors,
starting from the origin of the space, and their tips in-
dicate two points. The Euclidean norm, or Euclidean
length, ormagnitude of a vector measures the length of
the vector:

∥p∥ =
√
p21 + p22 + · · ·+ p2n =

√p · p,

where the last equation involves the dot product.
A vector can be described as a directed line segment from
the origin of the Euclidean space (vector tail), to a point
in that space (vector tip). If we consider that its length
is actually the distance from its tail to its tip, it becomes
clear that the Euclidean norm of a vector is just a spe-
cial case of Euclidean distance: the Euclidean distance
between its tail and its tip.
The distance between points p and qmay have a direction
(e.g. from p to q), so it may be represented by another
vector, given by

q− p = (q1 − p1, q2 − p2, · · · , qn − pn)

In a three-dimensional space (n=3), this is an arrow from
p to q, which can be also regarded as the position of q
relative to p. It may be also called a displacement vector
if p and q represent two positions of the same point at
two successive instants of time.
The Euclidean distance between p and q is just the Eu-
clidean length of this distance (or displacement) vector:

which is equivalent to equation 1, and also to:

∥q− p∥ =

√
∥p∥2 + ∥q∥2 − 2p · q.

11.1.1 One dimension

In one dimension, the distance between two points on the
real line is the absolute value of their numerical differ-
ence. Thus if x and y are two points on the real line, then
the distance between them is given by:

√
(x− y)2 = |x− y|.

In one dimension, there is a single homogeneous,
translation-invariant metric (in other words, a distance
that is induced by a norm), up to a scale factor of length,
which is the Euclidean distance. In higher dimensions
there are other possible norms.

11.1.2 Two dimensions

In the Euclidean plane, if p = (p1, p2) and q = (q1, q2)
then the distance is given by

d(p, q) =
√
(q1 − p1)2 + (q2 − p2)2.
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This is equivalent to the Pythagorean theorem.
Alternatively, it follows from (2) that if the polar coordi-
nates of the point p are (r1, θ1) and those of q are (r2,
θ2), then the distance between the points is

√
r21 + r22 − 2r1r2 cos(θ1 − θ2).

11.1.3 Three dimensions

In three-dimensional Euclidean space, the distance is

d(p, q) =
√

(p1 − q1)2 + (p2 − q2)2 + (p3 − q3)2.

11.1.4 n dimensions

In general, for an n-dimensional space, the distance is

d(p, q) =
√

(p1 − q1)2 + (p2 − q2)2 + · · ·+ (pi − qi)2 + · · ·+ (pn − qn)2.

11.1.5 Squared Euclidean distance

The standard Euclidean distance can be squared in order
to place progressively greater weight on objects that are
farther apart. In this case, the equation becomes

d2(p, q) = (p1−q1)2+(p2−q2)2+· · ·+(pi−qi)2+· · ·+(pn−qn)2.

Squared Euclidean Distance is not a metric as it does not
satisfy the triangle inequality, however, it is frequently
used in optimization problems in which distances only
have to be compared.
It is also referred to as quadrance within the field of
rational trigonometry.

11.2 See also
• Chebyshev distance measures distance assuming

only the most significant dimension is relevant.

• Euclidean distance matrix

• Hamming distance identifies the difference bit by bit
of two strings

• Mahalanobis distance normalizes based on a co-
variance matrix to make the distance metric scale-
invariant.

• Manhattan distance measures distance following
only axis-aligned directions.

• Metric

• Minkowski distance is a generalization that uni-
fies Euclidean distance, Manhattan distance, and
Chebyshev distance.

• Pythagorean addition

11.3 References
• Deza, Elena; Deza, Michel Marie (2009). Encyclo-

pedia of Distances. Springer. p. 94.

• “Cluster analysis”. March 2, 2011.
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Hamming distance

In information theory, the Hamming distance between
two strings of equal length is the number of positions at
which the corresponding symbols are different. In an-
other way, it measures the minimum number of substitu-
tions required to change one string into the other, or the
minimum number of errors that could have transformed
one string into the other.
A major application is in coding theory, more specifi-
cally to block codes, in which the equal-length strings are
vectors over a finite field.

12.1 Examples

The Hamming distance between:

• "karolin" and "kathrin" is 3.

• "karolin" and "kerstin" is 3.

• 1011101 and 1001001 is 2.

• 2173896 and 2233796 is 3.

On a two-dimensional grid such as a chessboard, the
Hamming distance is the minimum number of moves it
would take a rook to move from one cell to the other.

12.2 Properties

For a fixed length n, the Hamming distance is a metric
on the vector space of the words of length n (also known
as a Hamming space), as it fulfills the conditions of non-
negativity, identity of indiscernibles and symmetry, and
it can be shown by complete induction that it satisfies the
triangle inequality as well.[1] The Hamming distance be-
tween two words a and b can also be seen as the Hamming
weight of a−b for an appropriate choice of the − operator.
For binary strings a and b the Hamming distance is equal
to the number of ones (population count) in a XOR b.
The metric space of length-n binary strings, with the
Hamming distance, is known as the Hamming cube; it is

equivalent as a metric space to the set of distances be-
tween vertices in a hypercube graph. One can also view a
binary string of length n as a vector inRn by treating each
symbol in the string as a real coordinate; with this embed-
ding, the strings form the vertices of an n-dimensional
hypercube, and the Hamming distance of the strings is
equivalent to the Manhattan distance between the ver-
tices.

12.3 Error detection and error cor-
rection

The Hamming distance is used to define some essential
notions in coding theory, such as error detecting and er-
ror correcting codes. In particular, a code C is said to be
k-errors detecting if any two codewords c1 and c2 from C
that have a Hamming distance less than k coincide; Oth-
erwise put it, a code is k-errors detecting if and only if
the minimum Hamming distance between any two of its
codewords is at least k+1.[1]

A code C is said to be k-errors correcting if for every
word w in the underlying Hamming space H there exists
at most one codeword c (from C) such that the Hamming
distance between w and c is less than k. In other words,
a code is k-errors correcting if and only if the minimum
Hamming distance between any two of its codewords is
at least 2k+1. This is more easily understood geometri-
cally as any closed balls of radius k centered on distinct
codewords being disjoint.[1] These balls are also called
Hamming spheres in this context.[2]

Thus a code with minimum Hamming distance d between
its codewords can detect at most d−1 errors and can cor-
rect ⌊(d−1)/2⌋ errors.[1] The latter number is also called
the packing radius or the error-correcting capability of the
code.[2]

12.4 History and applications

The Hamming distance is named after Richard Ham-
ming, who introduced it in his fundamental paper on
Hamming codes Error detecting and error correcting
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codes in 1950.[3] Hamming weight analysis of bits is
used in several disciplines including information theory,
coding theory, and cryptography.
It is used in telecommunication to count the number of
flipped bits in a fixed-length binary word as an estimate
of error, and therefore is sometimes called the signal dis-
tance. For q-ary strings over an alphabet of size q ≥
2 the Hamming distance is applied in case of the q-ary
symmetric channel, while the Lee distance is used for
phase-shift keying or more generally channels suscepti-
ble to synchronization errors because the Lee distance ac-
counts for errors of ±1.[4] If q = 2 or q = 3 both distances
coincide because Z/2Z and Z/3Z are also fields, but Z/4Z
is not a field but only a ring.
The Hamming distance is also used in systematics as a
measure of genetic distance.[5]

However, for comparing strings of different lengths, or
strings where not just substitutions but also insertions or
deletions have to be expected, a more sophisticated met-
ric like the Levenshtein distance is more appropriate.

12.5 Algorithm example

The Python function hamming_distance() computes the
Hamming distance between two strings (or other iterable
objects) of equal length, by creating a sequence of
Boolean values indicating mismatches and matches be-
tween corresponding positions in the two inputs, and then
summing the sequence with False and True values being
interpreted as zero and one.
def hamming_distance(s1, s2): """Return the Hamming
distance between equal-length sequences""" if len(s1) !=
len(s2): raise ValueError(“Undefined for sequences of
unequal length”) return sum(ch1 != ch2 for ch1, ch2 in
zip(s1, s2))

The following C function will compute the Hamming dis-
tance of two integers (considered as binary values, that
is, as sequences of bits). The running time of this pro-
cedure is proportional to the Hamming distance rather
than to the number of bits in the inputs. It computes the
bitwise exclusive or of the two inputs, and then finds the
Hamming weight of the result (the number of nonzero
bits) using an algorithm of Wegner (1960) that repeat-
edly finds and clears the lowest-order nonzero bit.
int hamming_distance(unsigned x, unsigned y) { int dist
= 0; unsigned val = x ^ y; // Count the number of bits set
while (val != 0) { // A bit is set, so increment the count
and clear the bit dist++; val &= val - 1; } // Return the
number of differing bits return dist; }

12.6 See also
• Closest string

• Damerau–Levenshtein distance

• Euclidean distance

• Mahalanobis distance

• Jaccard index

• String metric

• Sørensen similarity index

• Word ladder
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Chapter 13

Norm (mathematics)

This article is about linear algebra and analysis. For
field theory, see Field norm. For ideals, see Ideal norm.
For group theory, see Norm (group). For norms in
descriptive set theory, see prewellordering.

In linear algebra, functional analysis and related areas of
mathematics, a norm is a function that assigns a strictly
positive length or size to each vector in a vector space—
save for the zero vector, which is assigned a length of zero.
A seminorm, on the other hand, is allowed to assign zero
length to some non-zero vectors (in addition to the zero
vector).
A norm must also satisfy certain properties pertaining to
scalability and additivity which are given in the formal
definition below.
A simple example is the 2-dimensional Euclidean space
R2 equipped with the Euclidean norm. Elements in this
vector space (e.g., (3, 7)) are usually drawn as arrows in a
2-dimensional cartesian coordinate system starting at the
origin (0, 0). The Euclidean norm assigns to each vector
the length of its arrow. Because of this, the Euclidean
norm is often known as the magnitude.
A vector space on which a norm is defined is called a
normed vector space. Similarly, a vector space with a
seminorm is called a seminormed vector space. It is of-
ten possible to supply a norm for a given vector space in
more than one way.

13.1 Definition

Given a vector space V over a subfield F of the complex
numbers, a norm on V is a function p: V → R with the
following properties:[1]

For all a ∈ F and all u, v ∈ V,

1. p(av) = |a| p(v), (absolute homogeneity or absolute
scalability).

2. p(u + v) ≤ p(u) + p(v) (triangle inequality or
subadditivity).

3. If p(v) = 0 then v is the zero vector (separates points).

By the first axiom, absolute homogeneity, we have p(0) =
0 and p(−v) = p(v), so that by the triangle inequality

p(v) ≥ 0 (positivity).

A seminorm on V is a function p : V →R with the prop-
erties 1. and 2. above.
Every vector space V with seminorm p induces a normed
space V/W, called the quotient space, where W is the sub-
space of V consisting of all vectors v in V with p(v) = 0.
The induced norm on V/W is clearly well-defined and is
given by:

p(W + v) = p(v).

Two norms (or seminorms) p and q on a vector space V
are equivalent if there exist two real constants c and C,
with c > 0 such that

for every vector v in V, one has that: c q(v) ≤
p(v) ≤ C q(v).

A topological vector space is called normable
(seminormable) if the topology of the space can
be induced by a norm (seminorm).

13.2 Notation

If a norm p : V →R is given on a vector space V then the
norm of a vector v ∈ V is usually denoted by enclosing it
within double vertical lines: ‖v‖ = p(v). Such notation is
also sometimes used if p is only a seminorm.
For the length of a vector in Euclidean space (which is an
example of a norm, as explained below), the notation |v|
with single vertical lines is also widespread.
In Unicode, the codepoint of the “double vertical line”
character ‖ is U+2016. The double vertical line should
not be confused with the “parallel to” symbol, Unicode
U+2225 ( ∥ ). This is usually not a problem because the
former is used in parenthesis-like fashion, whereas the lat-
ter is used as an infix operator. The double vertical line
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used here should also not be confused with the symbol
used to denote lateral clicks, Unicode U+01C1 ( ǁ ). The
single vertical line | is called “vertical line” in Unicode
and its codepoint is U+007C.

13.3 Examples
• All norms are seminorms.

• The trivial seminorm has p(x) = 0 for all x in V.

• Every linear form f on a vector space defines a semi-
norm by x → |f(x)|.

13.3.1 Absolute-value norm

The absolute value

∥x∥ = |x|

is a norm on the one-dimensional vector spaces formed
by the real or complex numbers.

13.3.2 Euclidean norm

Main article: Euclidean distance

On an n-dimensional Euclidean space Rn, the intuitive
notion of length of the vector x = (x1, x2, ..., xn) is cap-
tured by the formula

∥x∥ :=
√
x21 + · · ·+ x2n.

This gives the ordinary distance from the origin to the
point x, a consequence of the Pythagorean theorem. The
Euclidean norm is by far the most commonly used norm
on Rn, but there are other norms on this vector space as
will be shown below. However all these norms are equiv-
alent in the sense that they all define the same topology.
On an n-dimensional complex space Cn the most com-
mon norm is

∥z∥ :=

√
|z1|2 + · · ·+ |zn|2 =

√
z1z̄1 + · · ·+ znz̄n.

In both cases we can also express the norm as the square
root of the inner product of the vector and itself:

∥x∥ :=
√
x∗ x,

where x is represented as a column vector ([x1; x2; ...;
xn]), and x∗ denotes its conjugate transpose.

This formula is valid for any inner product space, includ-
ing Euclidean and complex spaces. For Euclidean spaces,
the inner product is equivalent to the dot product. Hence,
in this specific case the formula can be also written with
the following notation:

∥x∥ :=
√
x · x.

The Euclidean norm is also called the Euclidean length,
L2 distance, ℓ2 distance, L2 norm, or ℓ2 norm; see Lp

space.
The set of vectors in Rn+1 whose Euclidean norm is a
given positive constant forms an n-sphere.

Euclidean norm of a complex number

The Euclidean norm of a complex number is the absolute
value (also called themodulus) of it, if the complex plane
is identified with the Euclidean plane R2. This identifi-
cation of the complex number x + iy as a vector in the
Euclidean plane, makes the quantity

√
x2 + y2 (as first

suggested by Euler) the Euclidean norm associated with
the complex number.

13.3.3 Taxicab norm or Manhattan norm

Main article: Taxicab geometry

∥x∥1 :=

n∑
i=1

|xi| .

The name relates to the distance a taxi has to drive in a
rectangular street grid to get from the origin to the point
x.
The set of vectors whose 1-norm is a given constant forms
the surface of a cross polytope of dimension equivalent
to that of the norm minus 1. The Taxicab norm is also
called the L1 norm. The distance derived from this norm
is called the Manhattan distance or L1 distance.
The 1-norm is simply the sum of the absolute values of
the columns.
In contrast,

n∑
i=1

xi

is not a norm because it may yield negative results.

13.3.4 p-norm

Main article: Lp space
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Let p ≥ 1 be a real number.

∥x∥p :=
( n∑
i=1

|xi|p
)1/p

.

Note that for p = 1 we get the taxicab norm, for p = 2
we get the Euclidean norm, and as p approaches ∞ the
p-norm approaches the infinity norm or maximum norm.
Note that the p-norm is related to the Hölder mean.
This definition is still of some interest for 0 < p < 1, but
the resulting function does not define a norm,[2] because
it violates the triangle inequality. What is true for this
case of 0 < p < 1, even in the measurable analog, is that
the corresponding Lp class is a vector space, and it is also
true that the function

∫
X

|f(x)− g(x)|p dµ

(without pth root) defines a distance that makesLp(X) into
a complete metric topological vector space. These spaces
are of great interest in functional analysis, probability
theory, and harmonic analysis. However, outside trivial
cases, this topological vector space is not locally convex
and has no continuous nonzero linear forms. Thus the
topological dual space contains only the zero functional.
The derivative of the p-norm is given by

∂

∂xk
∥x∥p =

xk |xk|p−2

∥x∥p−1
p

.

For the special case of p = 2, this becomes

∂

∂xk
∥x∥2 =

xk
∥x∥2

,

or

∂

∂x ∥x∥2 =
x

∥x∥2
.

13.3.5 Maximum norm (special case of:
infinity norm, uniform norm, or
supremum norm)

Main article: Maximum norm

∥x∥∞ := max (|x1| , . . . , |xn|) .

The set of vectors whose infinity norm is a given constant,
c, forms the surface of a hypercube with edge length 2c.

x ∞

∥x∥∞ = 1

13.3.6 Zero norm

In probability and functional analysis, the zero norm in-
duces a complete metric topology for the space of mea-
sureable functions and for the F-space of sequences with
F–norm (xn) 7→

∑
n 2

−nxn/(1 + xn) , which is dis-
cussed by Stefan Rolewicz in Metric Linear Spaces.[3]

Hamming distance of a vector from zero

See also: Hamming distance and discrete metric

In metric geometry, the discrete metric takes the value
one for distinct points and zero otherwise. When applied
coordinate-wise to the elements of a vector space, the
discrete distance defines the Hamming distance, which
is important in coding and information theory. In the
field of real or complex numbers, the distance of the dis-
crete metric from zero is not homogeneous in the non-
zero point; indeed, the distance from zero remains one
as its non-zero argument approaches zero. However, the
discrete distance of a number from zero does satisfy the
other properties of a norm, namely the triangle inequality
and positive definiteness. When applied component-wise
to vectors, the discrete distance from zero behaves like a
non-homogeneous “norm”, which counts the number of
non-zero components in its vector argument; again, this
non-homogeneous “norm” is discontinuous.
In signal processing and statistics, David Donoho referred
to the zero "norm" with quotation marks. Following
Donoho’s notation, the zero “norm” of x is simply the
number of non-zero coordinates of x, or the Hamming
distance of the vector from zero. When this “norm” is lo-
calized to a bounded set, it is the limit of p-norms as p ap-
proaches 0. Of course, the zero “norm” is not a B-norm,
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because it is not positive homogeneous. It is not even an
F-norm, because it is discontinuous, jointly and sever-
ally, with respect to the scalar argument in scalar–vector
multiplication and with respect to its vector argument.
Abusing terminology, some engineers omit Donoho’s
quotation marks and inappropriately call the number-of-
nonzeros function the L0 norm (sic.), also misusing the
notation for the Lebesgue space of measurable functions.

13.3.7 Other norms

Other norms on Rn can be constructed by combining the
above; for example

∥x∥ := 2 |x1|+
√

3 |x2|2 + max(|x3| , 2 |x4|)2

is a norm on R4.
For any norm and any injective linear transformation A
we can define a new norm of x, equal to

∥Ax∥ .

In 2D, with A a rotation by 45° and a suitable scaling,
this changes the taxicab norm into the maximum norm.
In 2D, each A applied to the taxicab norm, up to inver-
sion and interchanging of axes, gives a different unit ball:
a parallelogram of a particular shape, size and orienta-
tion. In 3D this is similar but different for the 1-norm
(octahedrons) and the maximum norm (prisms with par-
allelogram base).
All the above formulas also yield norms on Cn without
modification.

13.3.8 Infinite-dimensional case

The generalization of the above norms to an infinite num-
ber of components leads to the Lp spaces, with norms

∥x∥p =
(∑
i∈N

|xi|p
)1/p

resp. ∥f∥p,X =

(∫
X

|f(x)|p dx
)1/p

(for complex-valued sequences x resp. functions f de-
fined on X ⊂ R ), which can be further generalized (see
Haar measure).
Any inner product induces in a natural way the norm
∥x∥ :=

√
⟨x, x⟩.

Other examples of infinite dimensional normed vector
spaces can be found in the Banach space article.

13.4 Properties

The concept of unit circle (the set of all vectors of norm
1) is different in different norms: for the 1-norm the unit
circle in R2 is a square, for the 2-norm (Euclidean norm)
it is the well-known unit circle, while for the infinity norm
it is a different square. For any p-norm it is a superellipse
(with congruent axes). See the accompanying illustration.
Note that due to the definition of the norm, the unit circle
is always convex and centrally symmetric (therefore, for
example, the unit ball may be a rectangle but cannot be a
triangle).
In terms of the vector space, the seminorm defines a
topology on the space, and this is a Hausdorff topology
precisely when the seminorm can distinguish between
distinct vectors, which is again equivalent to the semi-
norm being a norm. The topology thus defined (by either
a norm or a seminorm) can be understood either in terms
of sequences or open sets. A sequence of vectors {vn} is
said to converge in norm to v if ∥vn − v∥ → 0 asn→ ∞
. Equivalently, the topology consists of all sets that can
be represented as a union of open balls.
Two norms ‖•‖α and ‖•‖β on a vector space V are called
equivalent if there exist positive real numbers C and D
such that for all x in V

C ∥x∥α ≤ ∥x∥β ≤ D ∥x∥α .

For instance, on Cn , if p > r > 0, then

∥x∥p ≤ ∥x∥r ≤ n(1/r−1/p) ∥x∥p .

In particular,

∥x∥2 ≤ ∥x∥1 ≤
√
n ∥x∥2

∥x∥∞ ≤ ∥x∥2 ≤
√
n ∥x∥∞

∥x∥∞ ≤ ∥x∥1 ≤ n ∥x∥∞ .

If the vector space is a finite-dimensional real or complex
one, all norms are equivalent. On the other hand, in the
case of infinite-dimensional vector spaces, not all norms
are equivalent.
Equivalent norms define the same notions of continuity
and convergence and for many purposes do not need to
be distinguished. To be more precise the uniform struc-
ture defined by equivalent norms on the vector space is
uniformly isomorphic.
Every (semi)-norm is a sublinear function, which implies
that every norm is a convex function. As a result, finding
a global optimum of a norm-based objective function is
often tractable.
Given a finite family of seminorms pi on a vector space
the sum
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p(x) :=
n∑
i=0

pi(x)

is again a seminorm.
For any norm p on a vector space V, we have that for all
u and v ∈ V:

p(u ± v) ≥ |p(u) − p(v)|.

Proof: Applying the triangular inequality to both p(u−0)
and p(v − 0) :

p(u−0) ≤ p(u−v)+p(v−0) ⇒ p(u−v) ≥ p(u)−p(v)

p(u−0) ≤ p(u+v)+p(0−v) ⇒ p(u+v) ≥ p(u)−p(v)

p(v−0) ≤ p(u−v)+p(u−0) ⇒ p(u−v) ≥ p(v)−p(u)

p(v−0) ≤ p(u+v)+p(0−u) ⇒ p(u+v) ≥ p(v)−p(u)

Thus, p(u ± v) ≥ |p(u) − p(v)|.

If X and Y are normed spaces and u : X → Y is a
continuous linear map, then the norm of u and the norm
of the transpose of u are equal.[4]

For the lp norms, we have Hölder’s inequality[5]

∣∣xTy
∣∣ ≤ ∥x∥p ∥y∥q

1

p
+

1

q
= 1.

A special case of this is the Cauchy–Schwarz inequal-
ity:[5]

∣∣xTy
∣∣ ≤ ∥x∥2 ∥y∥2 .

13.5 Classification of seminorms:
absolutely convex absorbing
sets

All seminorms on a vector space V can be classified in
terms of absolutely convex absorbing sets in V. To each
such set, A, corresponds a seminorm pA called the gauge
of A, defined as

pA(x) := inf{α : α > 0, x ∈ αA}

with the property that

{x : pA(x) < 1} ⊆ A ⊆ {x : pA(x) ≤ 1}.

Conversely:
Any locally convex topological vector space has a local
basis consisting of absolutely convex sets. A common
method to construct such a basis is to use a family (p) of
seminorms p that separates points: the collection of all
finite intersections of sets {p < 1/n} turns the space into
a locally convex topological vector space so that every p
is continuous.
Such a method is used to design weak and weak* topolo-
gies.
norm case:

Suppose now that (p) contains a single p: since
(p) is separating, p is a norm, and A = {p < 1}
is its open unit ball. Then A is an absolutely
convex bounded neighbourhood of 0, and p =
pA is continuous.

The converse is due to Kolmogorov: any locally
convex and locally bounded topological vector
space is normable. Precisely:
If V is an absolutely convex bounded neigh-
bourhood of 0, the gauge gV (so that V = {gV
< 1}) is a norm.

13.6 Generalizations

There are several generalizations of norms and semi-
norms. If p is absolute homogeneity but in place of sub-
additivity we require that
then p satisfies the triangle inequality but is called a quasi-
seminorm and the smallest value of b for which this holds
is called the multiplier of p; if in addition p separates
points then it is called a quasi-norm.
On the other hand, if p satisfies the triangle inequality but
in place of absolute homogeneity we require that
then p is called a k-seminorm.
We have the following relationship between quasi-
seminorms and k-seminorms:

Suppose that q is a quasi-seminorm on a vector
space X with multiplier b. If 0 < k < log22 b
then there exists k-seminorm p on X equivalent
to q.

13.7 See also

• Normed vector space

• Asymmetric norm

• Matrix norm
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• Gowers norm

• Mahalanobis distance

• Manhattan distance

• Relation of norms and metrics
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Chapter 14

Regularization (mathematics)

For other uses in related fields, see Regularization
(disambiguation).

Regularization, in mathematics and statistics and partic-
ularly in the fields of machine learning and inverse prob-
lems, refers to a process of introducing additional in-
formation in order to solve an ill-posed problem or to
prevent overfitting. This information is usually of the
form of a penalty for complexity, such as restrictions for
smoothness or bounds on the vector space norm.
A theoretical justification for regularization is that it at-
tempts to impose Occam’s razor on the solution. From a
Bayesian point of view, many regularization techniques
correspond to imposing certain prior distributions on
model parameters.
The same idea arose in many fields of science. For
example, the least-squares method can be viewed as
a very simple form of regularization. A simple form
of regularization applied to integral equations, gener-
ally termed Tikhonov regularization after Andrey Niko-
layevich Tikhonov, is essentially a trade-off between fit-
ting the data and reducing a norm of the solution. More
recently, non-linear regularization methods, including
total variation regularization have become popular.

14.1 Regularization in statistics
and machine learning

In statistics and machine learning, regularization meth-
ods are used for model selection, in particular to prevent
overfitting by penalizing models with extreme parame-
ter values. The most common variants in machine learn-
ing are L₁ and L₂ regularization, which can be added to
learning algorithms that minimize a loss function E(X,
Y) by instead minimizing E(X, Y) + α‖w‖, where w is
the model’s weight vector, ‖·‖ is either the L₁ norm or the
squared L₂ norm, and α is a free parameter that needs
to be tuned empirically (typically by cross-validation; see
hyperparameter optimization). This method applies to
many models. When applied in linear regression, the re-
sulting models are termed lasso or ridge regression, but
regularization is also employed in (binary and multiclass)

logistic regression, neural nets, support vector machines,
conditional random fields and some matrix decompo-
sition methods. L₂ regularization may also be called
“weight decay”, in particular in the setting of neural nets.
L₁ regularization is often preferred because it produces
sparse models and thus performs feature selection within
the learning algorithm, but since the L₁ norm is not dif-
ferentiable, it may require changes to learning algorithms,
in particular gradient-based learners.[1][2]

Bayesian learning methods make use of a prior proba-
bility that (usually) gives lower probability to more com-
plex models. Well-known model selection techniques in-
clude the Akaike information criterion (AIC), minimum
description length (MDL), and the Bayesian informa-
tion criterion (BIC). Alternative methods of control-
ling overfitting not involving regularization include cross-
validation.
Regularization can be used to fine-tune model complexity
using an augmented error function with cross-validation.
The data sets used in complex models can produce a
levelling-off of validation as complexity of the models in-
creases. Training data sets errors decrease while the vali-
dation data set error remains constant. Regularization in-
troduces a second factor which weights the penalty against
more complex models with an increasing variance in the
data errors. This gives an increasing penalty as model
complexity increases.[3]

Examples of applications of different methods of regu-
larization to the linear model are:
A linear combination of the LASSO and ridge regression
methods is elastic net regularization.

14.2 See also

• Bayesian interpretation of regularization

• Regularization by spectral filtering
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Chapter 15

Loss function

In mathematical optimization, statistics, decision theory
and machine learning, a loss function or cost function
is a function that maps an event or values of one or more
variables onto a real number intuitively representing some
“cost” associated with the event. An optimization prob-
lem seeks to minimize a loss function. An objective
function is either a loss function or its negative (some-
times called a reward function, a profit function, a utility
function, etc.), in which case it is to be maximized.
In statistics, typically a loss function is used for parameter
estimation, and the event in question is some function of
the difference between estimated and true values for an
instance of data. The concept, as old as Laplace, was
reintroduced in statistics by Abraham Wald in the mid-
dle of the 20th century.[1] In the context of economics,
for example, this is usually economic cost or regret. In
classification, it is the penalty for an incorrect classifi-
cation of an example. In actuarial science, it is used in
an insurance context to model benefits paid over premi-
ums, particularly since the works of Harald Cramér in
the 1920s.[2] In optimal control the loss is the penalty for
failing to achieve a desired value. In financial risk man-
agement the function is precisely mapped to a monetary
loss.

15.1 Use in statistics

Parameter estimation for supervised learning tasks such
as regression or classification can be formulated as the
minimization of a loss function over a training set. The
goal of estimation is to find a function that models its input
well: if it were applied to the training set, it should predict
the values (or class labels) associated with the samples in
that set. The loss function quantifies the amount by which
the prediction deviates from the actual values.

15.1.1 Definition

Formally, we begin by considering some family of distri-
butions for a random variable X, that is indexed by some
θ.
More intuitively, we can think of X as our “data”, perhaps

X = (X1, . . . , Xn) , where Xi ∼ Fθ i.i.d. The X is the
set of things the decision rule will be making decisions
on. There exists some number of possible ways Fθ to
model our data X, which our decision function can use to
make decisions. For a finite number of models, we can
thus think of θ as the index to this family of probability
models. For an infinite family of models, it is a set of
parameters to the family of distributions.
On a more practical note, it is important to understand
that, while it is tempting to think of loss functions as nec-
essarily parametric (since they seem to take θ as a “pa-
rameter”), the fact that θ is infinite-dimensional is com-
pletely incompatible with this notion; for example, if the
family of probability functions is uncountably infinite, θ
indexes an uncountably infinite space.
From here, given a set A of possible actions, a decision
rule is a function δ : X → A.
A loss function is a real lower-bounded function L on Θ
× A for some θ ∈ Θ. The value L(θ, δ(X)) is the cost of
action δ(X) under parameter θ.[3]

15.2 Expected loss

The value of the loss function itself is a random quantity
because it depends on the outcome of a random variable
X. Both frequentist and Bayesian statistical theory involve
making a decision based on the expected value of the loss
function: however this quantity is defined differently un-
der the two paradigms.

15.2.1 Frequentist expected loss

We first define the expected loss in the frequentist context.
It is obtained by taking the expected value with respect to
the probability distribution, Pθ, of the observed data, X.
This is also referred to as the risk function[4] [5][6][7] of
the decision rule δ and the parameter θ. Here the decision
rule depends on the outcome of X. The risk function is
given by[8]
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R(θ, δ) = EθL
(
θ, δ(X)

)
=

∫
X

L
(
θ, δ(x)

)
dPθ(x).

15.2.2 Bayesian expected loss

In a Bayesian approach, the expectation is calculated us-
ing the posterior distribution π* of the parameter θ:

ρ(π∗, a) =

∫
Θ

L(θ, a) dπ∗(θ)

One then should choose the action a* which minimises
the expected loss. Although this will result in choosing
the same action as would be chosen using the frequentist
risk, the emphasis of the Bayesian approach is that one is
only interested in choosing the optimal action under the
actual observed data, whereas choosing the actual Bayes
optimal decision rule, which is a function of all possible
observations, is a much more difficult problem.

15.2.3 Economic choice under uncertainty

In economics, decision-making under uncertainty is of-
ten modelled using the von Neumann-Morgenstern util-
ity function of the uncertain variable of interest, such as
end-of-period wealth. Since the value of this variable is
uncertain, so is the value of the utility function; it is the
expected value of utility that is maximized.

15.2.4 Examples

• For a scalar parameter θ, a decision function whose
output θ̂ is an estimate of θ, and a quadratic loss
function

L(θ, θ̂) = (θ − θ̂)2,

the risk function becomes the mean squared er-
ror of the estimate,

R(θ, θ̂) = Eθ(θ − θ̂)2.

• In density estimation, the unknown parameter is
probability density itself. The loss function is typi-
cally chosen to be a norm in an appropriate function
space. For example, for L2 norm,

L(f, f̂) = ∥f − f̂∥22 ,

the risk function becomes the mean integrated
squared error

R(f, f̂) = E∥f − f̂∥2.

15.3 Decision rules

A decision rule makes a choice using an optimality crite-
rion. Some commonly used criteria are:

• Minimax: Choose the decision rule with the lowest
worst loss — that is, minimize the worst-case (max-
imum possible) loss:

arg min
δ

max
θ∈Θ

R(θ, δ).

• Invariance: Choose the optimal decision rule which
satisfies an invariance requirement.

• Choose the decision rule with the lowest average loss
(i.e. minimize the expected value of the loss func-
tion):

arg min
δ

Eθ∈Θ[R(θ, δ)] = arg min
δ

∫
θ∈Θ

R(θ, δ) p(θ) dθ.

15.4 Selecting a loss function

Sound statistical practice requires selecting an estima-
tor consistent with the actual acceptable variation ex-
perienced in the context of a particular applied prob-
lem. Thus, in the applied use of loss functions, selecting
which statistical method to use to model an applied prob-
lem depends on knowing the losses that will be experi-
enced from being wrong under the problem’s particular
circumstances.[9]

A common example involves estimating "location.” Un-
der typical statistical assumptions, the mean or average
is the statistic for estimating location that minimizes the
expected loss experienced under the squared-error loss
function, while the median is the estimator that min-
imizes expected loss experienced under the absolute-
difference loss function. Still different estimators would
be optimal under other, less common circumstances.
In economics, when an agent is risk neutral, the objective
function is simply expressed in monetary terms, such as
profit, income, or end-of-period wealth.
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But for risk-averse (or risk-loving) agents, loss is mea-
sured as the negative of a utility function, which rep-
resents satisfaction and is usually interpreted in ordinal
terms rather than in cardinal (absolute) terms.
Other measures of cost are possible, for example
mortality or morbidity in the field of public health or
safety engineering.
For most optimization algorithms, it is desirable to have
a loss function that is globally continuous and differen-
tiable.
Two very commonly used loss functions are the squared
loss, L(a) = a2 , and the absolute loss, L(a) = |a| .
However the absolute loss has the disadvantage that it
is not differentiable at a = 0 . The squared loss has
the disadvantage that it has the tendency to be domi-
nated by outliers—when summing over a set of a 's (as
in
∑n
i=1 L(ai) ), the final sum tends to be the result of a

few particularly large a-values, rather than an expression
of the average a-value.
The choice of a loss function is not arbitrary. It is very re-
strictive and sometimes the loss function may be charac-
terized by its desirable properties.[10] Among the choice
principles are, for example, the requirement of complete-
ness of the class of symmetric statistics in the case of i.i.d.
observations, the principle of complete information, and
some others.

15.5 Loss functions in Bayesian
statistics

One of the consequences of Bayesian inference is that
in addition to experimental data, the loss function does
not in itself wholly determine a decision. What is im-
portant is the relationship between the loss function and
the posterior probability. So it is possible to have two
different loss functions which lead to the same decision
when the prior probability distributions associated with
each compensate for the details of each loss function.
Combining the three elements of the prior probability,
the data, and the loss function then allows decisions to
be based on maximizing the subjective expected utility, a
concept introduced by Leonard J. Savage.

15.6 Regret

Main article: Regret (decision theory)

Savage also argued that using non-Bayesian methods such
as minimax, the loss function should be based on the idea
of regret, i.e., the loss associated with a decision should
be the difference between the consequences of the best
decision that could have been taken had the underlying

circumstances been known and the decision that was in
fact taken before they were known.

15.7 Quadratic loss function

The use of a quadratic loss function is common, for ex-
ample when using least squares techniques. It is often
more mathematically tractable than other loss functions
because of the properties of variances, as well as being
symmetric: an error above the target causes the same loss
as the same magnitude of error below the target. If the
target is t, then a quadratic loss function is

λ(x) = C(t− x)2

for some constant C; the value of the constant makes no
difference to a decision, and can be ignored by setting it
equal to 1.
Many common statistics, including t-tests, regression
models, design of experiments, and much else, use least
squares methods applied using linear regression theory,
which is based on the quadratric loss function.
The quadratic loss function is also used in linear-
quadratic optimal control problems. In these problems,
even in the absence of uncertainty, it may not be possi-
ble to achieve the desired values of all target variables.
Often loss is expressed as a quadratic form in the devia-
tions of the variables of interest from their desired values;
this approach is tractable because it results in linear first-
order conditions. In the context of stochastic control, the
expected value of the quadratic form is used.

15.8 0-1 loss function

In statistics and decision theory, a frequently used loss
function is the 0-1 loss function

L(ŷ, y) = I(ŷ ̸= y),

where I is the indicator notation.

15.9 See also

• Discounted maximum loss

• Hinge loss

• Scoring rule
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Chapter 16

Least squares

The method of least squares is a standard approach
in regression analysis to the approximate solution of
overdetermined systems, i.e., sets of equations in which
there are more equations than unknowns. “Least squares”
means that the overall solution minimizes the sum of the
squares of the errors made in the results of every single
equation.
The most important application is in data fitting. The
best fit in the least-squares sense minimizes the sum of
squared residuals, a residual being the difference between
an observed value and the fitted value provided by a
model. When the problem has substantial uncertainties
in the independent variable (the x variable), then simple
regression and least squares methods have problems; in
such cases, the methodology required for fitting errors-
in-variables models may be considered instead of that for
least squares.
Least squares problems fall into two categories: linear or
ordinary least squares and non-linear least squares, de-
pending on whether or not the residuals are linear in all
unknowns. The linear least-squares problem occurs in
statistical regression analysis; it has a closed-form solu-
tion. The non-linear problem is usually solved by iterative
refinement; at each iteration the system is approximated
by a linear one, and thus the core calculation is similar in
both cases.
Polynomial least squares describes the variance in a pre-
diction of the dependent variable as a function of the
independent variable and the deviations from the fitted
curve.
When the observations come from an exponential family
and mild conditions are satisfied, least-squares estimates
and maximum-likelihood estimates are identical.[1] The
method of least squares can also be derived as a method
of moments estimator.
The following discussion is mostly presented in terms of
linear functions but the use of least-squares is valid and
practical for more general families of functions. Also,
by iteratively applying local quadratic approximation to
the likelihood (through the Fisher information), the least-
squares method may be used to fit a generalized linear
model.

For the topic of approximating a function by a sum of
others using an objective function based on squared dis-
tances, see least squares (function approximation).

The result of fitting a set of data points with a quadratic function.

The least-squares method is usually credited to Carl
Friedrich Gauss (1795),[2] but it was first published by
Adrien-Marie Legendre.[3]

16.1 History

16.1.1 Context

The method of least squares grew out of the fields of
astronomy and geodesy as scientists and mathematicians
sought to provide solutions to the challenges of navigating
the Earth’s oceans during the Age of Exploration. The ac-
curate description of the behavior of celestial bodies was
the key to enabling ships to sail in open seas, where sailors
could no longer rely on land sightings for navigation.
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Conic fitting a set of points using least-squares approximation.

The method was the culmination of several advances that
took place during the course of the eighteenth century:[4]

• The combination of different observations as being
the best estimate of the true value; errors decrease
with aggregation rather than increase, perhaps first
expressed by Roger Cotes in 1722.

• The combination of different observations taken un-
der the same conditions contrary to simply trying
one’s best to observe and record a single observa-
tion accurately. The approach was known as the
method of averages. This approach was notably
used by Tobias Mayer while studying the librations
of the moon in 1750, and by Pierre-Simon Laplace
in his work in explaining the differences in motion
of Jupiter and Saturn in 1788.

• The combination of different observations taken un-
der different conditions. The method came to be
known as the method of least absolute deviation. It
was notably performed by Roger Joseph Boscovich
in his work on the shape of the earth in 1757 and
by Pierre-Simon Laplace for the same problem in
1799.

• The development of a criterion that can be evaluated
to determine when the solution with the minimum
error has been achieved. Laplace tried to specify
a mathematical form of the probability density for
the errors and define a method of estimation that
minimizes the error of estimation. For this pur-
pose, Laplace used a symmetric two-sided exponen-
tial distribution we now call Laplace distribution to
model the error distribution, and used the sum of ab-
solute deviation as error of estimation. He felt these
to be the simplest assumptions he could make, and
he had hoped to obtain the arithmetic mean as the
best estimate. Instead, his estimator was the poste-
rior median.

Carl Friedrich Gauss

16.1.2 The method

The first clear and concise exposition of the method of
least squares was published by Legendre in 1805.[5] The
technique is described as an algebraic procedure for fit-
ting linear equations to data and Legendre demonstrates
the new method by analyzing the same data as Laplace for
the shape of the earth. The value of Legendre’s method
of least squares was immediately recognized by leading
astronomers and geodesists of the time.
In 1809 Carl Friedrich Gauss published his method of
calculating the orbits of celestial bodies. In that work
he claimed to have been in possession of the method of
least squares since 1795. This naturally led to a priority
dispute with Legendre. However, to Gauss’s credit, he
went beyond Legendre and succeeded in connecting the
method of least squares with the principles of probabil-
ity and to the normal distribution. He had managed to
complete Laplace’s program of specifying a mathemati-
cal form of the probability density for the observations,
depending on a finite number of unknown parameters,
and define a method of estimation that minimizes the er-
ror of estimation. Gauss showed that arithmetic mean
is indeed the best estimate of the location parameter by
changing both the probability density and the method of
estimation. He then turned the problem around by ask-
ing what form the density should have and what method
of estimation should be used to get the arithmetic mean
as estimate of the location parameter. In this attempt, he
invented the normal distribution.
An early demonstration of the strength of Gauss’ Method
came when it was used to predict the future location
of the newly discovered asteroid Ceres. On 1 January
1801, the Italian astronomer Giuseppe Piazzi discovered
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Ceres and was able to track its path for 40 days before
it was lost in the glare of the sun. Based on this data,
astronomers desired to determine the location of Ceres
after it emerged from behind the sun without solving
the complicated Kepler’s nonlinear equations of plane-
tary motion. The only predictions that successfully al-
lowed Hungarian astronomer Franz Xaver von Zach to
relocate Ceres were those performed by the 24-year-old
Gauss using least-squares analysis.
In 1810, after reading Gauss’s work, Laplace, after prov-
ing the central limit theorem, used it to give a large sample
justification for the method of least square and the nor-
mal distribution. In 1822, Gauss was able to state that the
least-squares approach to regression analysis is optimal in
the sense that in a linear model where the errors have a
mean of zero, are uncorrelated, and have equal variances,
the best linear unbiased estimator of the coefficients is
the least-squares estimator. This result is known as the
Gauss–Markov theorem.
The idea of least-squares analysis was also independently
formulated by the American Robert Adrain in 1808. In
the next two centuries workers in the theory of errors and
in statistics found many different ways of implementing
least squares.[6]

16.2 Problem statement

The objective consists of adjusting the parameters of a
model function to best fit a data set. A simple data set
consists of n points (data pairs) (xi, yi), i = 1, ..., n, where
xiis an independent variable and yiis a dependent variable
whose value is found by observation. The model function
has the form f(x, β) , where m adjustable parameters are
held in the vector β . The goal is to find the parameter
values for the model which “best” fits the data. The least
squares method finds its optimum when the sum, S, of
squared residuals

S =

n∑
i=1

ri
2

is a minimum. A residual is defined as the difference be-
tween the actual value of the dependent variable and the
value predicted by the model.

ri = yi − f(xi,β).

An example of a model is that of the straight line in two
dimensions. Denoting the intercept as β0 and the slope as
β1 , the model function is given by f(x,β) = β0 + β1x
. See linear least squares for a fully worked out example
of this model.
A data point may consist of more than one independent
variable. For example, when fitting a plane to a set of

height measurements, the plane is a function of two inde-
pendent variables, x and z, say. In the most general case
there may be one or more independent variables and one
or more dependent variables at each data point.

16.3 Limitations

This regression formulation considers only residuals in
the dependent variable. There are two rather different
contexts in which different implications apply:

• Regression for prediction. Here a model is fitted to
provide a prediction rule for application in a sim-
ilar situation to which the data used for fitting ap-
ply. Here the dependent variables corresponding to
such future application would be subject to the same
types of observation error as those in the data used
for fitting. It is therefore logically consistent to use
the least-squares prediction rule for such data.

• Regression for fitting a “true relationship”. In stan-
dard regression analysis, that leads to fitting by least
squares, there is an implicit assumption that er-
rors in the independent variable are zero or strictly
controlled so as to be negligible. When errors in
the independent variable are non-negligible, models
of measurement error can be used; such methods
can lead to parameter estimates, hypothesis testing
and confidence intervals that take into account the
presence of observation errors in the independent
variables.[7] An alternative approach is to fit a model
by total least squares; this can be viewed as taking a
pragmatic approach to balancing the effects of the
different sources of error in formulating an objec-
tive function for use in model-fitting.

16.4 Solving the least squares prob-
lem

The minimum of the sum of squares is found by setting
the gradient to zero. Since the model contains m param-
eters, there are m gradient equations:

∂S

∂βj
= 2

∑
i

ri
∂ri
∂βj

= 0, j = 1, . . . ,m,

and since ri = yi − f(xi,β) , the gradient equations
become

−2
∑
i

ri
∂f(xi,β)

∂βj
= 0, j = 1, . . . ,m.

The gradient equations apply to all least squares problems.
Each particular problem requires particular expressions
for the model and its partial derivatives.
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16.4.1 Linear least squares

Main article: Linear least squares

A regression model is a linear one when the model com-
prises a linear combination of the parameters, i.e.,

f(x, β) =
m∑
j=1

βjϕj(x),

where the function ϕj is a function of x .
Letting

Xij =
∂f(xi,β)

∂βj
= ϕj(xi),

we can then see that in that case the least square estimate
(or estimator, in the context of a random sample), β is
given by

β̂ = (XTX)−1XTy.

For a derivation of this estimate see Linear least squares
(mathematics).

16.4.2 Non-linear least squares

Main article: Non-linear least squares

There is no closed-form solution to a non-linear least
squares problem. Instead, numerical algorithms are used
to find the value of the parameters β that minimizes the
objective. Most algorithms involve choosing initial val-
ues for the parameters. Then, the parameters are refined
iteratively, that is, the values are obtained by successive
approximation:

βj
k+1 = βj

k +∆βj ,

where k is an iteration number, and the vector of incre-
ments ∆βj is called the shift vector. In some commonly
used algorithms, at each iteration the model may be lin-
earized by approximation to a first-order Taylor series ex-
pansion about βk :

f(xi,β) = fk(xi,β) +
∑
j

∂f(xi,β)

∂βj

(
βj − βj

k
)

= fk(xi,β) +
∑
j

Jij∆βj .

The Jacobian J is a function of constants, the indepen-
dent variable and the parameters, so it changes from one
iteration to the next. The residuals are given by

ri = yi−fk(xi,β)−
m∑
k=1

Jik∆βk = ∆yi−
m∑
j=1

Jij∆βj .

To minimize the sum of squares of ri , the gradient equa-
tion is set to zero and solved for ∆βj :

−2

n∑
i=1

Jij

(
∆yi −

m∑
k=1

Jik∆βk

)
= 0,

which, on rearrangement, become m simultaneous linear
equations, the normal equations:

n∑
i=1

m∑
k=1

JijJik∆βk =
n∑
i=1

Jij∆yi (j = 1, . . . ,m).

The normal equations are written in matrix notation as

(
JTJ
)
�β = JT�y.

These are the defining equations of the Gauss–Newton
algorithm.

16.4.3 Differences between linear and non-
linear least squares

• The model function, f, in LLSQ (linear least
squares) is a linear combination of parameters of
the form f = Xi1β1 + Xi2β2 + · · · The model
may represent a straight line, a parabola or any other
linear combination of functions. In NLLSQ (non-
linear least squares) the parameters appear as func-
tions, such as β2, eβx and so forth. If the deriva-
tives ∂f/∂βj are either constant or depend only on
the values of the independent variable, the model
is linear in the parameters. Otherwise the model is
non-linear.

• Algorithms for finding the solution to a NLLSQ
problem require initial values for the parameters,
LLSQ does not.

• Like LLSQ, solution algorithms for NLLSQ often
require that the Jacobian be calculated. Analytical
expressions for the partial derivatives can be compli-
cated. If analytical expressions are impossible to ob-
tain either the partial derivatives must be calculated
by numerical approximation or an estimate must be
made of the Jacobian.

• In NLLSQ non-convergence (failure of the algo-
rithm to find a minimum) is a common phenomenon
whereas the LLSQ is globally concave so non-
convergence is not an issue.
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• NLLSQ is usually an iterative process. The iterative
process has to be terminated when a convergence
criterion is satisfied. LLSQ solutions can be com-
puted using direct methods, although problems with
large numbers of parameters are typically solved
with iterative methods, such as the Gauss–Seidel
method.

• In LLSQ the solution is unique, but in NLLSQ there
may be multiple minima in the sum of squares.

• Under the condition that the errors are uncorrelated
with the predictor variables, LLSQ yields unbiased
estimates, but even under that condition NLLSQ es-
timates are generally biased.

These differences must be considered whenever the solu-
tion to a non-linear least squares problem is being sought.

16.5 Least squares, regression
analysis and statistics

The method of least squares is often used to generate es-
timators and other statistics in regression analysis.
Consider a simple example drawn from physics. A spring
should obey Hooke’s law which states that the extension
of a spring y is proportional to the force, F, applied to it.

y = f(F, k) = kF

constitutes the model, where F is the independent vari-
able. To estimate the force constant, k, a series of n mea-
surements with different forces will produce a set of data,
(Fi, yi), i = 1, . . . , n , where yi is a measured spring
extension. Each experimental observation will contain
some error. If we denote this error ε , we may specify
an empirical model for our observations,

yi = kFi + εi.

There are many methods we might use to estimate the
unknown parameter k. Noting that the n equations in the
m variables in our data comprise an overdetermined sys-
tem with one unknown and n equations, we may choose
to estimate k using least squares. The sum of squares to
be minimized is

S =
n∑
i=1

(yi − kFi)
2
.

The least squares estimate of the force constant, k, is
given by

k̂ =

∑
i Fiyi∑
i Fi

2 .

Here it is assumed that application of the force causes the
spring to expand and, having derived the force constant by
least squares fitting, the extension can be predicted from
Hooke’s law.
In regression analysis the researcher specifies an empir-
ical model. For example, a very common model is the
straight line model which is used to test if there is a
linear relationship between dependent and independent
variable. If a linear relationship is found to exist, the
variables are said to be correlated. However, correlation
does not prove causation, as both variables may be corre-
lated with other, hidden, variables, or the dependent vari-
able may “reverse” cause the independent variables, or
the variables may be otherwise spuriously correlated. For
example, suppose there is a correlation between deaths by
drowning and the volume of ice cream sales at a partic-
ular beach. Yet, both the number of people going swim-
ming and the volume of ice cream sales increase as the
weather gets hotter, and presumably the number of deaths
by drowning is correlated with the number of people go-
ing swimming. Perhaps an increase in swimmers causes
both the other variables to increase.
In order to make statistical tests on the results it is neces-
sary to make assumptions about the nature of the exper-
imental errors. A common (but not necessary) assump-
tion is that the errors belong to a normal distribution. The
central limit theorem supports the idea that this is a good
approximation in many cases.

• The Gauss–Markov theorem. In a linear model in
which the errors have expectation zero conditional
on the independent variables, are uncorrelated and
have equal variances, the best linear unbiased esti-
mator of any linear combination of the observations,
is its least-squares estimator. “Best” means that the
least squares estimators of the parameters have min-
imum variance. The assumption of equal variance
is valid when the errors all belong to the same dis-
tribution.

• In a linear model, if the errors belong to a normal
distribution the least squares estimators are also the
maximum likelihood estimators.

However, if the errors are not normally distributed, a
central limit theorem often nonetheless implies that the
parameter estimates will be approximately normally dis-
tributed so long as the sample is reasonably large. For this
reason, given the important property that the error mean
is independent of the independent variables, the distribu-
tion of the error term is not an important issue in regres-
sion analysis. Specifically, it is not typically important
whether the error term follows a normal distribution.
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In a least squares calculation with unit weights, or in lin-
ear regression, the variance on the jth parameter, denoted
var(β̂j) , is usually estimated with

var(β̂j) = σ2
([
XTX

]−1
)
jj

≈ S

n−m

([
XTX

]−1
)
jj
,

where the true residual variance σ2 is replaced by an esti-
mate based on the minimised value of the sum of squares
objective function S. The denominator, n − m, is the
statistical degrees of freedom; see effective degrees of
freedom for generalizations.
Confidence limits can be found if the probability distribu-
tion of the parameters is known, or an asymptotic approx-
imation is made, or assumed. Likewise statistical tests on
the residuals can be made if the probability distribution
of the residuals is known or assumed. The probability
distribution of any linear combination of the dependent
variables can be derived if the probability distribution of
experimental errors is known or assumed. Inference is
particularly straightforward if the errors are assumed to
follow a normal distribution, which implies that the pa-
rameter estimates and residuals will also be normally dis-
tributed conditional on the values of the independent vari-
ables.

16.6 Weighted least squares

See also: Weighted mean and Linear least squares
(mathematics) § Weighted linear least squares

A special case of generalized least squares called
weighted least squares occurs when all the off-diagonal
entries of Ω (the correlation matrix of the residu-
als) are null; the variances of the observations (along
the covariance matrix diagonal) may still be unequal
(heteroskedasticity).
The expressions given above are based on the implicit as-
sumption that the errors are uncorrelated with each other
and with the independent variables and have equal vari-
ance. The Gauss–Markov theorem shows that, when this
is so, β̂ is a best linear unbiased estimator (BLUE). If,
however, the measurements are uncorrelated but have
different uncertainties, a modified approach might be
adopted. Aitken showed that when a weighted sum of
squared residuals is minimized, β̂ is the BLUE if each
weight is equal to the reciprocal of the variance of the
measurement

S =
n∑
i=1

Wiiri
2, Wii =

1

σi2

The gradient equations for this sum of squares are

−2
∑
i

Wii
∂f(xi,β)

∂βj
ri = 0, j = 1, . . . , n

which, in a linear least squares system give the modified
normal equations,

n∑
i=1

m∑
k=1

XijWiiXikβ̂k =
n∑
i=1

XijWiiyi, j = 1, . . . ,m .

When the observational errors are uncorrelated and the
weight matrix, W, is diagonal, these may be written as

(
XTWX

)
β̂ = XTWy.

If the errors are correlated, the resulting estimator is the
BLUE if the weight matrix is equal to the inverse of the
variance-covariance matrix of the observations.
When the errors are uncorrelated, it is convenient to
simplify the calculations to factor the weight matrix as
wii =

√
Wii . The normal equations can then be written

as

(
X′TX′) β̂ = X′Ty′

where

X′ = wX, y′ = wy.

For non-linear least squares systems a similar argument
shows that the normal equations should be modified as
follows.

(
JTWJ

)
∆β = JTW∆y.

Note that for empirical tests, the appropriate W is not
known for sure and must be estimated. For this feasible
generalized least squares (FGLS) techniques may be
used.

16.7 Relationship to principal com-
ponents

The first principal component about the mean of a set of
points can be represented by that line which most closely
approaches the data points (as measured by squared dis-
tance of closest approach, i.e. perpendicular to the line).
In contrast, linear least squares tries to minimize the dis-
tance in the y direction only. Thus, although the two use
a similar error metric, linear least squares is a method
that treats one dimension of the data preferentially, while
PCA treats all dimensions equally.
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16.8 Regularized versions

16.8.1 Tikhonov regularization

Main article: Tikhonov regularization

In some contexts a regularized version of the least squares
solution may be preferable. Tikhonov regularization (or
ridge regression) adds a constraint that ∥β∥2 , the L2-
norm of the parameter vector, is not greater than a given
value. Equivalently, it may solve an unconstrained mini-
mization of the least-squares penalty with α∥β∥2 added,
where α is a constant (this is the Lagrangian form of
the constrained problem). In a Bayesian context, this is
equivalent to placing a zero-mean normally distributed
prior on the parameter vector.

16.8.2 Lasso method

An alternative regularized version of least squares is lasso
(least absolute shrinkage and selection operator), which
uses the constraint that ∥β∥1 , the L1-norm of the pa-
rameter vector, is no greater than a given value.[8][9][10]

(As above, this is equivalent to an unconstrained mini-
mization of the least-squares penalty with α∥β∥1 added.)
In a Bayesian context, this is equivalent to placing a
zero-mean Laplace prior distribution on the parameter
vector.[11] The optimization problem may be solved us-
ing quadratic programming or more general convex opti-
mization methods, as well as by specific algorithms such
as the least angle regression algorithm.
One of the prime differences between Lasso and ridge
regression is that in ridge regression, as the penalty is
increased, all parameters are reduced while still remain-
ing non-zero, while in Lasso, increasing the penalty will
cause more and more of the parameters to be driven to
zero. This is an advantage of Lasso over ridge regres-
sion, as driving parameters to zero deselects the features
from the regression. Thus, Lasso automatically selects
more relevant features and discards the others, whereas
Ridge regression never fully discards any features. Some
feature selection techniques are developed based on the
LASSO including Bolasso which bootstraps samples,[12]

and FeaLect which analyzes the regression coefficients
corresponding to different values of α to score all the
features.[13]

The L1-regularized formulation is useful in some contexts
due to its tendency to prefer solutions with fewer nonzero
parameter values, effectively reducing the number of
variables upon which the given solution is dependent.[8]

For this reason, the Lasso and its variants are fundamen-
tal to the field of compressed sensing. An extension of
this approach is elastic net regularization.

16.9 See also
• Adjustment of observations

• Bayesian MMSE estimator

• Best linear unbiased estimator (BLUE)

• Best linear unbiased prediction (BLUP)

• Gauss–Markov theorem

• L2 norm

• Least absolute deviation

• Measurement uncertainty

• Proximal gradient methods for learning

• Quadratic loss function

• Root mean square

• Squared deviations
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Chapter 17

Newton’s method

This article is about Newton’s method for finding roots.
For Newton’s method for finding minima, see Newton’s
method in optimization.

In numerical analysis, Newton’s method (also known as
theNewton–Raphsonmethod), named after Isaac New-
ton and Joseph Raphson, is a method for finding succes-
sively better approximations to the roots (or zeroes) of a
real-valued function.

x : f(x) = 0 .

The Newton–Raphson method in one variable is imple-
mented as follows:
Given a function ƒ defined over the reals x, and its
derivative ƒ', we begin with a first guess x0 for a root of
the function f. Provided the function satisfies all the as-
sumptions made in the derivation of the formula, a better
approximation x1 is

x1 = x0 −
f(x0)

f ′(x0)
.

Geometrically, (x1, 0) is the intersection with the x-axis
of the tangent to the graph of f at (x0, f (x0)).
The process is repeated as

xn+1 = xn − f(xn)

f ′(xn)

until a sufficiently accurate value is reached.
This algorithm is first in the class of Householder’s meth-
ods, succeeded by Halley’s method. The method can also
be extended to complex functions and to systems of equa-
tions.

17.1 Description

The idea of the method is as follows: one starts with
an initial guess which is reasonably close to the true

The function ƒ is shown in blue and the tangent line is in red. We
see that x⛼+1 is a better approximation than x⛼ for the root x of
the function f.

root, then the function is approximated by its tangent
line (which can be computed using the tools of calculus),
and one computes the x-intercept of this tangent line
(which is easily done with elementary algebra). This x-
intercept will typically be a better approximation to the
function’s root than the original guess, and the method
can be iterated.
Suppose ƒ : [a, b] →R is a differentiable function defined
on the interval [a, b] with values in the real numbers R.
The formula for converging on the root can be easily de-
rived. Suppose we have some current approximation xn.
Then we can derive the formula for a better approxima-
tion, xn₊₁ by referring to the diagram on the right. The
equation of the tangent line to the curve y = ƒ(x) at the
point x=xn is

y = f ′(xn) (x− xn) + f(xn),

where, ƒ' denotes the derivative of the function ƒ.
The x-intercept of this line (the value of x such that y=0)
is then used as the next approximation to the root, xn₊₁.
In other words, setting y to zero and x to xn₊₁ gives

0 = f ′(xn) (xn+1 − xn) + f(xn).

Solving for xn₊₁ gives
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xn+1 = xn − f(xn)

f ′(xn)
.

We start the process off with some arbitrary initial value
x0. (The closer to the zero, the better. But, in the ab-
sence of any intuition about where the zero might lie,
a “guess and check” method might narrow the possibil-
ities to a reasonably small interval by appealing to the
intermediate value theorem.) The method will usually
converge, provided this initial guess is close enough to
the unknown zero, and that ƒ'(x0) ≠ 0. Furthermore,
for a zero of multiplicity 1, the convergence is at least
quadratic (see rate of convergence) in a neighbourhood
of the zero, which intuitively means that the number of
correct digits roughly at least doubles in every step. More
details can be found in the analysis section below.
The Householder’s methods are similar but have higher
order for even faster convergence. However, the extra
computations required for each step can slow down the
overall performance relative to Newton’s method, partic-
ularly if f or its derivatives are computationally expensive
to evaluate.

17.2 History

The name “Newton’s method” is derived from Isaac New-
ton's description of a special case of the method in
De analysi per aequationes numero terminorum infinitas
(written in 1669, published in 1711 by William Jones)
and in De metodis fluxionum et serierum infinitarum (writ-
ten in 1671, translated and published as Method of Flux-
ions in 1736 by John Colson). However, his method dif-
fers substantially from the modern method given above:
Newton applies the method only to polynomials. He does
not compute the successive approximations xn , but com-
putes a sequence of polynomials, and only at the end ar-
rives at an approximation for the root x. Finally, Newton
views the method as purely algebraic and makes no men-
tion of the connection with calculus. Newton may have
derived his method from a similar but less precise method
by Vieta. The essence of Vieta’s method can be found in
the work of the Persian mathematician Sharaf al-Din al-
Tusi, while his successor Jamshīd al-Kāshī used a form
of Newton’s method to solve xP − N = 0 to find roots
of N (Ypma 1995). A special case of Newton’s method
for calculating square roots was known much earlier and
is often called the Babylonian method.
Newton’s method was used by 17th-century Japanese
mathematician Seki Kōwa to solve single-variable equa-
tions, though the connection with calculus was missing.
Newton’s method was first published in 1685 in ATreatise
of Algebra both Historical and Practical by John Wallis.
In 1690, Joseph Raphson published a simplified descrip-
tion in Analysis aequationum universalis. Raphson again

viewed Newton’s method purely as an algebraic method
and restricted its use to polynomials, but he describes the
method in terms of the successive approximations xn in-
stead of the more complicated sequence of polynomials
used by Newton. Finally, in 1740, Thomas Simpson de-
scribed Newton’s method as an iterative method for solv-
ing general nonlinear equations using calculus, essentially
giving the description above. In the same publication,
Simpson also gives the generalization to systems of two
equations and notes that Newton’s method can be used
for solving optimization problems by setting the gradient
to zero.
Arthur Cayley in 1879 in The Newton-Fourier imaginary
problem was the first to notice the difficulties in gener-
alizing Newton’s method to complex roots of polynomi-
als with degree greater than 2 and complex initial values.
This opened the way to the study of the theory of itera-
tions of rational functions.

17.3 Practical considerations

Newton’s method is an extremely powerful technique—
in general the convergence is quadratic: as the method
converges on the root, the difference between the root
and the approximation is squared (the number of accu-
rate digits roughly doubles) at each step. However, there
are some difficulties with the method.

17.3.1 Difficulty in calculating derivative
of a function

Newton’s method requires that the derivative be calcu-
lated directly. An analytical expression for the deriva-
tive may not be easily obtainable and could be expensive
to evaluate. In these situations, it may be appropriate to
approximate the derivative by using the slope of a line
through two nearby points on the function. Using this
approximation would result in something like the secant
method whose convergence is slower than that of New-
ton’s method.

17.3.2 Failure of themethod to converge to
the root

It is important to review the proof of quadratic con-
vergence of Newton’s Method before implementing it.
Specifically, one should review the assumptions made in
the proof. For situations where the method fails to con-
verge, it is because the assumptions made in this proof
are not met.
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Overshoot

If the first derivative is not well behaved in the neighbor-
hood of a particular root, the method may overshoot, and
diverge from that root. An example of a function with
one root, for which the derivative is not well behaved in
the neighborhood of the root, is

f(x) = |x|a, 0 < a < 1
2

for which the root will be overshot and the sequence of x
will diverge. For a = 1/2, the root will still be overshot,
but the sequence will oscillate between two values. For
1/2 < a < 1, the root will still be overshot but the sequence
will converge, and for a ≥ 1 the root will not be overshot
at all.
In some cases, Newton’s method can be stabilized by us-
ing successive over-relaxation, or the speed of conver-
gence can be increased by using the same method.

Stationary point

If a stationary point of the function is encountered, the
derivative is zero and the method will terminate due to
division by zero.

Poor initial estimate

A large error in the initial estimate can contribute to non-
convergence of the algorithm.

Mitigation of non-convergence

In a robust implementation of Newton’s method, it is
common to place limits on the number of iterations,
bound the solution to an interval known to contain the
root, and combine the method with a more robust root
finding method.

17.3.3 Slow convergence for roots of mul-
tiplicity > 1

If the root being sought has multiplicity greater than one,
the convergence rate is merely linear (errors reduced by a
constant factor at each step) unless special steps are taken.
When there are two or more roots that are close together
then it may take many iterations before the iterates get
close enough to one of them for the quadratic conver-
gence to be apparent. However, if the multiplicity m of
the root is known, one can use the following modified al-
gorithm that preserves the quadratic convergence rate:

xn+1 = xn −m f(xn)
f ′(xn)

. [1]

This is equivalent to using successive over-relaxation. On
the other hand, if the multiplicity m of the root is not
known, it is possible to estimate m after carrying out one
or two iterations, and then use that value to increase the
rate of convergence.

17.4 Analysis

Suppose that the function ƒ has a zero at α, i.e., ƒ(α) = 0,
and ƒ is differentiable in a neighborhood of α.
If f is continuously differentiable and its derivative is
nonzero at α, then there exists a neighborhood of α such
that for all starting values x0 in that neighborhood, the
sequence {xn} will converge to α.[2]

If the function is continuously differentiable and its
derivative is not 0 at α and it has a second derivative at
α then the convergence is quadratic or faster. If the sec-
ond derivative is not 0 at α then the convergence is merely
quadratic. If the third derivative exists and is bounded in
a neighborhood of α, then:

∆xi+1 =
f ′′(α)

2f ′(α)
(∆xi)

2 +O[∆xi]
3 ,

where ∆xi ≜ xi − α .

If the derivative is 0 at α, then the convergence is usually
only linear. Specifically, if ƒ is twice continuously dif-
ferentiable, ƒ '(α) = 0 and ƒ ''(α) ≠ 0, then there exists
a neighborhood of α such that for all starting values x0
in that neighborhood, the sequence of iterates converges
linearly, with rate log10 2 (Süli & Mayers, Exercise 1.6).
Alternatively if ƒ '(α) = 0 and ƒ '(x) ≠ 0 for x ≠ α, x in
a neighborhood U of α, α being a zero of multiplicity r,
and if ƒ ∈ Cr(U) then there exists a neighborhood of α
such that for all starting values x0 in that neighborhood,
the sequence of iterates converges linearly.
However, even linear convergence is not guaranteed in
pathological situations.
In practice these results are local, and the neighborhood of
convergence is not known in advance. But there are also
some results on global convergence: for instance, given a
right neighborhood U+ of α, if f is twice differentiable
in U+ and if f ′ ̸= 0 , f · f ′′ > 0in U+, then, for each x0
in U₊ the sequence xk is monotonically decreasing to α.

17.4.1 Proof of quadratic convergence for
Newton’s iterative method

According to Taylor’s theorem, any function f(x) which
has a continuous second derivative can be represented by
an expansion about a point that is close to a root of f(x).
Suppose this root is α . Then the expansion of f(α) about
xn is:
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where the Lagrange form of the Taylor series expansion
remainder is

R1 =
1

2!
f ′′(ξn)(α− xn)

2 ,

where ξn is in between xn and α .
Since α is the root, (1) becomes:

Dividing equation (2) by f ′(xn) and rearranging gives

Remembering that xn₊₁ is defined by

one finds that

α− xn+1︸ ︷︷ ︸
ϵn+1

=
−f ′′(ξn)
2f ′(xn)

(α− xn︸ ︷︷ ︸
ϵn

)2 .

That is,

Taking absolute value of both sides gives

Equation (6) shows that the rate of convergence is
quadratic if the following conditions are satisfied:

1. f ′(x) ̸= 0; ∀x ∈ I where ,I interval the is [α −
r, α+ r] some for r ≥ |(α− x0)| ;

2. f ′′(x) finite is , ∀x ∈ I;

3. x0 sufficiently close to the root α

The term sufficiently close in this context means the fol-
lowing:
(a) Taylor approximation is accurate enough such that we
can ignore higher order terms,

(b) 1
2

∣∣∣ f ′′(xn)
f ′(xn)

∣∣∣ < C
∣∣∣ f ′′(α)
f ′(α)

∣∣∣ , some for C <∞,

(c) C
∣∣∣ f ′′(α)
f ′(α)

∣∣∣ ϵn < 1, for n ∈ Z+ ∪
{0} and C (b) condition satisfying .
Finally, (6) can be expressed in the following way:

|ϵn+1| ≤Mϵn
2

where M is the supremum of the variable coefficient of
ϵn

2 on the interval I defined in the condition 1, that is:

M = sup
x∈I

1

2

∣∣∣∣f ′′(x)f ′(x)

∣∣∣∣ .
The initial point x0 has to be chosen such that condi-
tions 1 through 3 are satisfied, where the third condition
requires that M |ϵ0| < 1.

17.4.2 Basins of attraction

The basins of attraction—the regions of the real num-
ber line such that within each region iteration from any
point leads to one particular root—can be infinite in num-
ber and arbitrarily small. For example,[3] for the function
f(x) = x3 − 2x2 − 11x+12 , the following initial con-
ditions are in successive basins of attraction:

2.35287527 converges to 4;
2.35284172 converges to −3;
2.35283735 converges to 4;
2.352836327 converges to −3;
2.352836323 converges to 1.

17.5 Failure analysis

Newton’s method is only guaranteed to converge if cer-
tain conditions are satisfied. If the assumptions made in
the proof of quadratic convergence are met, the method
will converge. For the following subsections, failure of
the method to converge indicates that the assumptions
made in the proof were not met.

17.5.1 Bad starting points

In some cases the conditions on the function that are nec-
essary for convergence are satisfied, but the point chosen
as the initial point is not in the interval where the method
converges. This can happen, for example, if the function
whose root is sought approaches zero asymptotically as x
goes to ∞ or −∞ . In such cases a different method, such
as bisection, should be used to obtain a better estimate for
the zero to use as an initial point.

Iteration point is stationary

Consider the function:
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f(x) = 1− x2.

It has a maximum at x = 0 and solutions of f(x) = 0 at x =
±1. If we start iterating from the stationary point x0 = 0
(where the derivative is zero), x1 will be undefined, since
the tangent at (0,1) is parallel to the x-axis:

x1 = x0 −
f(x0)

f ′(x0)
= 0− 1

0
.

The same issue occurs if, instead of the starting point,
any iteration point is stationary. Even if the derivative is
small but not zero, the next iteration will be a far worse
approximation.

Starting point enters a cycle

-3 
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-1 
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1 

2 

3 
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-3 -2 -1 0 1 2 3 4 

The tangent lines of x3 - 2x + 2 at 0 and 1 intersect the x-axis at
1 and 0 respectively, illustrating why Newton’s method oscillates
between these values for some starting points.

For some functions, some starting points may enter an
infinite cycle, preventing convergence. Let

f(x) = x3 − 2x+ 2

and take 0 as the starting point. The first iteration pro-
duces 1 and the second iteration returns to 0 so the se-
quence will alternate between the two without converging
to a root. In fact, this 2-cycle is stable: there are neighbor-
hoods around 0 and around 1 from which all points iterate
asymptotically to the 2-cycle (and hence not to the root
of the function). In general, the behavior of the sequence
can be very complex (see Newton fractal).

17.5.2 Derivative issues

If the function is not continuously differentiable in a
neighborhood of the root then it is possible that Newton’s
method will always diverge and fail, unless the solution is
guessed on the first try.

Derivative does not exist at root

A simple example of a function where Newton’s method
diverges is the cube root, which is continuous and in-
finitely differentiable, except for x = 0, where its deriva-
tive is undefined (this, however, does not affect the al-
gorithm, since it will never require the derivative if the
solution is already found):

f(x) = 3
√
x.

For any iteration point xn, the next iteration point will be:

xn+1 = xn−
f(xn)

f ′(xn)
= xn−

xn
1
3

1
3 xn

1
3−1

= xn−3xn = −2xn.

The algorithm overshoots the solution and lands on the
other side of the y-axis, farther away than it initially was;
applying Newton’s method actually doubles the distances
from the solution at each iteration.
In fact, the iterations diverge to infinity for every f(x) =
|x|α , where 0 < α < 1

2 . In the limiting case of α =
1
2 (square root), the iterations will alternate indefinitely
between points x0 and −x0, so they do not converge in
this case either.

Discontinuous derivative

If the derivative is not continuous at the root, then conver-
gence may fail to occur in any neighborhood of the root.
Consider the function

f(x) =

{
0 ifx = 0,

x+ x2 sin
(
2
x

)
ifx ̸= 0.

Its derivative is:

f ′(x) =

{
1 ifx = 0,

1 + 2x sin
(
2
x

)
− 2 cos

(
2
x

)
ifx ̸= 0.

Within any neighborhood of the root, this derivative
keeps changing sign as x approaches 0 from the right (or
from the left) while f(x) ≥ x − x2 > 0 for 0 < x < 1.
So f(x)/f '(x) is unbounded near the root, and Newton’s
method will diverge almost everywhere in any neighbor-
hood of it, even though:
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• the function is differentiable (and thus continuous)
everywhere;

• the derivative at the root is nonzero;

• f is infinitely differentiable except at the root; and

• the derivative is bounded in a neighborhood of the
root (unlike f(x)/f '(x)).

17.5.3 Non-quadratic convergence

In some cases the iterates converge but do not converge
as quickly as promised. In these cases simpler methods
converge just as quickly as Newton’s method.

Zero derivative

If the first derivative is zero at the root, then convergence
will not be quadratic. Indeed, let

f(x) = x2

then f ′(x) = 2x and consequently x − f(x)/f ′(x) =
x/2 . So convergence is not quadratic, even though the
function is infinitely differentiable everywhere.
Similar problems occur even when the root is only
“nearly” double. For example, let

f(x) = x2(x− 1000) + 1.

Then the first few iterates starting at x0 = 1 are
1, 0.500250376, 0.251062828, 0.127507934,
0.067671976, 0.041224176, 0.032741218,
0.031642362; it takes six iterations to reach a point
where the convergence appears to be quadratic.

No second derivative

If there is no second derivative at the root, then conver-
gence may fail to be quadratic. Indeed, let

f(x) = x+ x
4
3 .

Then

f ′(x) = 1 +
4

3
x

1
3 .

And

f ′′(x) =
4

9
x−

2
3

except when x = 0where it is undefined. Given xn ,

xn+1 = xn − f(xn)

f ′(xn)
=

1
3xn

4
3

(1 + 4
3xn

1
3 )

which has approximately 4/3 times as many bits of pre-
cision as xn has. This is less than the 2 times as many
which would be required for quadratic convergence. So
the convergence of Newton’s method (in this case) is not
quadratic, even though: the function is continuously dif-
ferentiable everywhere; the derivative is not zero at the
root; and f is infinitely differentiable except at the desired
root.

17.6 Generalizations

17.6.1 Complex functions

Basins of attraction for x5 - 1 = 0; darker means more iterations
to converge.

Main article: Newton fractal

When dealing with complex functions, Newton’s method
can be directly applied to find their zeroes. Each zero has
a basin of attraction in the complex plane, the set of all
starting values that cause the method to converge to that
particular zero. These sets can be mapped as in the image
shown. For many complex functions, the boundaries of
the basins of attraction are fractals.
In some cases there are regions in the complex plane
which are not in any of these basins of attraction, mean-
ing the iterates do not converge. For example,[4] if one
uses a real initial condition to seek a root of x2 + 1 , all
subsequent iterates will be real numbers and so the itera-
tions cannot converge to either root, since both roots are
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non-real. In this case almost all real initial conditions lead
to chaotic behavior, while some initial conditions iterate
either to infinity or to repeating cycles of any finite length.

17.6.2 Nonlinear systems of equations

k variables, k functions

One may also use Newton’s method to solve systems of k
(non-linear) equations, which amounts to finding the ze-
roes of continuously differentiable functions F : Rk →
Rk. In the formulation given above, one then has to left
multiply with the inverse of the k-by-k Jacobian matrix
JF(xn) instead of dividing by f '(xn).
Rather than actually computing the inverse of this matrix,
one can save time by solving the system of linear equa-
tions

JF (xn)(xn+1 − xn) = −F (xn)

for the unknown xn₊₁ − xn.

k variables, m equations, with m > k

The k-dimensional Newton’s method can be used to solve
systems of >k (non-linear) equations as well if the al-
gorithm uses the generalized inverse of the non-square
Jacobian matrix J+ = ((JTJ)−1)JT instead of the inverse of
J. If the nonlinear system has no solution, the method at-
tempts to find a solution in the non-linear least squares
sense. See Gauss–Newton algorithm for more informa-
tion.

17.6.3 Nonlinear equations in a Banach
space

Another generalization is Newton’s method to find a root
of a functional F defined in a Banach space. In this case
the formulation is

Xn+1 = Xn − [F ′(Xn)]
−1F (Xn),

whereF ′(Xn) is the Fréchet derivative computed atXn .
One needs the Fréchet derivative to be boundedly invert-
ible at each Xn in order for the method to be applicable.
A condition for existence of and convergence to a root is
given by the Newton–Kantorovich theorem.

17.6.4 Nonlinear equations over p-adic
numbers

In p-adic analysis, the standard method to show a polyno-
mial equation in one variable has a p-adic root is Hensel’s

lemma, which uses the recursion from Newton’s method
on the p-adic numbers. Because of the more stable behav-
ior of addition and multiplication in the p-adic numbers
compared to the real numbers (specifically, the unit ball
in the p-adics is a ring), convergence in Hensel’s lemma
can be guaranteed under much simpler hypotheses than
in the classical Newton’s method on the real line.

17.6.5 Newton-Fourier method

The Newton-Fourier method is Joseph Fourier's exten-
sion of Newton’s method to provide bounds on the abso-
lute error of the root approximation, while still providing
quadratic convergence.
Assume that f(x) is twice continuously differentiable on
[a, b] and that f contains a root in this interval. Assume
that f ′(x)f ′′(x) ̸= 0 on this interval (this is the case for
instance if f(a) < 0 , f(b) > 0 , and f ′(x) > 0 , and
f ′′(x) > 0 on this interval). This guarantees that there is
a unique root on this interval, call it α . If it is concave
down instead of concave up then replace f(x) by −f(x)
since they have the same roots.
Let x0 = b be the right endpoint of the interval and let
z0 = a be the left endpoint of the interval. Given xn
, define xn+1 = xn − f(xn)

f ′(xn)
, which is just Newton’s

method as before. Then define zn+1 = zn − f(zn)
f ′(xn)

and
note that the denominator has f ′(xn) and not f ′(zn) .
The iterates xn will be strictly decreasing to the root while
the iterates zn will be strictly increasing to the root. Also,
limn→∞

xn+1−zn+1

(xn−zn)2 = f ′′(α)
2f ′(α) so that distance between

xn and zn decreases quadratically.

17.6.6 Quasi-Newton methods

When the Jacobian is unavailable or too expensive to
compute at every iteration, a Quasi-Newton method can
be used.

17.7 Applications

17.7.1 Minimization and maximization
problems

Main article: Newton’s method in optimization

Newton’s method can be used to find a minimum or max-
imum of a function. The derivative is zero at a minimum
or maximum, so minima and maxima can be found by ap-
plying Newton’s method to the derivative. The iteration
becomes:
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xn+1 = xn − f ′(xn)

f ′′(xn)
.

17.7.2 Multiplicative inverses of numbers
and power series

An important application is Newton–Raphson division,
which can be used to quickly find the reciprocal of a num-
ber, using only multiplication and subtraction.
Finding the reciprocal of a amounts to finding the root of
the function

f(x) = a− 1

x

Newton’s iteration is

xn+1 = xn − f(xn)

f ′(xn)

= xn −
a− 1

xn

1
x2
n

= xn (2− axn)

Therefore, Newton’s iteration needs only two multiplica-
tions and one subtraction.
This method is also very efficient to compute the multi-
plicative inverse of a power series.

17.7.3 Solving transcendental equations

Many transcendental equations can be solved using New-
ton’s method. Given the equation

g(x) = h(x),

with g(x) and/or h(x) a transcendental function, one writes

f(x) = g(x)− h(x).

The values of x that solves the original equation are then
the roots of f(x), which may be found via Newton’s
method.

17.8 Examples

17.8.1 Square root of a number

Consider the problem of finding the square root of a num-
ber. Newton’s method is one of many methods of com-
puting square roots.

For example, if one wishes to find the square root of 612,
this is equivalent to finding the solution to

x2 = 612

The function to use in Newton’s method is then,

f(x) = x2 − 612

with derivative,

f ′(x) = 2x.

With an initial guess of 10, the sequence given by New-
ton’s method is

x1 = x0 −
f(x0)

f ′(x0)
= 10− 102 − 612

2 · 10
= 35.6

x2 = x1 −
f(x1)

f ′(x1)
= 35.6− 35.62 − 612

2 · 35.6
= 26.395505617978 . . .

x3 =
... =

... = 24.790635492455 . . .

x4 =
... =

... = 24.738688294075 . . .

x5 =
... =

... = 24.738633753767 . . .

where the correct digits are underlined. With only a few
iterations one can obtain a solution accurate to many dec-
imal places.

17.8.2 Solution of cos(x) = x3

Consider the problem of finding the positive number x
with cos(x) = x3. We can rephrase that as finding the
zero of f(x) = cos(x) − x3. We have f'(x) = −sin(x) − 3x2.
Since cos(x) ≤ 1 for all x and x3 > 1 for x > 1, we know
that our solution lies between 0 and 1. We try a starting
value of x0 = 0.5. (Note that a starting value of 0 will lead
to an undefined result, showing the importance of using a
starting point that is close to the solution.)

x1 = x0 −
f(x0)

f ′(x0)
= 0.5− cos(0.5)− (0.5)3

− sin(0.5)− 3(0.5)2
= 1.112141637097

x2 = x1 −
f(x1)

f ′(x1)
=

... = 0.909672693736

x3 =
... =

... = 0.867263818209

x4 =
... =

... = 0.865477135298

x5 =
... =

... = 0.865474033111

x6 =
... =

... = 0.865474033102

The correct digits are underlined in the above example. In
particular, x6 is correct to the number of decimal places
given. We see that the number of correct digits after the
decimal point increases from 2 (for x3) to 5 and 10, illus-
trating the quadratic convergence.
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17.9 Pseudocode

The following is an example of using the Newton’s
Method to help find a root of a function f which has
derivative fprime.
The initial guess will be x0 = 1 and the function will be
f(x) = x2 − 2 so that f ′(x) = 2x .
Each new iterative of Newton’s method will be denoted
by x1. We will check during the computation whether the
denominator (yprime) becomes too small (smaller than
epsilon), which would be the case if f ′(xn) ≈ 0 , since
otherwise a large amount of error could be introduced.
%These choices depend on the problem being solved x0
= 1 %The initial value f = @(x) x^2 - 2 %The function
whose root we are trying to find fprime = @(x) 2*x
%The derivative of f(x) tolerance = 10^(−7) %7 digit
accuracy is desired epsilon = 10^(−14) %Don't want to
divide by a number smaller than this maxIterations =
20 %Don't allow the iterations to continue indefinitely
haveWeFoundSolution = false %Have not converged to
a solution yet for i = 1 : maxIterations y = f(x0) yprime
= fprime(x0) if(abs(yprime) < epsilon) %Don't want to
divide by too small of a number % denominator is too
small break; %Leave the loop end x1 = x0 - y/yprime
%Do Newton’s computation if(abs(x1 - x0)/abs(x1) <
tolerance) %If the result is within the desired tolerance
haveWeFoundSolution = true break; %Done, so leave the
loop end x0 = x1 %Update x0 to start the process again
end if (haveWeFoundSolution) ... % x1 is a solution
within tolerance and maximum number of iterations else
... % did not converge end

17.10 See also
• Aitken’s delta-squared process

• Bisection method

• Euler method

• Fast inverse square root

• Fisher scoring

• Gradient descent

• Integer square root

• Laguerre’s method

• Leonid Kantorovich, who initiated the convergence
analysis of Newton’s method in Banach spaces.

• Methods of computing square roots

• Newton’s method in optimization

• Richardson extrapolation

• Root-finding algorithm

• Secant method

• Steffensen’s method

• Subgradient method
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Chapter 18

Supervised learning

See also: Unsupervised learning

Supervised learning is the machine learning task of
inferring a function from labeled training data.[1] The
training data consist of a set of training examples. In su-
pervised learning, each example is a pair consisting of
an input object (typically a vector) and a desired output
value (also called the supervisory signal). A supervised
learning algorithm analyzes the training data and pro-
duces an inferred function, which can be used for map-
ping new examples. An optimal scenario will allow for
the algorithm to correctly determine the class labels for
unseen instances. This requires the learning algorithm to
generalize from the training data to unseen situations in a
“reasonable” way (see inductive bias).
The parallel task in human and animal psychology is often
referred to as concept learning.

18.1 Overview

In order to solve a given problem of supervised learning,
one has to perform the following steps:

1. Determine the type of training examples. Before
doing anything else, the user should decide what
kind of data is to be used as a training set. In the case
of handwriting analysis, for example, this might be a
single handwritten character, an entire handwritten
word, or an entire line of handwriting.

2. Gather a training set. The training set needs to be
representative of the real-world use of the function.
Thus, a set of input objects is gathered and corre-
sponding outputs are also gathered, either from hu-
man experts or from measurements.

3. Determine the input feature representation of the
learned function. The accuracy of the learned func-
tion depends strongly on how the input object is rep-
resented. Typically, the input object is transformed
into a feature vector, which contains a number of
features that are descriptive of the object. The num-
ber of features should not be too large, because

of the curse of dimensionality; but should contain
enough information to accurately predict the output.

4. Determine the structure of the learned function and
corresponding learning algorithm. For example, the
engineer may choose to use support vector machines
or decision trees.

5. Complete the design. Run the learning algorithm on
the gathered training set. Some supervised learn-
ing algorithms require the user to determine cer-
tain control parameters. These parameters may be
adjusted by optimizing performance on a subset
(called a validation set) of the training set, or via
cross-validation.

6. Evaluate the accuracy of the learned function. After
parameter adjustment and learning, the performance
of the resulting function should be measured on a
test set that is separate from the training set.

A wide range of supervised learning algorithms is avail-
able, each with its strengths and weaknesses. There is no
single learning algorithm that works best on all supervised
learning problems (see the No free lunch theorem).
There are four major issues to consider in supervised
learning:

18.1.1 Bias-variance tradeoff

Main article: Bias-variance dilemma

A first issue is the tradeoff between bias and variance.[2]

Imagine that we have available several different, but
equally good, training data sets. A learning algorithm is
biased for a particular input x if, when trained on each
of these data sets, it is systematically incorrect when pre-
dicting the correct output for x . A learning algorithm
has high variance for a particular input x if it predicts
different output values when trained on different training
sets. The prediction error of a learned classifier is related
to the sum of the bias and the variance of the learning
algorithm.[3] Generally, there is a tradeoff between bias
and variance. A learning algorithm with low bias must
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be “flexible” so that it can fit the data well. But if the
learning algorithm is too flexible, it will fit each training
data set differently, and hence have high variance. A key
aspect of many supervised learning methods is that they
are able to adjust this tradeoff between bias and variance
(either automatically or by providing a bias/variance pa-
rameter that the user can adjust).

18.1.2 Function complexity and amount of
training data

The second issue is the amount of training data available
relative to the complexity of the “true” function (classi-
fier or regression function). If the true function is simple,
then an “inflexible” learning algorithm with high bias and
low variance will be able to learn it from a small amount
of data. But if the true function is highly complex (e.g.,
because it involves complex interactions among many dif-
ferent input features and behaves differently in different
parts of the input space), then the function will only be
learnable from a very large amount of training data and
using a “flexible” learning algorithm with low bias and
high variance. Good learning algorithms therefore auto-
matically adjust the bias/variance tradeoff based on the
amount of data available and the apparent complexity of
the function to be learned.

18.1.3 Dimensionality of the input space

A third issue is the dimensionality of the input space. If
the input feature vectors have very high dimension, the
learning problem can be difficult even if the true func-
tion only depends on a small number of those features.
This is because the many “extra” dimensions can con-
fuse the learning algorithm and cause it to have high vari-
ance. Hence, high input dimensionality typically requires
tuning the classifier to have low variance and high bias.
In practice, if the engineer can manually remove irrel-
evant features from the input data, this is likely to im-
prove the accuracy of the learned function. In addition,
there are many algorithms for feature selection that seek
to identify the relevant features and discard the irrelevant
ones. This is an instance of the more general strategy of
dimensionality reduction, which seeks to map the input
data into a lower-dimensional space prior to running the
supervised learning algorithm.

18.1.4 Noise in the output values

A fourth issue is the degree of noise in the desired output
values (the supervisory target variables). If the desired
output values are often incorrect (because of human er-
ror or sensor errors), then the learning algorithm should
not attempt to find a function that exactly matches the
training examples. Attempting to fit the data too carefully
leads to overfitting. You can overfit even when there are

no measurement errors (stochastic noise) if the function
you are trying to learn is too complex for your learning
model. In such a situation that part of the target function
that cannot be modeled “corrupts” your training data - this
phenomenon has been called deterministic noise. When
either type of noise is present, it is better to go with a
higher bias, lower variance estimator.
In practice, there are several approaches to alleviate noise
in the output values such as early stopping to prevent
overfitting as well as detecting and removing the noisy
training examples prior to training the supervised learn-
ing algorithm. There are several algorithms that iden-
tify noisy training examples and removing the suspected
noisy training examples prior to training has decreased
generalization error with statistical significance.[4][5]

18.1.5 Other factors to consider

Other factors to consider when choosing and applying a
learning algorithm include the following:

1. Heterogeneity of the data. If the feature vectors in-
clude features of many different kinds (discrete, dis-
crete ordered, counts, continuous values), some al-
gorithms are easier to apply than others. Many algo-
rithms, including Support Vector Machines, linear
regression, logistic regression, neural networks, and
nearest neighbor methods, require that the input fea-
tures be numerical and scaled to similar ranges (e.g.,
to the [−1,1] interval). Methods that employ a dis-
tance function, such as nearest neighbor methods
and support vector machines with Gaussian kernels,
are particularly sensitive to this. An advantage of
decision trees is that they easily handle heteroge-
neous data.

2. Redundancy in the data. If the input features contain
redundant information (e.g., highly correlated fea-
tures), some learning algorithms (e.g., linear regres-
sion, logistic regression, and distance based meth-
ods) will perform poorly because of numerical in-
stabilities. These problems can often be solved by
imposing some form of regularization.

3. Presence of interactions and non-linearities. If each
of the features makes an independent contribution to
the output, then algorithms based on linear functions
(e.g., linear regression, logistic regression, Support
Vector Machines, naive Bayes) and distance func-
tions (e.g., nearest neighbor methods, support vector
machines with Gaussian kernels) generally perform
well. However, if there are complex interactions
among features, then algorithms such as decision
trees and neural networks work better, because they
are specifically designed to discover these interac-
tions. Linear methods can also be applied, but
the engineer must manually specify the interactions
when using them.
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When considering a new application, the engineer can
compare multiple learning algorithms and experimentally
determine which one works best on the problem at hand
(see cross validation). Tuning the performance of a learn-
ing algorithm can be very time-consuming. Given fixed
resources, it is often better to spend more time collect-
ing additional training data and more informative features
than it is to spend extra time tuning the learning algo-
rithms.
The most widely used learning algorithms are Support
Vector Machines, linear regression, logistic regression,
naive Bayes, linear discriminant analysis, decision trees,
k-nearest neighbor algorithm, and Neural Networks
(Multilayer perceptron).

18.2 How supervised learning algo-
rithms work

Given a set of N training examples of the form
{(x1, y1), ..., (xN , yN )} such that xi is the feature vec-
tor of the i-th example and yi is its label (i.e., class), a
learning algorithm seeks a function g : X → Y , where
X is the input space and Y is the output space. The func-
tion g is an element of some space of possible functions
G , usually called the hypothesis space. It is sometimes
convenient to represent g using a scoring function f :
X×Y → R such that g is defined as returning the y value
that gives the highest score: g(x) = arg maxy f(x, y) .
Let F denote the space of scoring functions.
Although G and F can be any space of functions, many
learning algorithms are probabilistic models where g
takes the form of a conditional probability model g(x) =
P (y|x) , or f takes the form of a joint probability model
f(x, y) = P (x, y) . For example, naive Bayes and
linear discriminant analysis are joint probability mod-
els, whereas logistic regression is a conditional probability
model.
There are two basic approaches to choosing f or g :
empirical risk minimization and structural risk minimiza-
tion.[6] Empirical risk minimization seeks the function
that best fits the training data. Structural risk minimize
includes a penalty function that controls the bias/variance
tradeoff.
In both cases, it is assumed that the training set consists of
a sample of independent and identically distributed pairs,
(xi, yi) . In order to measure how well a function fits
the training data, a loss function L : Y × Y → R≥0

is defined. For training example (xi, yi) , the loss of
predicting the value ŷ is L(yi, ŷ) .
The riskR(g) of function g is defined as the expected loss
of g . This can be estimated from the training data as

Remp(g) =
1

N

∑
i

L(yi, g(xi))

18.2.1 Empirical risk minimization

Main article: Empirical risk minimization

In empirical risk minimization, the supervised learn-
ing algorithm seeks the function g that minimizes R(g)
. Hence, a supervised learning algorithm can be con-
structed by applying an optimization algorithm to find g
.
When g is a conditional probability distribution P (y|x)
and the loss function is the negative log likelihood:
L(y, ŷ) = − logP (y|x) , then empirical risk minimiza-
tion is equivalent to maximum likelihood estimation.
When G contains many candidate functions or the train-
ing set is not sufficiently large, empirical risk minimiza-
tion leads to high variance and poor generalization. The
learning algorithm is able to memorize the training exam-
ples without generalizing well. This is called overfitting.

18.2.2 Structural risk minimization

Structural risk minimization seeks to prevent overfitting
by incorporating a regularization penalty into the opti-
mization. The regularization penalty can be viewed as
implementing a form of Occam’s razor that prefers sim-
pler functions over more complex ones.
A wide variety of penalties have been employed that cor-
respond to different definitions of complexity. For ex-
ample, consider the case where the function g is a linear
function of the form

g(x) =
d∑
j=1

βjxj

A popular regularization penalty is
∑
j β

2
j , which is the

squared Euclidean norm of the weights, also known as the
L2 norm. Other norms include the L1 norm,

∑
j |βj | ,

and the L0 norm, which is the number of non-zero βj s.
The penalty will be denoted by C(g) .
The supervised learning optimization problem is to find
the function g that minimizes

J(g) = Remp(g) + λC(g).

The parameter λ controls the bias-variance tradeoff.
When λ = 0 , this gives empirical risk minimization with
low bias and high variance. When λ is large, the learning
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algorithm will have high bias and low variance. The value
of λ can be chosen empirically via cross validation.
The complexity penalty has a Bayesian interpretation as
the negative log prior probability of g , − logP (g) , in
which case J(g) is the posterior probabability of g .

18.3 Generative training

The training methods described above are discriminative
training methods, because they seek to find a function
g that discriminates well between the different output
values (see discriminative model). For the special case
where f(x, y) = P (x, y) is a joint probability distribu-
tion and the loss function is the negative log likelihood
−
∑
i logP (xi, yi), a risk minimization algorithm is said

to perform generative training, because f can be regarded
as a generative model that explains how the data were gen-
erated. Generative training algorithms are often simpler
and more computationally efficient than discriminative
training algorithms. In some cases, the solution can be
computed in closed form as in naive Bayes and linear dis-
criminant analysis.

18.4 Generalizations of supervised
learning

There are several ways in which the standard supervised
learning problem can be generalized:

1. Semi-supervised learning: In this setting, the de-
sired output values are provided only for a subset of
the training data. The remaining data is unlabeled.

2. Active learning: Instead of assuming that all of the
training examples are given at the start, active learn-
ing algorithms interactively collect new examples,
typically by making queries to a human user. Of-
ten, the queries are based on unlabeled data, which
is a scenario that combines semi-supervised learning
with active learning.

3. Structured prediction: When the desired output
value is a complex object, such as a parse tree or
a labeled graph, then standard methods must be ex-
tended.

4. Learning to rank: When the input is a set of objects
and the desired output is a ranking of those objects,
then again the standard methods must be extended.

18.5 Approaches and algorithms

• Analytical learning

• Artificial neural network

• Backpropagation

• Boosting (meta-algorithm)

• Bayesian statistics

• Case-based reasoning

• Decision tree learning

• Inductive logic programming

• Gaussian process regression

• Group method of data handling

• Kernel estimators

• Learning Automata

• Minimum message length (decision trees, decision
graphs, etc.)

• Multilinear subspace learning

• Naive bayes classifier

• Nearest Neighbor Algorithm

• Probably approximately correct learning (PAC)
learning

• Ripple down rules, a knowledge acquisition method-
ology

• Symbolic machine learning algorithms

• Subsymbolic machine learning algorithms

• Support vector machines

• Random Forests

• Ensembles of Classifiers

• Ordinal classification

• Data Pre-processing

• Handling imbalanced datasets

• Statistical relational learning

• Proaftn, a multicriteria classification algorithm
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18.6 Applications
• Bioinformatics

• Cheminformatics

• Quantitative structure–activity relationship

• Database marketing

• Handwriting recognition

• Information retrieval

• Learning to rank

• Object recognition in computer vision

• Optical character recognition

• Spam detection

• Pattern recognition

• Speech recognition

18.7 General issues
• Computational learning theory

• Inductive bias

• Overfitting (machine learning)

• (Uncalibrated) Class membership probabilities

• Version spaces
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18.9 External links
• mloss.org: a directory of open source machine

learning software.
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Chapter 19

Linear regression

In statistics, linear regression is an approach for mod-
eling the relationship between a scalar dependent vari-
able y and one or more explanatory variables (or inde-
pendent variable) denoted X. The case of one explana-
tory variable is called simple linear regression. For more
than one explanatory variable, the process is called multi-
ple linear regression.[1] (This term should be distinguished
from multivariate linear regression, where multiple cor-
related dependent variables are predicted, rather than a
single scalar variable.)[2]

In linear regression, data are modeled using linear pre-
dictor functions, and unknown model parameters are
estimated from the data. Such models are called linear
models.[3] Most commonly, linear regression refers to a
model in which the conditional mean of y given the value
of X is an affine function of X. Less commonly, linear
regression could refer to a model in which the median,
or some other quantile of the conditional distribution of
y given X is expressed as a linear function of X. Like
all forms of regression analysis, linear regression focuses
on the conditional probability distribution of y given X,
rather than on the joint probability distribution of y and
X, which is the domain of multivariate analysis.
Linear regression was the first type of regression analy-
sis to be studied rigorously, and to be used extensively
in practical applications.[4] This is because models which
depend linearly on their unknown parameters are easier
to fit than models which are non-linearly related to their
parameters and because the statistical properties of the
resulting estimators are easier to determine.
Linear regression has many practical uses. Most applica-
tions fall into one of the following two broad categories:

• If the goal is prediction, or forecasting, or reduction,
linear regression can be used to fit a predictive model
to an observed data set of y and X values. After
developing such a model, if an additional value of X
is then given without its accompanying value of y,
the fitted model can be used to make a prediction of
the value of y.

• Given a variable y and a number of variables X1, ...,
Xp that may be related to y, linear regression analy-
sis can be applied to quantify the strength of the re-

lationship between y and the Xj, to assess which Xj
may have no relationship with y at all, and to identify
which subsets of the Xj contain redundant informa-
tion about y.

Linear regression models are often fitted using the least
squares approach, but they may also be fitted in other
ways, such as by minimizing the “lack of fit” in some
other norm (as with least absolute deviations regression),
or by minimizing a penalized version of the least squares
loss function as in ridge regression (L2-norm penalty) and
lasso (L1-norm penalty). Conversely, the least squares
approach can be used to fit models that are not linear
models. Thus, although the terms “least squares” and “lin-
ear model” are closely linked, they are not synonymous.

19.1 Introduction to linear regres-
sion

Example of simple linear regression, which has one independent
variable

Given a data set {yi, xi1, . . . , xip}ni=1 of n statistical
units, a linear regression model assumes that the relation-
ship between the dependent variable yi and the p-vector
of regressors xi is linear. This relationship is modeled
through a disturbance term or error variable εi — an un-
observed random variable that adds noise to the linear re-
lationship between the dependent variable and regressors.
Thus the model takes the form
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Example of a cubic polynomial regression, which is a type of
linear regression.

yi = β1xi1+· · ·+βpxip+εi = xT
iβ+εi, i = 1, . . . , n,

where T denotes the transpose, so that xiTβ is the inner
product between vectors xi and β.
Often these n equations are stacked together and written
in vector form as

y = Xβ + ε,

where

y =


y1
y2
...
yn

, X =


xT
1

xT
2
...
xT
n

 =


x11 · · · x1p
x21 · · · x2p

... . . . ...
xn1 · · · xnp

, β =


β1
β2
...
βp

, ε =


ε1
ε2
...
εn

.
Some remarks on terminology and general use:

• yi is called the regressand, endogenous variable, re-
sponse variable, measured variable, criterion vari-
able, or dependent variable (see dependent and in-
dependent variables.) The decision as to which vari-
able in a data set is modeled as the dependent vari-
able and which are modeled as the independent vari-
ables may be based on a presumption that the value
of one of the variables is caused by, or directly in-
fluenced by the other variables. Alternatively, there
may be an operational reason to model one of the
variables in terms of the others, in which case there
need be no presumption of causality.

• xi1, xi2, . . . , xip are called regressors, exogenous
variables, explanatory variables, covariates, input
variables, predictor variables, or independent vari-
ables (see dependent and independent variables, but

not to be confused with independent random vari-
ables). The matrix X is sometimes called the design
matrix.

• Usually a constant is included as one of the re-
gressors. For example we can take xi₁ = 1 for
i = 1, ..., n. The corresponding element of β
is called the intercept. Many statistical infer-
ence procedures for linear models require an
intercept to be present, so it is often included
even if theoretical considerations suggest that
its value should be zero.

• Sometimes one of the regressors can be a
non-linear function of another regressor or
of the data, as in polynomial regression and
segmented regression. The model remains lin-
ear as long as it is linear in the parameter vec-
tor β.

• The regressors xij may be viewed either as
random variables, which we simply observe, or
they can be considered as predetermined fixed
values which we can choose. Both interpre-
tations may be appropriate in different cases,
and they generally lead to the same estimation
procedures; however different approaches to
asymptotic analysis are used in these two situ-
ations.

• β is a p-dimensional parameter vector. Its elements
are also called effects, or regression coefficients. Sta-
tistical estimation and inference in linear regression
focuses on β. The elements of this parameter vec-
tor are interpreted as the partial derivatives of the
dependent variable with respect to the various inde-
pendent variables.

• εi is called the error term, disturbance term, or noise.
This variable captures all other factors which influ-
ence the dependent variable yi other than the regres-
sors xi. The relationship between the error term
and the regressors, for example whether they are
correlated, is a crucial step in formulating a linear
regression model, as it will determine the method to
use for estimation.

Example. Consider a situation where a small ball is being
tossed up in the air and then we measure its heights of
ascent hi at various moments in time ti. Physics tells us
that, ignoring the drag, the relationship can be modeled
as

hi = β1ti + β2t
2
i + εi,

where β1 determines the initial velocity of the ball, β2
is proportional to the standard gravity, and εi is due to
measurement errors. Linear regression can be used to es-
timate the values of β1 and β2 from the measured data.
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This model is non-linear in the time variable, but it is lin-
ear in the parameters β1 and β2; if we take regressors xi =
(xi₁, xi₂) = (ti, ti2), the model takes on the standard form

hi = xT
iβ + εi.

19.1.1 Assumptions

Standard linear regression models with standard estima-
tion techniques make a number of assumptions about the
predictor variables, the response variables and their rela-
tionship. Numerous extensions have been developed that
allow each of these assumptions to be relaxed (i.e. re-
duced to a weaker form), and in some cases eliminated
entirely. Some methods are general enough that they can
relax multiple assumptions at once, and in other cases
this can be achieved by combining different extensions.
Generally these extensions make the estimation proce-
dure more complex and time-consuming, and may also
require more data in order to produce an equally precise
model.
The following are the major assumptions made by stan-
dard linear regression models with standard estimation
techniques (e.g. ordinary least squares):

• Weak exogeneity. This essentially means that the
predictor variables x can be treated as fixed values,
rather than random variables. This means, for ex-
ample, that the predictor variables are assumed to be
error-free—that is, not contaminated with measure-
ment errors. Although this assumption is not realis-
tic in many settings, dropping it leads to significantly
more difficult errors-in-variables models.

• Linearity. This means that the mean of the re-
sponse variable is a linear combination of the param-
eters (regression coefficients) and the predictor vari-
ables. Note that this assumption is much less restric-
tive than it may at first seem. Because the predictor
variables are treated as fixed values (see above), lin-
earity is really only a restriction on the parameters.
The predictor variables themselves can be arbitrarily
transformed, and in fact multiple copies of the same
underlying predictor variable can be added, each one
transformed differently. This trick is used, for ex-
ample, in polynomial regression, which uses linear
regression to fit the response variable as an arbitrary
polynomial function (up to a given rank) of a pre-
dictor variable. This makes linear regression an ex-
tremely powerful inference method. In fact, models
such as polynomial regression are often “too power-
ful”, in that they tend to overfit the data. As a re-
sult, some kind of regularization must typically be
used to prevent unreasonable solutions coming out
of the estimation process. Common examples are

ridge regression and lasso regression. Bayesian lin-
ear regression can also be used, which by its nature
is more or less immune to the problem of overfit-
ting. (In fact, ridge regression and lasso regression
can both be viewed as special cases of Bayesian lin-
ear regression, with particular types of prior distri-
butions placed on the regression coefficients.)

• Constant variance (a.k.a. homoscedasticity).
This means that different response variables have
the same variance in their errors, regardless of
the values of the predictor variables. In prac-
tice this assumption is invalid (i.e. the errors are
heteroscedastic) if the response variables can vary
over a wide scale. In order to determine for hetero-
geneous error variance, or when a pattern of resid-
uals violates model assumptions of homoscedastic-
ity (error is equally variable around the 'best-fitting
line' for all points of x), it is prudent to look for
a “fanning effect” between residual error and pre-
dicted values. This is to say there will be a system-
atic change in the absolute or squared residuals when
plotted against the predicting outcome. Error will
not be evenly distributed across the regression line.
Heteroscedasticity will result in the averaging over
of distinguishable variances around the points to get
a single variance that is inaccurately representing all
the variances of the line. In effect, residuals appear
clustered and spread apart on their predicted plots
for larger and smaller values for points along the lin-
ear regression line, and the mean squared error for
the model will be wrong. Typically, for example,
a response variable whose mean is large will have
a greater variance than one whose mean is small.
For example, a given person whose income is pre-
dicted to be $100,000 may easily have an actual in-
come of $80,000 or $120,000 (a standard devia-
tion of around $20,000), while another person with
a predicted income of $10,000 is unlikely to have
the same $20,000 standard deviation, which would
imply their actual income would vary anywhere be-
tween -$10,000 and $30,000. (In fact, as this shows,
in many cases—often the same cases where the as-
sumption of normally distributed errors fails—the
variance or standard deviation should be predicted
to be proportional to the mean, rather than con-
stant.) Simple linear regression estimation meth-
ods give less precise parameter estimates and mis-
leading inferential quantities such as standard errors
when substantial heteroscedasticity is present. How-
ever, various estimation techniques (e.g. weighted
least squares and heteroscedasticity-consistent stan-
dard errors) can handle heteroscedasticity in a quite
general way. Bayesian linear regression techniques
can also be used when the variance is assumed to be
a function of the mean. It is also possible in some
cases to fix the problem by applying a transforma-
tion to the response variable (e.g. fit the logarithm
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of the response variable using a linear regression
model, which implies that the response variable has
a log-normal distribution rather than a normal dis-
tribution).

• Independence of errors. This assumes that the er-
rors of the response variables are uncorrelated with
each other. (Actual statistical independence is a
stronger condition than mere lack of correlation and
is often not needed, although it can be exploited if it
is known to hold.) Some methods (e.g. generalized
least squares) are capable of handling correlated
errors, although they typically require significantly
more data unless some sort of regularization is used
to bias the model towards assuming uncorrelated er-
rors. Bayesian linear regression is a general way of
handling this issue.

• Lack of multicollinearity in the predictors. For
standard least squares estimation methods, the de-
sign matrix X must have full column rank p,; other-
wise, we have a condition known as multicollinearity
in the predictor variables. This can be triggered
by having two or more perfectly correlated predic-
tor variables (e.g. if the same predictor variable is
mistakenly given twice, either without transform-
ing one of the copies or by transforming one of the
copies linearly). It can also happen if there is too
little data available compared to the number of pa-
rameters to be estimated (e.g. fewer data points
than regression coefficients). In the case of mul-
ticollinearity, the parameter vector β will be non-
identifiable—it has no unique solution. At most we
will be able to identify some of the parameters, i.e.
narrow down its value to some linear subspace of
Rp. See partial least squares regression. Methods
for fitting linear models with multicollinearity have
been developed;[5][6][7][8] some require additional
assumptions such as “effect sparsity”—that a large
fraction of the effects are exactly zero. Note that
the more computationally expensive iterated algo-
rithms for parameter estimation, such as those used
in generalized linear models, do not suffer from this
problem—and in fact it’s quite normal to when han-
dling categorically valued predictors to introduce a
separate indicator variable predictor for each pos-
sible category, which inevitably introduces multi-
collinearity.

Beyond these assumptions, several other statistical prop-
erties of the data strongly influence the performance of
different estimation methods:

• The statistical relationship between the error terms
and the regressors plays an important role in deter-
mining whether an estimation procedure has desir-
able sampling properties such as being unbiased and
consistent.

• The arrangement, or probability distribution of the
predictor variables x has a major influence on the
precision of estimates of β. Sampling and design of
experiments are highly developed subfields of statis-
tics that provide guidance for collecting data in such
a way to achieve a precise estimate of β.

19.1.2 Interpretation

The sets in the Anscombe’s quartet have the same linear regres-
sion line but are themselves very different.

A fitted linear regression model can be used to identify the
relationship between a single predictor variable xj and the
response variable y when all the other predictor variables
in the model are “held fixed”. Specifically, the interpre-
tation of βj is the expected change in y for a one-unit
change in xj when the other covariates are held fixed—
that is, the expected value of the partial derivative of y
with respect to xj. This is sometimes called the unique
effect of xj on y. In contrast, the marginal effect of xj on
y can be assessed using a correlation coefficient or simple
linear regression model relating xj to y; this effect is the
total derivative of y with respect to xj.
Care must be taken when interpreting regression results,
as some of the regressors may not allow for marginal
changes (such as dummy variables, or the intercept term),
while others cannot be held fixed (recall the example from
the introduction: it would be impossible to “hold ti fixed”
and at the same time change the value of ti2).
It is possible that the unique effect can be nearly zero even
when the marginal effect is large. This may imply that
some other covariate captures all the information in xj, so
that once that variable is in the model, there is no contri-
bution of xj to the variation in y. Conversely, the unique
effect of xj can be large while its marginal effect is nearly
zero. This would happen if the other covariates explained
a great deal of the variation of y, but they mainly explain
variation in a way that is complementary to what is cap-
tured by xj. In this case, including the other variables in
the model reduces the part of the variability of y that is
unrelated to xj, thereby strengthening the apparent rela-
tionship with xj.
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The meaning of the expression “held fixed” may depend
on how the values of the predictor variables arise. If
the experimenter directly sets the values of the predic-
tor variables according to a study design, the compar-
isons of interest may literally correspond to comparisons
among units whose predictor variables have been “held
fixed” by the experimenter. Alternatively, the expression
“held fixed” can refer to a selection that takes place in the
context of data analysis. In this case, we “hold a variable
fixed” by restricting our attention to the subsets of the data
that happen to have a common value for the given predic-
tor variable. This is the only interpretation of “held fixed”
that can be used in an observational study.
The notion of a “unique effect” is appealing when study-
ing a complex system where multiple interrelated com-
ponents influence the response variable. In some cases,
it can literally be interpreted as the causal effect of an
intervention that is linked to the value of a predictor vari-
able. However, it has been argued that in many cases mul-
tiple regression analysis fails to clarify the relationships
between the predictor variables and the response variable
when the predictors are correlated with each other and are
not assigned following a study design.[9] A commonality
analysis may be helpful in disentangling the shared and
unique impacts of correlated independent variables.[10]

19.2 Extensions

Numerous extensions of linear regression have been de-
veloped, which allow some or all of the assumptions un-
derlying the basic model to be relaxed.

19.2.1 Simple and multiple regression

The very simplest case of a single scalar predictor vari-
able x and a single scalar response variable y is known as
simple linear regression. The extension to multiple and/or
vector-valued predictor variables (denoted with a capital
X) is known as multiple linear regression, also known as
multivariable linear regression. Nearly all real-world re-
gression models involve multiple predictors, and basic de-
scriptions of linear regression are often phrased in terms
of the multiple regression model. Note, however, that in
these cases the response variable y is still a scalar. An-
other term multivariate linear regression refers to cases
where y is a vector, i.e., the same as general linear regres-
sion. The difference between multivariate linear regres-
sion and multivariable linear regression should be empha-
sized as it causes much confusion and misunderstanding
in the literature.

19.2.2 General linear models

The general linear model considers the situation when the
response variable Y is not a scalar but a vector. Con-

ditional linearity of E(y|x) = Bx is still assumed, with a
matrix B replacing the vector β of the classical linear re-
gression model. Multivariate analogues of OLS and GLS
have been developed. The term “general linear models”
is equivalent to “multivariate linear models”. It should
be noted the difference of “multivariate linear models”
and “multivariable linear models,” where the former is
the same as “general linear models” and the latter is the
same as “multiple linear models.”

19.2.3 Heteroscedastic models

Various models have been created that allow for
heteroscedasticity, i.e. the errors for different response
variables may have different variances. For example,
weighted least squares is a method for estimating linear
regression models when the response variables may have
different error variances, possibly with correlated errors.
(See also Weighted linear least squares, and generalized
least squares.) Heteroscedasticity-consistent standard er-
rors is an improved method for use with uncorrelated but
potentially heteroscedastic errors.

19.2.4 Generalized linear models

Generalized linear models (GLMs) are a framework for
modeling a response variable y that is bounded or dis-
crete. This is used, for example:

• when modeling positive quantities (e.g. prices or
populations) that vary over a large scale—which are
better described using a skewed distribution such as
the log-normal distribution or Poisson distribution
(although GLMs are not used for log-normal data,
instead the response variable is simply transformed
using the logarithm function);

• when modeling categorical data, such as the choice
of a given candidate in an election (which is bet-
ter described using a Bernoulli distribution/binomial
distribution for binary choices, or a categorical
distribution/multinomial distribution for multi-way
choices), where there are a fixed number of choices
that cannot be meaningfully ordered;

• when modeling ordinal data, e.g. ratings on a scale
from 0 to 5, where the different outcomes can be
ordered but where the quantity itself may not have
any absolute meaning (e.g. a rating of 4 may not be
“twice as good” in any objective sense as a rating of
2, but simply indicates that it is better than 2 or 3
but not as good as 5).

Generalized linear models allow for an arbitrary link
function g that relates the mean of the response variable
to the predictors, i.e. E(y) = g(β′x). The link function is
often related to the distribution of the response, and in
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particular it typically has the effect of transforming be-
tween the (−∞,∞) range of the linear predictor and the
range of the response variable.
Some common examples of GLMs are:

• Poisson regression for count data.

• Logistic regression and probit regression for binary
data.

• Multinomial logistic regression and multinomial
probit regression for categorical data.

• Ordered probit regression for ordinal data.

Single index models allow some degree of nonlinearity
in the relationship between x and y, while preserving the
central role of the linear predictor β′x as in the classical
linear regression model. Under certain conditions, simply
applying OLS to data from a single-index model will con-
sistently estimate β up to a proportionality constant.[11]

19.2.5 Hierarchical linear models

Hierarchical linear models (or multilevel regression) or-
ganizes the data into a hierarchy of regressions, for ex-
ample where A is regressed on B, and B is regressed on
C. It is often used where the data have a natural hierar-
chical structure such as in educational statistics, where
students are nested in classrooms, classrooms are nested
in schools, and schools are nested in some administrative
grouping, such as a school district. The response variable
might be a measure of student achievement such as a test
score, and different covariates would be collected at the
classroom, school, and school district levels.

19.2.6 Errors-in-variables

Errors-in-variables models (or “measurement error mod-
els”) extend the traditional linear regression model to al-
low the predictor variables X to be observed with error.
This error causes standard estimators of β to become bi-
ased. Generally, the form of bias is an attenuation, mean-
ing that the effects are biased toward zero.

19.2.7 Others

• In Dempster–Shafer theory, or a linear belief func-
tion in particular, a linear regression model may be
represented as a partially swept matrix, which can
be combined with similar matrices representing ob-
servations and other assumed normal distributions
and state equations. The combination of swept or
unswept matrices provides an alternative method for
estimating linear regression models.

19.3 Estimation methods

Comparison of the Theil–Sen estimator (black) and simple linear
regression (blue) for a set of points with outliers.

A large number of procedures have been developed for
parameter estimation and inference in linear regression.
These methods differ in computational simplicity of al-
gorithms, presence of a closed-form solution, robustness
with respect to heavy-tailed distributions, and theoretical
assumptions needed to validate desirable statistical prop-
erties such as consistency and asymptotic efficiency.
Some of the more common estimation techniques for lin-
ear regression are summarized below.

19.3.1 Least-squares estimation and re-
lated techniques

• Ordinary least squares (OLS) is the simplest
and thus most common estimator. It is concep-
tually simple and computationally straightforward.
OLS estimates are commonly used to analyze both
experimental and observational data.
The OLS method minimizes the sum of squared
residuals, and leads to a closed-form expression for
the estimated value of the unknown parameter β:

β̂ = (XTX)−1XTy =
(∑

xixT
i

)−1(∑xiyi
)
.

The estimator is unbiased and consistent if the errors
have finite variance and are uncorrelated with the
regressors[12]

E[ xiεi ] = 0.
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It is also efficient under the assumption that the
errors have finite variance and are homoscedastic,
meaning that E[εi2|xi] does not depend on i. The
condition that the errors are uncorrelated with the
regressors will generally be satisfied in an experi-
ment, but in the case of observational data, it is dif-
ficult to exclude the possibility of an omitted covari-
ate z that is related to both the observed covariates
and the response variable. The existence of such a
covariate will generally lead to a correlation between
the regressors and the response variable, and hence
to an inconsistent estimator of β. The condition of
homoscedasticity can fail with either experimental
or observational data. If the goal is either inference
or predictive modeling, the performance of OLS es-
timates can be poor if multicollinearity is present,
unless the sample size is large.
In simple linear regression, where there is only one
regressor (with a constant), the OLS coefficient es-
timates have a simple form that is closely related to
the correlation coefficient between the covariate and
the response.

• Generalized least squares (GLS) is an extension of
the OLS method, that allows efficient estimation of
β when either heteroscedasticity, or correlations, or
both are present among the error terms of the model,
as long as the form of heteroscedasticity and correla-
tion is known independently of the data. To handle
heteroscedasticity when the error terms are uncor-
related with each other, GLS minimizes a weighted
analogue to the sum of squared residuals from OLS
regression, where the weight for the ith case is in-
versely proportional to var(εi). This special case of
GLS is called “weighted least squares”. The GLS
solution to estimation problem is

β̂ = (XTΩ−1X)−1XTΩ−1y,

whereΩ is the covariance matrix of the errors. GLS
can be viewed as applying a linear transformation to
the data so that the assumptions of OLS are met for
the transformed data. For GLS to be applied, the
covariance structure of the errors must be known up
to a multiplicative constant.

• Percentage least squares focuses on reducing per-
centage errors, which is useful in the field of fore-
casting or time series analysis. It is also useful in
situations where the dependent variable has a wide
range without constant variance, as here the larger
residuals at the upper end of the range would domi-
nate if OLS were used. When the percentage or rel-
ative error is normally distributed, least squares per-
centage regression provides maximum likelihood
estimates. Percentage regression is linked to a mul-
tiplicative error model, whereas OLS is linked to
models containing an additive error term.[13]

• Iteratively reweighted least squares (IRLS) is
used when heteroscedasticity, or correlations, or
both are present among the error terms of the model,
but where little is known about the covariance struc-
ture of the errors independently of the data.[14] In
the first iteration, OLS, or GLS with a provisional
covariance structure is carried out, and the residuals
are obtained from the fit. Based on the residuals, an
improved estimate of the covariance structure of the
errors can usually be obtained. A subsequent GLS
iteration is then performed using this estimate of the
error structure to define the weights. The process
can be iterated to convergence, but in many cases,
only one iteration is sufficient to achieve an efficient
estimate of β.[15][16]

• Instrumental variables regression (IV) can be per-
formed when the regressors are correlated with the
errors. In this case, we need the existence of some
auxiliary instrumental variables zi such that E[ziεi]
= 0. If Z is the matrix of instruments, then the esti-
mator can be given in closed form as

β̂ = (XTZ(ZTZ)−1ZTX)−1XTZ(ZTZ)−1ZTy.

• Optimal instruments regression is an extension of
classical IV regression to the situation where E[εi|zi]
= 0.

• Total least squares (TLS)[17] is an approach to least
squares estimation of the linear regression model
that treats the covariates and response variable in a
more geometrically symmetric manner than OLS. It
is one approach to handling the “errors in variables”
problem, and is also sometimes used even when the
covariates are assumed to be error-free.

19.3.2 Maximum-likelihood estimation
and related techniques

• Maximum likelihood estimation can be per-
formed when the distribution of the error terms is
known to belong to a certain parametric family ƒθ
of probability distributions.[18] When fθ is a nor-
mal distribution with zero mean and variance θ, the
resulting estimate is identical to the OLS estimate.
GLS estimates are maximum likelihood estimates
when ε follows a multivariate normal distribution
with a known covariance matrix.

• Ridge regression,[19][20][21] and other forms of pe-
nalized estimation such as Lasso regression,[5] de-
liberately introduce bias into the estimation of β
in order to reduce the variability of the estimate.
The resulting estimators generally have lower mean
squared error than the OLS estimates, particularly
when multicollinearity is present. They are gener-
ally used when the goal is to predict the value of the
response variable y for values of the predictors x that
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have not yet been observed. These methods are not
as commonly used when the goal is inference, since
it is difficult to account for the bias.

• Least absolute deviation (LAD) regression is a
robust estimation technique in that it is less sensi-
tive to the presence of outliers than OLS (but is less
efficient than OLS when no outliers are present). It
is equivalent to maximum likelihood estimation un-
der a Laplace distribution model for ε.[22]

• Adaptive estimation. If we assume that error terms
are independent from the regressors εi ⊥ xi , the
optimal estimator is the 2-step MLE, where the first
step is used to non-parametrically estimate the dis-
tribution of the error term.[23]

19.3.3 Other estimation techniques

• Bayesian linear regression applies the framework
of Bayesian statistics to linear regression. (See also
Bayesian multivariate linear regression.) In particu-
lar, the regression coefficients β are assumed to be
random variables with a specified prior distribution.
The prior distribution can bias the solutions for the
regression coefficients, in a way similar to (but more
general than) ridge regression or lasso regression. In
addition, the Bayesian estimation process produces
not a single point estimate for the “best” values of the
regression coefficients but an entire posterior distri-
bution, completely describing the uncertainty sur-
rounding the quantity. This can be used to estimate
the “best” coefficients using the mean, mode, me-
dian, any quantile (see quantile regression), or any
other function of the posterior distribution.

• Quantile regression focuses on the conditional
quantiles of y given X rather than the conditional
mean of y given X. Linear quantile regression mod-
els a particular conditional quantile, for example the
conditional median, as a linear function βTx of the
predictors.

• Mixed models are widely used to analyze linear
regression relationships involving dependent data
when the dependencies have a known structure.
Common applications of mixed models include
analysis of data involving repeated measurements,
such as longitudinal data, or data obtained from clus-
ter sampling. They are generally fit as parametric
models, using maximum likelihood or Bayesian es-
timation. In the case where the errors are modeled
as normal random variables, there is a close con-
nection between mixed models and generalized least
squares.[24] Fixed effects estimation is an alternative
approach to analyzing this type of data.

• Principal component regression (PCR)[7][8] is
used when the number of predictor variables is

large, or when strong correlations exist among the
predictor variables. This two-stage procedure first
reduces the predictor variables using principal com-
ponent analysis then uses the reduced variables in
an OLS regression fit. While it often works well in
practice, there is no general theoretical reason that
the most informative linear function of the predictor
variables should lie among the dominant principal
components of the multivariate distribution of the
predictor variables. The partial least squares regres-
sion is the extension of the PCR method which does
not suffer from the mentioned deficiency.

• Least-angle regression[6] is an estimation proce-
dure for linear regression models that was developed
to handle high-dimensional covariate vectors, po-
tentially with more covariates than observations.

• The Theil–Sen estimator is a simple robust estima-
tion technique that chooses the slope of the fit line
to be the median of the slopes of the lines through
pairs of sample points. It has similar statistical ef-
ficiency properties to simple linear regression but is
much less sensitive to outliers.[25]

• Other robust estimation techniques, including the α-
trimmed mean approach, and L-, M-, S-, and R-
estimators have been introduced.

19.3.4 Further discussion

In statistics and numerical analysis, the problem of nu-
merical methods for linear least squares is an impor-
tant one because linear regression models are one of the
most important types of model, both as formal statistical
models and for exploration of data sets. The majority of
statistical computer packages contain facilities for regres-
sion analysis that make use of linear least squares compu-
tations. Hence it is appropriate that considerable effort
has been devoted to the task of ensuring that these com-
putations are undertaken efficiently and with due regard
to numerical precision.
Individual statistical analyses are seldom undertaken in
isolation, but rather are part of a sequence of investiga-
tory steps. Some of the topics involved in considering
numerical methods for linear least squares relate to this
point. Thus important topics can be

• Computations where a number of similar, and of-
ten nested, models are considered for the same data
set. That is, where models with the same dependent
variable but different sets of independent variables
are to be considered, for essentially the same set of
data points.

• Computations for analyses that occur in a sequence,
as the number of data points increases.

• Special considerations for very extensive data sets.
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Fitting of linear models by least squares often, but not al-
ways, arises in the context of statistical analysis. It can
therefore be important that considerations of computa-
tional efficiency for such problems extend to all of the
auxiliary quantities required for such analyses, and are not
restricted to the formal solution of the linear least squares
problem.
Matrix calculations, like any others, are affected by
rounding errors. An early summary of these effects, re-
garding the choice of computational methods for matrix
inversion, was provided by Wilkinson.[26]

19.3.5 Using Linear Algebra

It follows that one can find a “best” approximation of an-
other function by minimizing the area between two func-
tions, a continuous function f on [a, b] and a function
g ∈W where W is a subspace of C[a, b] :

Area =

∫ b

a

|f(x)− g(x)| dx

┌────────────────────────────────────────────────────────────────────────────────────────────────────┘all
within the subspace W . Due to the frequent difficulty
of evaluating integrands involving absolute value, one
can instead define

∫ b

a

[f(x)− g(x)]2 dx

┌────────────────────────────────────────────────────────────────────────────────────────────────────┘as
an adequate criterion for obtaining the least squares
approximation, function g , of f with respect to the inner
product space W .
As such, ∥f − g∥2 or, equivalently, ∥f − g∥ , can thus be
written in vector form:

∫ b

a

[f(x)− g(x)]2 dx = ⟨f − g, f − g⟩ = ∥f − g∥2

┌────────────────────────────────────────────────────────────────────────────────────────────────────┘In
other words, the least squares approximation of f is the
function g ∈ subspace W closest to f in terms of the
inner product ⟨f, g⟩ . Furthermore, this can be applied
with a theorem:

Let f be continuous on [a, b] , and let W be
a finite-dimensional subspace of C[a, b] . The
least squares approximating function of f with
respect to W is given by

g = ⟨f, w⃗1⟩ w⃗1 + ⟨f, w⃗2⟩ w⃗2 + · · ·+ ⟨f, w⃗n⟩ w⃗n

where B = {w⃗1, w⃗2, . . . , w⃗n} is an orthonor-
mal basis for W .

19.4 Applications of linear regres-
sion

Linear regression is widely used in biological, behavioral
and social sciences to describe possible relationships be-
tween variables. It ranks as one of the most important
tools used in these disciplines.

19.4.1 Trend line

Main article: Trend estimation

A trend line represents a trend, the long-term movement
in time series data after other components have been ac-
counted for. It tells whether a particular data set (say
GDP, oil prices or stock prices) have increased or de-
creased over the period of time. A trend line could sim-
ply be drawn by eye through a set of data points, but
more properly their position and slope is calculated using
statistical techniques like linear regression. Trend lines
typically are straight lines, although some variations use
higher degree polynomials depending on the degree of
curvature desired in the line.
Trend lines are sometimes used in business analytics to
show changes in data over time. This has the advantage
of being simple. Trend lines are often used to argue that
a particular action or event (such as training, or an ad-
vertising campaign) caused observed changes at a point
in time. This is a simple technique, and does not require
a control group, experimental design, or a sophisticated
analysis technique. However, it suffers from a lack of sci-
entific validity in cases where other potential changes can
affect the data.

19.4.2 Epidemiology

Early evidence relating tobacco smoking to mortality and
morbidity came from observational studies employing re-
gression analysis. In order to reduce spurious correlations
when analyzing observational data, researchers usually in-
clude several variables in their regression models in addi-
tion to the variable of primary interest. For example, sup-
pose we have a regression model in which cigarette smok-
ing is the independent variable of interest, and the depen-
dent variable is lifespan measured in years. Researchers
might include socio-economic status as an additional in-
dependent variable, to ensure that any observed effect of
smoking on lifespan is not due to some effect of educa-
tion or income. However, it is never possible to include
all possible confounding variables in an empirical anal-
ysis. For example, a hypothetical gene might increase
mortality and also cause people to smoke more. For this
reason, randomized controlled trials are often able to gen-
erate more compelling evidence of causal relationships
than can be obtained using regression analyses of obser-
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vational data. When controlled experiments are not fea-
sible, variants of regression analysis such as instrumental
variables regression may be used to attempt to estimate
causal relationships from observational data.

19.4.3 Finance

The capital asset pricing model uses linear regression as
well as the concept of beta for analyzing and quantifying
the systematic risk of an investment. This comes directly
from the beta coefficient of the linear regression model
that relates the return on the investment to the return on
all risky assets.

19.4.4 Economics

Main article: Econometrics

Linear regression is the predominant empirical tool
in economics. For example, it is used to pre-
dict consumption spending,[27] fixed investment spend-
ing, inventory investment, purchases of a country’s
exports,[28] spending on imports,[28] the demand to hold
liquid assets,[29] labor demand,[30] and labor supply.[30]

19.4.5 Environmental science

Linear regression finds application in a wide range of
environmental science applications. In Canada, the En-
vironmental Effects Monitoring Program uses statistical
analyses on fish and benthic surveys to measure the ef-
fects of pulp mill or metal mine effluent on the aquatic
ecosystem.[31]

19.5 See also
• Analysis of variance

• Censored regression model

• Cross-sectional regression

• Curve fitting

• Empirical Bayes methods

• Errors and residuals

• Lack-of-fit sum of squares

• Linear classifier

• Logistic regression

• M-estimator

• MLPACK contains a C++ implementation of linear
regression

• Multivariate adaptive regression splines

• Nonlinear regression

• Nonparametric regression

• Normal equations

• Projection pursuit regression

• Segmented linear regression

• Stepwise regression

• Support vector machine

• Truncated regression model
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Chapter 20

Tikhonov regularization

Tikhonov regularization, named for Andrey Tikhonov,
is the most commonly used method of regularization of
ill-posed problems. In statistics, the method is known
as ridge regression, and with multiple independent dis-
coveries, it is also variously known as the Tikhonov–
Millermethod, thePhillips–Twomeymethod, the con-
strained linear inversion method, and the method of
linear regularization. It is related to the Levenberg–
Marquardt algorithm for non-linear least-squares prob-
lems.
When the following problem is not well posed (either be-
cause of non-existence or non-uniqueness of x )

Ax = b,

then the standard approach (known as ordinary least
squares) leads to an overdetermined, or more often an
underdetermined system of equations. Most real-world
phenomena operate as low-pass filters in the forward di-
rection where A maps x to b . Therefore in solving the
inverse-problem, the inverse-mapping operates as a high-
pass filter that has the undesirable tendency of amplifying
noise (eigenvalues / singular values are largest in the re-
verse mapping where they were smallest in the forward
mapping). In addition, ordinary least squares implicitly
nullifies every element of the reconstructed version of x
that is in the null-space of A , rather than allowing for a
model to be used as a prior for x . Ordinary least squares
seeks to minimize the sum of squared residuals, which
can be compactly written as

∥Ax− b∥2

where ∥·∥ is the Euclidean norm. In order to give prefer-
ence to a particular solution with desirable properties, a
regularization term can be included in this minimization:

∥Ax− b∥2 + ∥Γx∥2

for some suitably chosen Tikhonov matrix, Γ . In many
cases, this matrix is chosen as a multiple of the identity
matrix ( Γ = αI ), giving preference to solutions with

smaller norms; this is known as L2 regularization.[1] In
other cases, lowpass operators (e.g., a difference opera-
tor or a weighted Fourier operator) may be used to en-
force smoothness if the underlying vector is believed to
be mostly continuous. This regularization improves the
conditioning of the problem, thus enabling a direct nu-
merical solution. An explicit solution, denoted by x̂ , is
given by:

x̂ = (ATA+ ΓTΓ)−1ATb

The effect of regularization may be varied via the scale of
matrix Γ . For Γ = 0 this reduces to the unregularized
least squares solution provided that (ATA)−1 exists.
L2 regularization is used in many contexts aside from
linear regression, such as classification with logistic
regression or support vector machines,[2] and matrix
factorization.[3]

20.1 History

Tikhonov regularization has been invented independently
in many different contexts. It became widely known from
its application to integral equations from the work of
Andrey Tikhonov and David L. Phillips. Some authors
use the term Tikhonov–Phillips regularization. The
finite-dimensional case was expounded by Arthur E. Ho-
erl, who took a statistical approach, and by Manus Foster,
who interpreted this method as a Wiener–Kolmogorov fil-
ter. Following Hoerl, it is known in the statistical litera-
ture as ridge regression.

20.2 Generalized Tikhonov regu-
larization

For general multivariate normal distributions for x and
the data error, one can apply a transformation of the vari-
ables to reduce to the case above. Equivalently, one can
seek an x to minimize
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∥Ax− b∥2P + ∥x− x0∥2Q

where we have used ∥x∥2Q to stand for the weighted norm
xTQx (compare with the Mahalanobis distance). In the
Bayesian interpretationP is the inverse covariance matrix
of b , x0 is the expected value of x , and Q is the inverse
covariance matrix of x . The Tikhonov matrix is then
given as a factorization of the matrix Q = ΓTΓ (e.g.
the Cholesky factorization), and is considered a whitening
filter.
This generalized problem has an optimal solution x∗

which can be solved explicitly using the formula

x∗ = (ATPA+Q)−1(ATPb+Qx0).

or equivalently

x∗ = x0 + (ATPA+Q)−1(ATP (b−Ax0)).

20.3 Regularization in Hilbert
space

Typically discrete linear ill-conditioned problems result
from discretization of integral equations, and one can for-
mulate a Tikhonov regularization in the original infinite-
dimensional context. In the above we can interpretA as a
compact operator on Hilbert spaces, and x and b as el-
ements in the domain and range of A . The operator
A∗A+ΓTΓ is then a self-adjoint bounded invertible op-
erator.

20.4 Relation to singular value de-
composition and Wiener filter

With Γ = αI , this least squares solution can be ana-
lyzed in a special way via the singular value decomposi-
tion. Given the singular value decomposition of A

A = UΣV T

with singular values σi , the Tikhonov regularized solu-
tion can be expressed as

x̂ = V DUT b

where D has diagonal values

Dii =
σi

σ2
i + α2

and is zero elsewhere. This demonstrates the effect of
the Tikhonov parameter on the condition number of the
regularized problem. For the generalized case a similar
representation can be derived using a generalized singular
value decomposition.
Finally, it is related to the Wiener filter:

x̂ =

q∑
i=1

fi
uTi b

σi
vi

where the Wiener weights are fi = σ2
i

σ2
i+α

2 and q is the
rank of A .

20.5 Determination of the
Tikhonov factor

The optimal regularization parameter α is usually un-
known and often in practical problems is determined
by an ad hoc method. A possible approach relies
on the Bayesian interpretation described below. Other
approaches include the discrepancy principle, cross-
validation, L-curve method, restricted maximum like-
lihood and unbiased predictive risk estimator. Grace
Wahba proved that the optimal parameter, in the sense
of leave-one-out cross-validation minimizes:

G =
RSS
τ2

=

∥∥∥Xβ̂ − y
∥∥∥2

[Tr (I −X(XTX + α2I)−1XT )]
2

where RSS is the residual sum of squares and τ is the
effective number of degrees of freedom.
Using the previous SVD decomposition, we can simplify
the above expression:

RSS =

∥∥∥∥∥y −
q∑
i=1

(u′ib)ui

∥∥∥∥∥
2

+

∥∥∥∥∥
q∑
i=1

α2

σ2
i + α2

(u′ib)ui

∥∥∥∥∥
2

RSS = RSS0 +

∥∥∥∥∥
q∑
i=1

α2

σ2
i + α2

(u′ib)ui

∥∥∥∥∥
2

and

τ = m−
q∑
i=1

σ2
i

σ2
i + α2

= m− q +

q∑
i=1

α2

σ2
i + α2

20.6 Relation to probabilistic for-
mulation

The probabilistic formulation of an inverse problem in-
troduces (when all uncertainties are Gaussian) a covari-
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ance matrix CM representing the a priori uncertainties
on the model parameters, and a covariance matrix CD
representing the uncertainties on the observed parame-
ters (see, for instance, Tarantola, 2005 ). In the special
case when these two matrices are diagonal and isotropic,
CM = σ2

MI andCD = σ2
DI , and, in this case, the equa-

tions of inverse theory reduce to the equations above, with
α = σD/σM .

20.7 Bayesian interpretation

Further information: Minimum mean square error §
Linear MMSE estimator for linear observation process

Although at first the choice of the solution to this regular-
ized problem may look artificial, and indeed the matrix Γ
seems rather arbitrary, the process can be justified from
a Bayesian point of view. Note that for an ill-posed prob-
lem one must necessarily introduce some additional as-
sumptions in order to get a unique solution. Statistically,
the prior probability distribution of x is sometimes taken
to be a multivariate normal distribution. For simplicity
here, the following assumptions are made: the means are
zero; their components are independent; the components
have the same standard deviation σx . The data are also
subject to errors, and the errors in b are also assumed to
be independent with zero mean and standard deviation σb
. Under these assumptions the Tikhonov-regularized so-
lution is the most probable solution given the data and the
a priori distribution of x , according to Bayes’ theorem.[4]

If the assumption of normality is replaced by assumptions
of homoskedasticity and uncorrelatedness of errors, and
if one still assumes zero mean, then the Gauss–Markov
theorem entails that the solution is the minimal unbiased
estimator.

20.8 See also

• LASSO estimator is another regularization method
in statistics.
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Chapter 21

Regression analysis

In statistics, regression analysis is a statistical process
for estimating the relationships among variables. It in-
cludes many techniques for modeling and analyzing sev-
eral variables, when the focus is on the relationship be-
tween a dependent variable and one or more independent
variables (or 'predictors’). More specifically, regression
analysis helps one understand how the typical value of the
dependent variable (or 'criterion variable') changes when
any one of the independent variables is varied, while the
other independent variables are held fixed. Most com-
monly, regression analysis estimates the conditional ex-
pectation of the dependent variable given the indepen-
dent variables – that is, the average value of the dependent
variable when the independent variables are fixed. Less
commonly, the focus is on a quantile, or other location pa-
rameter of the conditional distribution of the dependent
variable given the independent variables. In all cases, the
estimation target is a function of the independent vari-
ables called the regression function. In regression analy-
sis, it is also of interest to characterize the variation of the
dependent variable around the regression function which
can be described by a probability distribution.
Regression analysis is widely used for prediction and
forecasting, where its use has substantial overlap with the
field of machine learning. Regression analysis is also used
to understand which among the independent variables
are related to the dependent variable, and to explore the
forms of these relationships. In restricted circumstances,
regression analysis can be used to infer causal relation-
ships between the independent and dependent variables.
However this can lead to illusions or false relationships,
so caution is advisable;[1] for example, correlation does
not imply causation.
Many techniques for carrying out regression analysis have
been developed. Familiar methods such as linear regres-
sion and ordinary least squares regression are parametric,
in that the regression function is defined in terms of a fi-
nite number of unknown parameters that are estimated
from the data. Nonparametric regression refers to tech-
niques that allow the regression function to lie in a speci-
fied set of functions, which may be infinite-dimensional.
The performance of regression analysis methods in prac-
tice depends on the form of the data generating pro-
cess, and how it relates to the regression approach be-

ing used. Since the true form of the data-generating pro-
cess is generally not known, regression analysis often de-
pends to some extent on making assumptions about this
process. These assumptions are sometimes testable if a
sufficient quantity of data is available. Regression mod-
els for prediction are often useful even when the assump-
tions are moderately violated, although they may not per-
form optimally. However, in many applications, espe-
cially with small effects or questions of causality based
on observational data, regression methods can give mis-
leading results.[2][3]

21.1 History

The earliest form of regression was the method of least
squares, which was published by Legendre in 1805,[4] and
by Gauss in 1809.[5] Legendre and Gauss both applied
the method to the problem of determining, from astro-
nomical observations, the orbits of bodies about the Sun
(mostly comets, but also later the then newly discovered
minor planets). Gauss published a further development
of the theory of least squares in 1821,[6] including a ver-
sion of the Gauss–Markov theorem.
The term “regression” was coined by Francis Galton
in the nineteenth century to describe a biological phe-
nomenon. The phenomenon was that the heights of de-
scendants of tall ancestors tend to regress down towards a
normal average (a phenomenon also known as regression
toward the mean).[7][8] For Galton, regression had only
this biological meaning,[9][10] but his work was later ex-
tended by Udny Yule and Karl Pearson to a more general
statistical context.[11][12] In the work of Yule and Pear-
son, the joint distribution of the response and explana-
tory variables is assumed to be Gaussian. This assump-
tion was weakened by R.A. Fisher in his works of 1922
and 1925.[13][14][15] Fisher assumed that the conditional
distribution of the response variable is Gaussian, but the
joint distribution need not be. In this respect, Fisher’s
assumption is closer to Gauss’s formulation of 1821.
In the 1950s and 1960s, economists used electromechani-
cal desk calculators to calculate regressions. Before 1970,
it sometimes took up to 24 hours to receive the result from
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one regression.[16]

Regression methods continue to be an area of active re-
search. In recent decades, new methods have been de-
veloped for robust regression, regression involving cor-
related responses such as time series and growth curves,
regression in which the predictor (independent variable)
or response variables are curves, images, graphs, or other
complex data objects, regression methods accommodat-
ing various types of missing data, nonparametric re-
gression, Bayesian methods for regression, regression in
which the predictor variables are measured with error, re-
gression with more predictor variables than observations,
and causal inference with regression.

21.2 Regression models

Regression models involve the following variables:

• The unknown parameters, denoted as β, which
may represent a scalar or a vector.

• The independent variables, X.
• The dependent variable, Y.

In various fields of application, different terminologies are
used in place of dependent and independent variables.
A regression model relates Y to a function of X and β.

Y ≈ f(X,β)
The approximation is usually formalized as E(Y | X) =
f(X, β). To carry out regression analysis, the form of
the function f must be specified. Sometimes the form of
this function is based on knowledge about the relationship
between Y andX that does not rely on the data. If no such
knowledge is available, a flexible or convenient form for
f is chosen.
Assume now that the vector of unknown parameters β
is of length k. In order to perform a regression analysis
the user must provide information about the dependent
variable Y:

• If N data points of the form (Y, X) are observed,
where N < k, most classical approaches to regres-
sion analysis cannot be performed: since the system
of equations defining the regression model is under-
determined, there are not enough data to recover β.

• If exactly N = k data points are observed, and the
function f is linear, the equations Y = f(X, β) can
be solved exactly rather than approximately. This
reduces to solving a set of N equations with N un-
knowns (the elements of β), which has a unique so-
lution as long as the X are linearly independent. If f
is nonlinear, a solution may not exist, or many solu-
tions may exist.

• The most common situation is where N > k data
points are observed. In this case, there is enough
information in the data to estimate a unique value
for β that best fits the data in some sense, and the
regression model when applied to the data can be
viewed as an overdetermined system in β.

In the last case, the regression analysis provides the tools
for:

1. Finding a solution for unknown parameters β that
will, for example, minimize the distance between
the measured and predicted values of the dependent
variable Y (also known as method of least squares).

2. Under certain statistical assumptions, the regression
analysis uses the surplus of information to provide
statistical information about the unknown parame-
ters β and predicted values of the dependent variable
Y.

21.2.1 Necessary number of independent
measurements

Consider a regression model which has three unknown
parameters, β0, β1, and β2. Suppose an experimenter
performs 10 measurements all at exactly the same value
of independent variable vector X (which contains the in-
dependent variables X1, X2, and X3). In this case, regres-
sion analysis fails to give a unique set of estimated values
for the three unknown parameters; the experimenter did
not provide enough information. The best one can do is
to estimate the average value and the standard deviation
of the dependent variable Y. Similarly, measuring at two
different values of X would give enough data for a re-
gression with two unknowns, but not for three or more
unknowns.
If the experimenter had performed measurements at
three different values of the independent variable vector
X, then regression analysis would provide a unique set of
estimates for the three unknown parameters in β.
In the case of general linear regression, the above state-
ment is equivalent to the requirement that the matrixXTX
is invertible.

21.2.2 Statistical assumptions

When the number of measurements, N, is larger than the
number of unknown parameters, k, and the measurement
errors εᵢ are normally distributed then the excess of in-
formation contained in (N − k) measurements is used to
make statistical predictions about the unknown param-
eters. This excess of information is referred to as the
degrees of freedom of the regression.
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21.3 Underlying assumptions

Classical assumptions for regression analysis include:

• The sample is representative of the population for
the inference prediction.

• The error is a random variable with a mean of zero
conditional on the explanatory variables.

• The independent variables are measured with no er-
ror. (Note: If this is not so, modeling may be done
instead using errors-in-variables model techniques).

• The independent variables (predictors) are linearly
independent, i.e. it is not possible to express any
predictor as a linear combination of the others.

• The errors are uncorrelated, that is, the variance–
covariance matrix of the errors is diagonal and each
non-zero element is the variance of the error.

• The variance of the error is constant across obser-
vations (homoscedasticity). If not, weighted least
squares or other methods might instead be used.

These are sufficient conditions for the least-squares esti-
mator to possess desirable properties; in particular, these
assumptions imply that the parameter estimates will be
unbiased, consistent, and efficient in the class of linear
unbiased estimators. It is important to note that actual
data rarely satisfies the assumptions. That is, the method
is used even though the assumptions are not true. Vari-
ation from the assumptions can sometimes be used as a
measure of how far the model is from being useful. Many
of these assumptions may be relaxed in more advanced
treatments. Reports of statistical analyses usually include
analyses of tests on the sample data and methodology for
the fit and usefulness of the model.
Assumptions include the geometrical support of the
variables.[17] Independent and dependent variables often
refer to values measured at point locations. There may be
spatial trends and spatial autocorrelation in the variables
that violate statistical assumptions of regression. Geo-
graphic weighted regression is one technique to deal with
such data.[18] Also, variables may include values aggre-
gated by areas. With aggregated data the modifiable areal
unit problem can cause extreme variation in regression
parameters.[19] When analyzing data aggregated by polit-
ical boundaries, postal codes or census areas results may
be very distinct with a different choice of units.

21.4 Linear regression

Main article: Linear regression
See simple linear regression for a derivation of these
formulas and a numerical example

In linear regression, the model specification is that the de-
pendent variable, yi is a linear combination of the param-
eters (but need not be linear in the independent variables).
For example, in simple linear regression for modeling n
data points there is one independent variable: xi , and
two parameters, β0 and β1 :

yi = β0 + β1xi + εi, i = 1, . . . , n.

In multiple linear regression, there are several indepen-
dent variables or functions of independent variables.
Adding a term in xi2 to the preceding regression gives:

yi = β0 + β1xi + β2x
2
i + εi, i = 1, . . . , n.

This is still linear regression; although the expression on
the right hand side is quadratic in the independent variable
xi , it is linear in the parameters β0 , β1 and β2.
In both cases, εi is an error term and the subscript i in-
dexes a particular observation.
Returning our attention to the straight line case: Given
a random sample from the population, we estimate the
population parameters and obtain the sample linear re-
gression model:

ŷi = β̂0 + β̂1xi.

The residual, ei = yi − ŷi , is the difference between the
value of the dependent variable predicted by the model,
ŷi , and the true value of the dependent variable, yi .
One method of estimation is ordinary least squares. This
method obtains parameter estimates that minimize the
sum of squared residuals, SSE,[20][21] also sometimes de-
noted RSS:

SSE =

n∑
i=1

e2i .

Minimization of this function results in a set of normal
equations, a set of simultaneous linear equations in the
parameters, which are solved to yield the parameter esti-
mators, β̂0, β̂1 .
In the case of simple regression, the formulas for the least
squares estimates are

β̂1 =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2
and β̂0 = ȳ − β̂1x̄

where x̄ is the mean (average) of the x values and ȳ is the
mean of the y values.
Under the assumption that the population error term has
a constant variance, the estimate of that variance is given
by:
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Illustration of linear regression on a data set.

σ̂2
ε =

SSE

n− 2
.

This is called the mean square error (MSE) of the regres-
sion. The denominator is the sample size reduced by the
number of model parameters estimated from the same
data, (n-p) for p regressors or (n-p−1) if an intercept is
used.[22] In this case, p=1 so the denominator is n−2.
The standard errors of the parameter estimates are given
by

σ̂β0
= σ̂ε

√
1

n
+

x̄2∑
(xi − x̄)2

σ̂β1 = σ̂ε

√
1∑

(xi − x̄)2
.

Under the further assumption that the population error
term is normally distributed, the researcher can use these
estimated standard errors to create confidence intervals
and conduct hypothesis tests about the population param-
eters.

21.4.1 General linear model

For a derivation, see linear least squares
For a numerical example, see linear regression

In the more general multiple regression model, there are
p independent variables:

yi = β1xi1 + β2xi2 + · · ·+ βpxip + εi,

where xij is the ith observation on the jth independent vari-
able, and where the first independent variable takes the
value 1 for all i (so β1 is the regression intercept).
The least squares parameter estimates are obtained from
p normal equations. The residual can be written as

εi = yi − β̂1xi1 − · · · − β̂pxip.

The normal equations are

n∑
i=1

p∑
k=1

XijXikβ̂k =
n∑
i=1

Xijyi, j = 1, . . . , p.

In matrix notation, the normal equations are written as

(X⊤X)β̂ = X⊤Y,

where the ij element of X is xij, the i element of the col-
umn vector Y is yi, and the j element of β̂ is β̂j . Thus X
is n×p, Y is n×1, and β̂ is p×1. The solution is

β̂ = (X⊤X)−1X⊤Y.

21.4.2 Diagnostics

See also: Category:Regression diagnostics.

Once a regression model has been constructed, it may be
important to confirm the goodness of fit of the model and
the statistical significance of the estimated parameters.
Commonly used checks of goodness of fit include the R-
squared, analyses of the pattern of residuals and hypoth-
esis testing. Statistical significance can be checked by an
F-test of the overall fit, followed by t-tests of individual
parameters.
Interpretations of these diagnostic tests rest heavily on the
model assumptions. Although examination of the resid-
uals can be used to invalidate a model, the results of a t-
test or F-test are sometimes more difficult to interpret if
the model’s assumptions are violated. For example, if the
error term does not have a normal distribution, in small
samples the estimated parameters will not follow normal
distributions and complicate inference. With relatively
large samples, however, a central limit theorem can be
invoked such that hypothesis testing may proceed using
asymptotic approximations.

21.4.3 “Limited dependent” variables

The phrase “limited dependent” is used in econometric
statistics for categorical and constrained variables.
The response variable may be non-continuous (“limited”
to lie on some subset of the real line). For binary (zero or
one) variables, if analysis proceeds with least-squares lin-
ear regression, the model is called the linear probability
model. Nonlinear models for binary dependent variables
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include the probit and logit model. The multivariate pro-
bit model is a standard method of estimating a joint rela-
tionship between several binary dependent variables and
some independent variables. For categorical variables
with more than two values there is the multinomial logit.
For ordinal variables with more than two values, there are
the ordered logit and ordered probit models. Censored
regression models may be used when the dependent vari-
able is only sometimes observed, and Heckman correc-
tion type models may be used when the sample is not
randomly selected from the population of interest. An
alternative to such procedures is linear regression based
on polychoric correlation (or polyserial correlations) be-
tween the categorical variables. Such procedures differ in
the assumptions made about the distribution of the vari-
ables in the population. If the variable is positive with low
values and represents the repetition of the occurrence of
an event, then count models like the Poisson regression
or the negative binomial model may be used instead.

21.5 Interpolation and extrapola-
tion

Regression models predict a value of the Y variable given
known values of the X variables. Prediction within the
range of values in the dataset used for model-fitting is
known informally as interpolation. Prediction outside this
range of the data is known as extrapolation. Performing
extrapolation relies strongly on the regression assump-
tions. The further the extrapolation goes outside the data,
the more room there is for the model to fail due to dif-
ferences between the assumptions and the sample data or
the true values.
It is generally advised that when performing extrapola-
tion, one should accompany the estimated value of the de-
pendent variable with a prediction interval that represents
the uncertainty. Such intervals tend to expand rapidly as
the values of the independent variable(s) moved outside
the range covered by the observed data.
For such reasons and others, some tend to say that it might
be unwise to undertake extrapolation.[23]

However, this does not cover the full set of modelling er-
rors that may be being made: in particular, the assump-
tion of a particular form for the relation between Y and X.
A properly conducted regression analysis will include an
assessment of how well the assumed form is matched by
the observed data, but it can only do so within the range
of values of the independent variables actually available.
This means that any extrapolation is particularly reliant
on the assumptions being made about the structural form
of the regression relationship. Best-practice advice here
is that a linear-in-variables and linear-in-parameters rela-
tionship should not be chosen simply for computational
convenience, but that all available knowledge should be
deployed in constructing a regression model. If this

knowledge includes the fact that the dependent variable
cannot go outside a certain range of values, this can be
made use of in selecting the model – even if the observed
dataset has no values particularly near such bounds. The
implications of this step of choosing an appropriate func-
tional form for the regression can be great when extrap-
olation is considered. At a minimum, it can ensure that
any extrapolation arising from a fitted model is “realistic”
(or in accord with what is known).

21.6 Nonlinear regression

Main article: Nonlinear regression

When the model function is not linear in the parameters,
the sum of squares must be minimized by an iterative pro-
cedure. This introduces many complications which are
summarized in Differences between linear and non-linear
least squares

21.7 Power and sample size calcu-
lations

There are no generally agreed methods for relating the
number of observations versus the number of indepen-
dent variables in the model. One rule of thumb suggested
by Good and Hardin is N = mn , where N is the sam-
ple size, n is the number of independent variables and m
is the number of observations needed to reach the de-
sired precision if the model had only one independent
variable.[24] For example, a researcher is building a lin-
ear regression model using a dataset that contains 1000
patients (N ). If the researcher decides that five observa-
tions are needed to precisely define a straight line ( m ),
then the maximum number of independent variables the
model can support is 4, because
log 1000

log 5 = 4.29 .

21.8 Other methods

Although the parameters of a regression model are usu-
ally estimated using the method of least squares, other
methods which have been used include:

• Bayesian methods, e.g. Bayesian linear regression

• Percentage regression, for situations where reducing
percentage errors is deemed more appropriate.[25]

• Least absolute deviations, which is more robust in
the presence of outliers, leading to quantile regres-
sion
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• Nonparametric regression, requires a large number
of observations and is computationally intensive

• Distance metric learning, which is learned by the
search of a meaningful distance metric in a given
input space.[26]

21.9 Software

Main article: List of statistical packages

All major statistical software packages perform least
squares regression analysis and inference. Simple linear
regression and multiple regression using least squares can
be done in some spreadsheet applications and on some
calculators. While many statistical software packages can
perform various types of nonparametric and robust re-
gression, these methods are less standardized; different
software packages implement different methods, and a
method with a given name may be implemented differ-
ently in different packages. Specialized regression soft-
ware has been developed for use in fields such as survey
analysis and neuroimaging.

21.10 See also
• Confidence Interval for Maximin Effects in Inhomo-

geneous Data

• Curve fitting

• Estimation Theory

• Forecasting

• Fraction of variance unexplained

• Function approximation

• Kriging (a linear least squares estimation algorithm)

• Local regression

• Modifiable areal unit problem

• Multivariate adaptive regression splines

• Multivariate normal distribution

• Pearson product-moment correlation coefficient

• Prediction interval

• Robust regression

• Segmented regression

• Signal processing

• Stepwise regression

• Trend estimation
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Chapter 22

Statistical learning theory

See also: Computational learning theory
This article is about statistical learning in machine learn-
ing. For its use in psychology, see Statistical learning in
language acquisition.

Statistical learning theory is a framework for machine
learning drawing from the fields of statistics and
functional analysis.[1] Statistical learning theory deals
with the problem of finding a predictive function based
on data. Statistical learning theory has led to success-
ful applications in fields such as computer vision, speech
recognition, bioinformatics and baseball.[2] It is the theo-
retical framework underlying support vector machines.

22.1 Introduction

The goal of learning is prediction. Learning falls
into many categories, including supervised learn-
ing, unsupervised learning, online learning, and
reinforcement learning. From the perspective of sta-
tistical learning theory, supervised learning is best
understood.[3] Supervised learning involves learning
from a training set of data. Every point in the training
is an input-output pair, where the input maps to an
output. The learning problem consists of inferring the
function that maps between the input and the output in a
predictive fashion, such that the learned function can be
used to predict output from future input.
Depending of the type of output, supervised learning
problems are either problems of regression or problems
of classification. If the output takes a continuous range of
values, it is a regression problem. Using Ohm’s Law as
an example, a regression could be performed with voltage
as input and current as output. The regression would find
the functional relationship between voltage and current to
be 1

R , such that

I =
1

R
V

Classification problems are those for which the output
will be an element from a discrete set of labels. Classifi-
cation is very common for machine learning applications.

In facial recognition, for instance, a picture of a person’s
face would be the input, and the output label would be
that person’s name. The input would be represented by a
large multidimensional vector, in which each dimension
represents the value of one of the pixels.
After learning a function based on the training set data,
that function is validated on a test set of data, data that
did not appear in the training set.

22.2 Formal Description

Take X to be the vector space of all possible inputs, and
Y to be the vector space of all possible outputs. Statistical
learning theory takes the perspective that there is some
unknown probability distribution over the product space
Z = X ⊗ Y , i.e. there exists some unknown p(z) =
p(x⃗, y) . The training set is made up of n samples from
this probability distribution, and is notated

S = {(x⃗1, y1), . . . , (x⃗n, yn)} = {z⃗1, . . . , z⃗n}

Every x⃗i is an input vector from the training data, and yi
is the output that corresponds to it.
In this formalism, the inference problem consists of find-
ing a function f : X 7→ Y such that f(x⃗) ∼ y . Let H
be a space of functions f : X 7→ Y called the hypothesis
space. The hypothesis space is the space of functions the
algorithm will search through. Let V (f(x⃗), y) be the loss
functional, a metric for the difference between the pre-
dicted value f(x⃗) and the actual value y . The expected
risk is defined to be

I[f ] =

∫
X⊗Y

V (f(x⃗), y)p(x⃗, y)dx⃗dy

The target function, the best possible function f that can
be chosen, is given by the f that satisfies

inf
f∈H

I[f ]

166

https://en.wikipedia.org/wiki/Computational_learning_theory
https://en.wikipedia.org/wiki/Statistical_learning_in_language_acquisition
https://en.wikipedia.org/wiki/Statistical_learning_in_language_acquisition
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Functional_analysis
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Speech_recognition
https://en.wikipedia.org/wiki/Speech_recognition
https://en.wikipedia.org/wiki/Bioinformatics
https://en.wikipedia.org/wiki/Baseball
https://en.wikipedia.org/wiki/Support_vector_machines
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Online_machine_learning
https://en.wikipedia.org/wiki/Reinforcement_learning
https://en.wikipedia.org/wiki/Training_set
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Ohm%2527s_Law
https://en.wikipedia.org/wiki/Facial_recognition_system
https://en.wikipedia.org/wiki/Loss_functional
https://en.wikipedia.org/wiki/Loss_functional
https://en.wikipedia.org/wiki/Expected_risk
https://en.wikipedia.org/wiki/Expected_risk


22.4. REGULARIZATION 167

Because the probability distribution p(x⃗, y) is unknown,
a proxy measure for the expected risk must be used.
This measure is based on the training set, a sample from
this unknown probability distribution. It is called the
empirical risk

IS [f ] =
1

n

n∑
i=1

V (f(x⃗i), yi)

A learning algorithm that chooses the function fS that
minimizes the empirical risk is called empirical risk min-
imization.

22.3 Loss Functions

The choice of loss function is a determining factor on the
function fS that will be chosen by the learning algorithm.
The loss function also affects the convergence rate for
an algorithm. It is important for the loss function to be
convex.[4]

Different loss functions are used depending on whether
the problem is one of regression or one of classification.

22.3.1 Regression

The most common loss function for regression is the
square loss function. This familiar loss function is used
in ordinary least squares regression. The form is:

V (f(x⃗), y) = (y − f(x⃗))2

The absolute value loss is also sometimes used:

V (f(x⃗), y) = |y − f(x⃗)|

22.3.2 Classification

Main article: Statistical classification

In some sense the 0-1 indicator function is the most nat-
ural loss function for classification. It takes the value 0
if the predicted output is the same as the actual output,
and it takes the value 1 if the predicted output is different
from the actual output. For binary classification, this is:

V (f(x⃗, y)) = θ(−yf(x⃗))

where θ is the Heaviside step function.
The 0-1 loss function, however, is not convex. The hinge
loss is thus often used:

V (f(x⃗, y)) = (−yf(x⃗))+

22.4 Regularization

This image represents an example of overfitting in machine learn-
ing. The red dots represent training set data. The green line rep-
resents the true functional relationship, while the blue line shows
the learned function, which has fallen victim to overfitting.

In machine learning problems, a major problem that
arises is that of overfitting. Because learning is a predic-
tion problem, the goal is not to find a function that most
closely fits the (previously observed) data, but to find one
that will most accurately predict output from future input.
Empirical risk minimization runs this risk of overfitting:
finding a function that matches the data exactly but does
not predict future output well.
Overfitting is symptomatic of unstable solutions; a small
perturbation in the training set data would cause a large
variation in the learned function. It can be shown that
if the stability for the solution can be guaranteed, gen-
eralization and consistency are guaranteed as well.[5][6]

Regularization can solve the overfitting problem and give
the problem stability.
Regularization can be accomplished by restricting the hy-
pothesis space H . A common example would be restrict-
ing H to linear functions: this can be seen as a reduction
to the standard problem of linear regression. H could also
be restricted to polynomial of degree p , exponentials, or
bounded functions on L1. Restriction of the hypothesis
space avoids overfitting because the form of the potential
functions are limited, and so does not allow for the choice
of a function that gives empirical risk arbitrarily close to
zero.
One example of regularization is Tikhonov regulariza-
tion. This consists of minimizing
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1

n

n∑
i=1

V (f(x⃗i, yi)) + γ∥f∥2H

where γ is a fixed and positive parameter, the regular-
ization parameter. Tikhonov regularization ensures exis-
tence, uniqueness, and stability of the solution.[7]

22.5 See also
• Reproducing kernel Hilbert spaces are a useful

choice for H .

• Proximal gradient methods for learning
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Chapter 23

Vapnik–Chervonenkis theory

Vapnik–Chervonenkis theory (also known as VC the-
ory) was developed during 1960–1990 by Vladimir Vap-
nik and Alexey Chervonenkis. The theory is a form of
computational learning theory, which attempts to explain
the learning process from a statistical point of view.
VC theory is related to statistical learning theory and to
empirical processes. Richard M. Dudley and Vladimir
Vapnik himself, among others, apply VC-theory to
empirical processes.

23.1 Introduction

VC theory covers at least four parts (as explained in The
Nature of Statistical Learning Theory):

• Theory of consistency of learning processes

• What are (necessary and sufficient) conditions
for consistency of a learning process based on
the empirical risk minimization principle?

• Nonasymptotic theory of the rate of convergence of
learning processes

• How fast is the rate of convergence of the
learning process?

• Theory of controlling the generalization ability of
learning processes

• How can one control the rate of convergence
(the generalization ability) of the learning pro-
cess?

• Theory of constructing learning machines

• How can one construct algorithms that can
control the generalization ability?

VC Theory is a major subbranch of statistical learning
theory. One of its main applications in statistical learning
theory is to provide generalization conditions for learning
algorithms. From this point of view, VC theory is related
to stability, which is an alternative approach for charac-
terizing generalization.

In addition, VC theory and VC dimension are instrumen-
tal in the theory of empirical processes, in the case of
processes indexed by VC classes. Arguably these are the
most important applications of the VC theory, and are
employed in proving generalization. Several techniques
will be introduced that are widely used in the empirical
process and VC theory. The discussion is mainly based on
the book “Weak Convergence and Empirical Processes:
With Applications to Statistics”.

23.2 Overview of VC theory in Em-
pirical Processes

23.2.1 Background on Empirical Pro-
cesses

Let X1, . . . , Xn be random elements defined on a mea-
surable space (X ,A) . For a measure Q set:

Qf =

∫
fdQ

Measurability issues, will be ignored here, for more tech-
nical detail see . Let F be a class of measurable functions
f : X → R and define:

∥Q∥F = sup{|Qf | : f ∈ F}.

Define the empirical measure

Pn = n−1
n∑
i=1

δXi ,

where δ here stands for the Dirac measure. The empirical
measure induces a map F → R given by:

f 7→ Pnf

Now suppose P is the underlying true distribution of the
data, which is unknown. Empirical Processes theory aims
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at identifying classes F for which statements such as the
following hold:

• uniform law of large numbers:

∥Pn − P∥F → 0,

• uniform central limit theorem:

Gn =
√
n(Pn − P )⇝ G, inℓ∞(F)

In the former case F is called Glivenko-Cantelli
class, and in the latter case (under the assumption
∀x, supf∈F |f(x) − Pf | < ∞ ) the class F is called
Donsker or P-Donsker. Obviously, a Donsker class is
Glivenko-Cantelli in probability by an application of
Slutsky’s theorem .
These statements are true for a single f , by standard
LLN, CLT arguments under regularity conditions, and
the difficulty in the Empirical Processes comes in because
joint statements are being made for all f ∈ F . Intuitively
then, the set F cannot be too large, and as it turns out that
the geometry of F plays a very important role.
One way of measuring how big the function setF is to use
the so-called covering numbers. The covering number

N(ε,F , ∥ · ∥)

is the minimal number of balls {g : ∥g−f∥ < ε} needed
to cover the set F (here it is obviously assumed that there
is an underlying norm on F ). The entropy is the loga-
rithm of the covering number.
Two sufficient conditions are provided below, under
which it can be proved that the set F is Glivenko-Cantelli
or Donsker.
A class F is P-Glivenko-Cantelli if it is P-measurable
with envelope F such that P ∗F <∞ and satisfies:

∀ε > 0 supQN(ε∥F∥Q,F , L1(Q)) <∞.

The next condition is a version of the celebrated Dudley’s
theorem. If F is a class of functions such that

∫ ∞

0

supQ
√

logN (ε∥F∥Q,2,F , L2(Q))dε <∞

then F is P-Donsker for every probability measure P such
that P ∗F 2 <∞ . In the last integral, the notation means

∥f∥Q,2 =

(∫
|f |2dQ

) 1
2

23.2.2 Symmetrization

The majority of the arguments of how to bound the
empirical process, rely on symmetrization, maximal and
concentration inequalities and chaining. Symmetrization
is usually the first step of the proofs, and since it is used
in many machine learning proofs on bounding empirical
loss functions (including the proof of the VC inequality
which is discussed in the next section) it is presented here.
Consider the empirical process:

f 7→ (Pn − P )f =
1

n

n∑
i=1

(f(Xi)− Pf)

Turns out that there is a connection between the empirical
and the following symmetrized process:

f 7→ P0
n =

1

n

n∑
i=1

εif(Xi)

The symmetrized process is a Rademacher process, con-
ditionally on the data Xi . Therefore it is a sub-Gaussian
process by Hoeffding’s inequality.
Lemma (Symmetrization). For every nondecreasing,
convex Φ: R → R and class of measurable functions F ,

EΦ(∥Pn − P∥F ) ≤ EΦ
(
2
∥∥P0

n

∥∥
F

)
The proof of the Symmetrization lemma relies on intro-
ducing independent copies of the original variables Xi

(sometimes referred to as a ghost sample) and replacing
the inner expectation of the LHS by these copies. After
an application of Jensen’s inequality different signs could
be introduced (hence the name symmetrization) without
changing the expectation. The proof can be found below
because of its instructive nature.
[Proof]

Introduce the “ghost sample” Y1, . . . , Yn to be inde-
pendent copies of X1, . . . , Xn . For fixed values of
X1, . . . , Xn one has:

∥Pn−P∥F = sup
f∈F

1

n

∣∣∣∣∣
n∑
i=1

f(Xi)− Ef(Yi)

∣∣∣∣∣ ≤ EY sup
f∈F

1

n

∣∣∣∣∣
n∑
i=1

f(Xi)− f(Yi)

∣∣∣∣∣
Therefore by Jensen’s inequality:

Φ(∥Pn − P∥F ) ≤ EY Φ

(∥∥∥∥∥ 1n
n∑
i=1

f(Xi)− f(Yi)

∥∥∥∥∥
F

)

Taking expectation with respect to X gives:
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EΦ(∥Pn−P∥F ) ≤ EXEY Φ

(∥∥∥∥∥ 1n
n∑
i=1

f(Xi)− f(Yi)

∥∥∥∥∥
F

)
Note that adding a minus sign in front of a term f(Xi)−
f(Yi) doesn't change the RHS, because it’s a symmetric
function of X and Y . Therefore the RHS remains the
same under “sign perturbation":

EΦ

(∥∥∥∥∥ 1n
n∑
i=1

eif(Xi)− f(Yi)

∥∥∥∥∥
F

)
for any (e1, e2, . . . , en) ∈ {−1, 1}n . Therefore:

EΦ(∥Pn−P∥F ) ≤ EεEΦ

(∥∥∥∥∥ 1n
n∑
i=1

εif(Xi)− f(Yi)

∥∥∥∥∥
F

)
Finally using first triangle inequality and then convexity
of Φ gives:

EΦ(∥Pn−P∥F ) ≤
1

2
EεEΦ

(
2

∥∥∥∥∥ 1n
n∑
i=1

εif(Xi)

∥∥∥∥∥
F

)
+
1

2
EεEΦ

(
2

∥∥∥∥∥ 1n
n∑
i=1

εif(Yi)

∥∥∥∥∥
F

)
Where the last two expressions on the RHS are the same,
which concludes the proof.
A typical way of proving empirical CLTs, first uses
symmetrization to pass the empirical process to P0

n and
then argue conditionally on the data, using the fact that
Rademacher processes are simple processes with nice
properties.

23.2.3 VC Connection

It turns out that there is a fascinating connection between
certain combinatorial properties of the set F and the en-
tropy numbers. Uniform covering numbers can be con-
trolled by the notion of Vapnik-Cervonenkis classes of sets
- or shortly VC sets.
Take a collection of subsets of the sample space X - C .
A collection of sets C is said to pick out a certain subset
of the finite set S = {x1, . . . , xn} ⊂ X if S = S ∩ C
for some C ∈ C . C is said to shatter S if it picks out each
of its 2n subsets. The VC-index (similar to VC dimension
+ 1 for an appropriately chosen classifier set) V (C) of C
is the smallest n for which no set of size n is shattered by
C .
Sauer’s lemma then states that the number
∆n(C, x1, . . . , xn) of subsets picked out by a VC-
class C satisfies:

max
x1,...,xn

∆n(C, x1, . . . , xn) ≤
V (C)−1∑
j=0

(
n

j

)
≤
(

ne

V (C)− 1

)V (C)−1

Which is a polynomial number O(nV (C)−1) of subsets
rather than an exponential number. Intuitively this means
that a finite VC-index implies that C has an apparent sim-
plistic structure.
A similar bound can be shown (with a different constant,
same rate) for the so-called VC subgraph classes. For a
function f : X → R the subgraph is a subset of X × R
such that: {(x, t) : t < f(x)} . A collection of F is
called a VC subgraph class if all subgraphs form a VC-
class.
Consider a set of indicator functions IC = {1C : C ∈ C}
in L1(Q) for discrete empirical type of measure Q (or
equivalently for any probability measure Q). It can then
be shown that quite remarkably, for r ≥ 1 :

N(ε, IC , Lr(Q)) ≤ KV (C)(4e)V (C)ε−r(V (C)−1)

Further consider the symmetric convex hull of a set F
: sconvF being the collection of functions of the form∑m
i=1 αifi with

∑m
i=1 |αi| ≤ 1 . Then if

N (ε∥F∥Q,2,F , L2(Q)) ≤ Cε−V

the following is valid for the convex hull of F :

logN (ε∥F∥Q,2, sconvF , L2(Q)) ≤ Kε−
2V

V +2

The important consequence of this fact is that

2V

V + 2
> 2,

which is just enough so that the entropy integral is going
to converge, and therefore the class sconvF is going to
be P-Donsker.
Finally an example of a VC-subgraph class is consid-
ered. Any finite-dimensional vector space F of measur-
able functions f : X → R is VC-subgraph of index
smaller than or equal to dim(F) + 2 .
[Proof]

Take n = dim(F)+2 points (x1, t1), . . . , (xn, tn) . The
vectors:

(f(x1), . . . , f(xn))− (t1, . . . , tn)

are in a n − 1 dimensional subspace of Rn. Take a ≠ 0, a
vector that is orthogonal to this subspace. Therefore:

∑
ai>0

ai(f(xi)−ti) =
∑
ai<0

(−ai)(f(xi)−ti), ∀f ∈ F
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Consider the set S = {(xi, ti) : ai > 0} . This set
cannot be picked out since if there is some f such that
S = {(xi, ti) : f(xi) > ti} that would imply that the
LHS is strictly positive but the RHS is non-negative.
There are generalizations of the notion VC subgraph
class, e.g. there is the notion of pseudo-dimension. The
interested reader can look into.

23.3 VC Inequality

A similar setting is considered, which is more common
to machine learning. Let X is a feature space and Y =
{0, 1} . A function f : X → Y is called a classifier.
Let F be a set of classifiers. Similarly to the previous
section, define the shattering coefficient (also known as
growth function):

S(F , n) = max
x1,...,xn

|{(f(x1), . . . , f(xn)), f ∈ F}|

Note here that there is a 1:1 mapping between each of
the functions in F and the set on which the function is 1.
Therefore in terms of the previous section the shattering
coefficient is precisely

max
x1,...,xn

∆n(C, x1, . . . , xn)

for C being the collection of all sets described above.
Now for the same reasoning as before, namely using
Sauer’s Lemma it can be shown that S(F , n) is going to
be polynomial in n provided that the class F has a finite
VC-dimension or equivalently the collection C has finite
VC-index.
Let Dn = {(X1, Y1), . . . , (Xn, Ym)} is an observed
dataset. Assume that the data is generated by an un-
known probability distribution PXY . Define R(f) =
P (f(X) ̸= Y ) to be the expected 0/1 loss. Of course
since PXY is unknown in general, one has no access to
R(f) . However the empirical risk, given by:

R̂n(f) =
1

n

n∑
i=1

I(f(Xn) ̸= Yn)

can certainly be evaluated. Then one has the following
Theorem:

23.3.1 Theorem (VC Inequality)

For binary classification and the 0/1 loss function we have
the following generalization bounds:

P

(
sup
f∈F

∣∣∣R̂n(f)−R(f)
∣∣∣ > ε

)
≤ 8S(F , n)e−nε

2/32

E

[
sup
f∈F

∣∣∣R̂n(f)−R(f)
∣∣∣] ≤ 2

√
logS(F , n) + log 2

n

In words the VC inequality is saying that as the sample
increases, provided that F has a finite VC dimension, the
empirical 0/1 risk becomes a good proxy for the expected
0/1 risk. Note that both RHS of the two inequalities will
converge to 0, provided that S(F , n) grows polynomially
in n.
The connection between this framework and the Empir-
ical Process framework is evident. Here one is dealing
with a modified empirical process

∣∣∣R̂n −R
∣∣∣
F

but not surprisingly the ideas are the same. The proof of
the (first part of) VC inequality, relies on symmetrization,
and then argue conditionally on the data using concen-
tration inequalities (in particular Hoeffding’s inequality).
The interested reader can check the book Theorems 12.4
and 12.5.
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Chapter 24

Probably approximately correct learning

In computational learning theory, probably approxi-
mately correct learning (PAC learning) is a framework
for mathematical analysis of machine learning. It was
proposed in 1984 by Leslie Valiant.[1]

In this framework, the learner receives samples and must
select a generalization function (called the hypothesis)
from a certain class of possible functions. The goal is
that, with high probability (the “probably” part), the se-
lected function will have low generalization error (the
“approximately correct” part). The learner must be able
to learn the concept given any arbitrary approximation ra-
tio, probability of success, or distribution of the samples.
The model was later extended to treat noise (misclassified
samples).
An important innovation of the PAC framework is the in-
troduction of computational complexity theory concepts
to machine learning. In particular, the learner is ex-
pected to find efficient functions (time and space require-
ments bounded to a polynomial of the example size), and
the learner itself must implement an efficient procedure
(requiring an example count bounded to a polynomial
of the concept size, modified by the approximation and
likelihood bounds).

24.1 Definitions and terminology

In order to give the definition for something that is PAC-
learnable, we first have to introduce some terminology.[2]
[3]

For the following definitions, two examples will be used.
The first is the problem of character recognition given an
array ofn bits encoding a binary-valued image. The other
example is the problem of finding an interval that will
correctly classify points within the interval as positive and
the points outside of the range as negative.
Let X be a set called the instance space or the encoding
of all the samples, and each instance have length assigned.
In the character recognition problem, the instance space is
X = {0, 1}n . In the interval problem the instance space
is X = R , where R denotes the set of all real numbers.
A concept is a subset c ⊂ X . One concept is the set of

all patterns of bits in X = {0, 1}n that encode a picture
of the letter “P”. An example concept from the second
example is the set of all of the numbers between π/2 and√
10 . A concept classC is a set of concepts overX . This

could be the set of all subsets of the array of bits that are
skeletonized 4-connected (width of the font is 1).
Let EX(c,D) be a procedure that draws an example, x
, using a probability distribution D and gives the correct
label c(x) , that is 1 if x ∈ c and 0 otherwise.
Say that there is an algorithm A that given access to
EX(c,D) and inputs ϵ and δ that, with probability of
at least 1 − δ , A outputs a hypothesis h ∈ C that has
error less than or equal to ϵ with examples drawn fromX
with the distribution D . If there is such an algorithm for
every concept c ∈ C , for every distribution D over X
, and for all 0 < ϵ < 1/2 and 0 < δ < 1/2 then C is
PAC learnable (or distribution-free PAC learnable). We
can also say that A is a PAC learning algorithm for C .
An algorithm runs in time t if it draws at most t exam-
ples and requires at most t time steps. A concept class
is efficiently PAC learnable if it is PAC learnable by an
algorithm that runs in time polynomial in 1/ϵ , 1/δ and
instance length.

24.2 Equivalence

Under some regularity conditions these three conditions
are equivalent:

1. The concept class C is PAC learnable.

2. The VC dimension of C is finite.

3. C is a uniform Glivenko-Cantelli class.

24.3 References

[1] L. Valiant. A theory of the learnable. Communications of
the ACM, 27, 1984.

[2] Kearns and Vazirani, pg. 1-12,
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[3] Balas Kausik Natarajan, Machine Learning , A Theoreti-
cal Approach, Morgan Kaufmann Publishers, 1991

24.4 Further reading
• M. Kearns, U. Vazirani. An Introduction to Com-

putational Learning Theory. MIT Press, 1994. A
textbook.

• D. Haussler. Overview of the Probably Approxi-
mately Correct (PAC) Learning Framework. An in-
troduction to the topic.

• L. Valiant. Probably Approximately Correct. Ba-
sic Books, 2013. In which Valiant argues that PAC
learning describes how organisms evolve and learn.
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Algorithmic learning theory

Algorithmic learning theory is a mathematical frame-
work for analyzing machine learning problems and algo-
rithms. Synonyms include formal learning theory and
algorithmic inductive inference. Algorithmic learning
theory is different from statistical learning theory in that
it does not make use of statistical assumptions and anal-
ysis. Both algorithmic and statistical learning theory are
concerned with machine learning and can thus be viewed
as branches of computational learning theory.

25.1 Distinguishing Characteris-
tics

Unlike statistical learning theory and most statistical the-
ory in general, algorithmic learning theory does not as-
sume that data are random samples, that is, that data
points are independent of each other. This makes the
theory suitable for domains where observations are (rela-
tively) noise-free but not random, such as language learn-
ing [1] and automated scientific discovery.[2][3]

The fundamental concept of algorithmic learning theory
is learning in the limit: as the number of data points in-
creases, a learning algorithm should converge to a cor-
rect hypothesis on every possible data sequence consistent
with the problem space. This is a non-probabilistic ver-
sion of statistical consistency, which also requires conver-
gence to a correct model in the limit, but allows a learner
to fail on data sequences with probability measure 0.
Algorithmic learning theory investigates the learning
power of Turing machines. Other frameworks consider
a much more restricted class of learning algorithms than
Turing machines, for example learners that compute hy-
potheses more quickly, for instance in polynomial time.
An example of such a framework is probably approxi-
mately correct learning.

25.2 Learning in the limit

The concept was introduced in E. Mark Gold's seminal
paper "Language identification in the limit".[4] The ob-
jective of language identification is for a machine run-

ning one program to be capable of developing another
program by which any given sentence can be tested to
determine whether it is “grammatical” or “ungrammat-
ical”. The language being learned need not be English
or any other natural language - in fact the definition of
“grammatical” can be absolutely anything known to the
tester.
In Gold’s learning model, the tester gives the learner an
example sentence at each step, and the learner responds
with a hypothesis, which is a suggested program to deter-
mine grammatical correctness. It is required of the tester
that every possible sentence (grammatical or not) appears
in the list eventually, but no particular order is required. It
is required of the learner that at each step the hypothesis
must be correct for all the sentences so far.
A particular learner is said to be able to “learn a language
in the limit” if there is a certain number of steps beyond
which its hypothesis no longer changes. At this point it
has indeed learned the language, because every possible
sentence appears somewhere in the sequence of inputs
(past or future), and the hypothesis is correct for all inputs
(past or future), so the hypothesis is correct for every sen-
tence. The learner is not required to be able to tell when
it has reached a correct hypothesis, all that is required is
that it be true.
Gold showed that any language which is defined by a
Turing machine program can be learned in the limit
by another Turing-complete machine using enumeration.
This is done by the learner testing all possible Turing ma-
chine programs in turn until one is found which is cor-
rect so far - this forms the hypothesis for the current
step. Eventually, the correct program will be reached,
after which the hypothesis will never change again (but
note that the learner does not know that it won't need to
change).
Gold also showed that if the learner is given only posi-
tive examples (that is, only grammatical sentences appear
in the input, not ungrammatical sentences), then the lan-
guage can only be guaranteed to be learned in the limit if
there are only a finite number of possible sentences in the
language (this is possible if, for example, sentences are
known to be of limited length).
Language identification in the limit is a highly abstract
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model. It does not allow for limits of runtime or computer
memory which can occur in practice, and the enumera-
tion method may fail if there are errors in the input. How-
ever the framework is very powerful, because if these
strict conditions are maintained, it allows the learning of
any program known to be computable. This is because
a Turing machine program can be written to mimic any
program in any conventional programming language. See
Church-Turing thesis.

25.3 Other Identification Criteria

Learning theorists have investigated other learning
criteria,[5] such as the following.

• Efficiency: minimizing the number of data points re-
quired before convergence to a correct hypothesis.

• Mind Changes: minimizing the number of hypothe-
sis changes that occur before convergence.[6]

Mind change bounds are closely related to mistake
bounds that are studied in statistical learning theory.[7]

Kevin Kelly has suggested that minimizing mind changes
is closely related to choosing maximally simple hypothe-
ses in the sense of Occam’s Razor.[8]

25.4 See also
• Sample exclusion dimension

25.5 References
[1] Jain, S. et al (1999): Systems That Learn, 2nd ed. Cam-

bridge, MA: MIT Press.

[2] Langley, P.; Simon, H.; Bradshaw, G. & Zytkow, J.
(1987), Scientific Discovery: Computational Explorations
of the Creative Processes, MIT Press, Cambridge

[3] Schulte, O. (2009), Simultaneous Discovery of Conserva-
tion Laws and Hidden Particles With Smith Matrix De-
composition, in Proceedings of the Twenty-First Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-
09), pp. 1481-1487

[4] Gold, E. Mark (1967), Language Identification in the Limit
(PDF) 10, Information and Control, pp. 447–474 The
original paper.

[5] Jain, S. et al (1999): Systems That Learn, 2nd ed. Cam-
bridge, MA: MIT Press.

[6] Luo, W. & Schulte, O. (2005), Mind Change Efficient
Learning, in Peter Auer & Ron Meir, ed., Proceedings
of the Conference on Learning Theory (COLT), pp. 398-
412

[7] Jain, S. and Sharma, A. (1999), On a generalized notion of
mistake bounds, Proceedings of the Conference on Learn-
ing Theory (COLT), pp.249-256.

[8] Kevin T. Kelly (2007), Ockham’s Razor, Empirical Com-
plexity, and Truth-finding Efficiency, Theoretical Com-
puter Science, 383: 270-289.

25.6 External links
• Learning Theory in Computer Science.

• The Stanford Encyclopaedia of Philosophy provides
a highly accessible introduction to key concepts in
algorithmic learning theory, especially as they apply
to the philosophical problems of inductive inference.
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Chapter 26

Statistical hypothesis testing

“Critical region” redirects here. For the computer
science notion of a “critical section”, sometimes called a
“critical region”, see critical section.

A statistical hypothesis is a scientific hypothesis that
is testable on the basis of observing a process that is
modeled via a set of random variables.[1] A statistical
hypothesis test is a method of statistical inference used
for testing a statistical hypothesis.
A test result is called statistically significant if it has been
predicted as unlikely to have occurred by sampling er-
ror alone, according to a threshold probability—the sig-
nificance level. Hypothesis tests are used in determining
what outcomes of a study would lead to a rejection of the
null hypothesis for a pre-specified level of significance.
In the Neyman-Pearson framework (see below), the pro-
cess of distinguishing between the null hypothesis and the
alternative hypothesis is aided by identifying two concep-
tual types of errors (type 1 & type 2), and by specifying
parametric limits on e.g. how much type 1 error will be
permitted.
An alternative framework for statistical hypothesis test-
ing is to specify a set of statistical models, one for each
candidate hypothesis, and then use model selection tech-
niques to choose the most appropriate model.[2] The most
common selection techniques are based on either Akaike
information criterion or Bayes factor.
Statistical hypothesis testing is sometimes called con-
firmatory data analysis. It can be contrasted with
exploratory data analysis, which may not have pre-
specified hypotheses.

26.1 Variations and sub-classes

Statistical hypothesis testing is a key technique of both
Frequentist inference and Bayesian inference, although
the two types of inference have notable differences. Sta-
tistical hypothesis tests define a procedure that controls
(fixes) the probability of incorrectly deciding that a de-
fault position (null hypothesis) is incorrect. The proce-
dure is based on how likely it would be for a set of obser-
vations to occur if the null hypothesis were true. Note that

this probability of making an incorrect decision is not the
probability that the null hypothesis is true, nor whether
any specific alternative hypothesis is true. This contrasts
with other possible techniques of decision theory in which
the null and alternative hypothesis are treated on a more
equal basis.
One naive Bayesian approach to hypothesis testing is to
base decisions on the posterior probability,[3][4] but this
fails when comparing point and continuous hypotheses.
Other approaches to decision making, such as Bayesian
decision theory, attempt to balance the consequences of
incorrect decisions across all possibilities, rather than
concentrating on a single null hypothesis. A number of
other approaches to reaching a decision based on data are
available via decision theory and optimal decisions, some
of which have desirable properties. Hypothesis testing,
though, is a dominant approach to data analysis in many
fields of science. Extensions to the theory of hypothe-
sis testing include the study of the power of tests, i.e.
the probability of correctly rejecting the null hypothesis
given that it is false. Such considerations can be used for
the purpose of sample size determination prior to the col-
lection of data.

26.2 The testing process

In the statistics literature, statistical hypothesis testing
plays a fundamental role.[5] The usual line of reasoning
is as follows:

1. There is an initial research hypothesis of which the
truth is unknown.

2. The first step is to state the relevant null and alter-
native hypotheses. This is important as mis-stating
the hypotheses will muddy the rest of the process.

3. The second step is to consider the statistical assump-
tions being made about the sample in doing the test;
for example, assumptions about the statistical inde-
pendence or about the form of the distributions of
the observations. This is equally important as invalid
assumptions will mean that the results of the test are
invalid.
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4. Decide which test is appropriate, and state the rele-
vant test statistic T.

5. Derive the distribution of the test statistic under the
null hypothesis from the assumptions. In standard
cases this will be a well-known result. For example
the test statistic might follow a Student’s t distribu-
tion or a normal distribution.

6. Select a significance level (α), a probability thresh-
old below which the null hypothesis will be rejected.
Common values are 5% and 1%.

7. The distribution of the test statistic under the null
hypothesis partitions the possible values of T into
those for which the null hypothesis is rejected—the
so-called critical region—and those for which it is
not. The probability of the critical region is α.

8. Compute from the observations the observed value
tₒ⛲⛿ of the test statistic T.

9. Decide to either reject the null hypothesis in favor of
the alternative or not reject it. The decision rule is
to reject the null hypothesis H0 if the observed value
tₒ⛲⛿ is in the critical region, and to accept or “fail to
reject” the hypothesis otherwise.

An alternative process is commonly used:

1. Compute from the observations the observed value
tₒ⛲⛿ of the test statistic T.

2. Calculate the p-value. This is the probability, un-
der the null hypothesis, of sampling a test statistic at
least as extreme as that which was observed.

3. Reject the null hypothesis, in favor of the alternative
hypothesis, if and only if the p-value is less than the
significance level (the selected probability) thresh-
old.

The two processes are equivalent.[6] The former process
was advantageous in the past when only tables of test
statistics at common probability thresholds were avail-
able. It allowed a decision to be made without the cal-
culation of a probability. It was adequate for classwork
and for operational use, but it was deficient for reporting
results.
The latter process relied on extensive tables or on compu-
tational support not always available. The explicit calcu-
lation of a probability is useful for reporting. The calcu-
lations are now trivially performed with appropriate soft-
ware.
The difference in the two processes applied to the Ra-
dioactive suitcase example (below):

• “The Geiger-counter reading is 10. The limit is 9.
Check the suitcase.”

• “The Geiger-counter reading is high; 97% of safe
suitcases have lower readings. The limit is 95%.
Check the suitcase.”

The former report is adequate, the latter gives a more de-
tailed explanation of the data and the reason why the suit-
case is being checked.
It is important to note the difference between accepting
the null hypothesis and simply failing to reject it. The
“fail to reject” terminology highlights the fact that the null
hypothesis is assumed to be true from the start of the test;
if there is a lack of evidence against it, it simply contin-
ues to be assumed true. The phrase “accept the null hy-
pothesis” may suggest it has been proved simply because
it has not been disproved, a logical fallacy known as the
argument from ignorance. Unless a test with particularly
high power is used, the idea of “accepting” the null hy-
pothesis may be dangerous. Nonetheless the terminol-
ogy is prevalent throughout statistics, where its meaning
is well understood.
The processes described here are perfectly adequate for
computation. They seriously neglect the design of exper-
iments considerations.[7][8]

It is particularly critical that appropriate sample sizes be
estimated before conducting the experiment.
The phrase “test of significance” was coined by statisti-
cian Ronald Fisher.[9]

26.2.1 Interpretation

If the p-value is less than the required significance level
(equivalently, if the observed test statistic is in the criti-
cal region), then we say the null hypothesis is rejected at
the given level of significance. Rejection of the null hy-
pothesis is a conclusion. This is like a “guilty” verdict in
a criminal trial: the evidence is sufficient to reject inno-
cence, thus proving guilt. We might accept the alternative
hypothesis (and the research hypothesis).
If the p-value is not less than the required significance
level (equivalently, if the observed test statistic is outside
the critical region), then the test has no result. The evi-
dence is insufficient to support a conclusion. (This is like
a jury that fails to reach a verdict.) The researcher typ-
ically gives extra consideration to those cases where the
p-value is close to the significance level.
In the Lady tasting tea example (below), Fisher required
the Lady to properly categorize all of the cups of tea to
justify the conclusion that the result was unlikely to result
from chance. He defined the critical region as that case
alone. The region was defined by a probability (that the
null hypothesis was correct) of less than 5%.
Whether rejection of the null hypothesis truly justifies ac-
ceptance of the research hypothesis depends on the struc-
ture of the hypotheses. Rejecting the hypothesis that a
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large paw print originated from a bear does not immedi-
ately prove the existence of Bigfoot. Hypothesis testing
emphasizes the rejection, which is based on a probability,
rather than the acceptance, which requires extra steps of
logic.
“The probability of rejecting the null hypothesis is a
function of five factors: whether the test is one- or two
tailed, the level of significance, the standard deviation,
the amount of deviation from the null hypothesis, and the
number of observations.”[10] These factors are a source
of criticism; factors under the control of the experi-
menter/analyst give the results an appearance of subjec-
tivity.

26.2.2 Use and importance

Statistics are helpful in analyzing most collections of data.
This is equally true of hypothesis testing which can jus-
tify conclusions even when no scientific theory exists. In
the Lady tasting tea example, it was “obvious” that no dif-
ference existed between (milk poured into tea) and (tea
poured into milk). The data contradicted the “obvious”.
Real world applications of hypothesis testing include:[11]

• Testing whether more men than women suffer from
nightmares

• Establishing authorship of documents

• Evaluating the effect of the full moon on behavior

• Determining the range at which a bat can detect an
insect by echo

• Deciding whether hospital carpeting results in more
infections

• Selecting the best means to stop smoking

• Checking whether bumper stickers reflect car owner
behavior

• Testing the claims of handwriting analysts

Statistical hypothesis testing plays an important role in the
whole of statistics and in statistical inference. For exam-
ple, Lehmann (1992) in a review of the fundamental pa-
per by Neyman and Pearson (1933) says: “Nevertheless,
despite their shortcomings, the new paradigm formulated
in the 1933 paper, and the many developments carried
out within its framework continue to play a central role
in both the theory and practice of statistics and can be
expected to do so in the foreseeable future”.
Significance testing has been the favored statistical tool
in some experimental social sciences (over 90% of arti-
cles in the Journal of Applied Psychology during the early
1990s).[12] Other fields have favored the estimation of pa-
rameters (e.g., effect size). Significance testing is used as

a substitute for the traditional comparison of predicted
value and experimental result at the core of the scientific
method. When theory is only capable of predicting the
sign of a relationship, a directional (one-sided) hypothesis
test can be configured so that only a statistically signifi-
cant result supports theory. This form of theory appraisal
is the most heavily criticized application of hypothesis
testing.

26.2.3 Cautions

“If the government required statistical procedures to
carry warning labels like those on drugs, most inference
methods would have long labels indeed.”[13] This caution
applies to hypothesis tests and alternatives to them.
The successful hypothesis test is associated with a prob-
ability and a type-I error rate. The conclusion might be
wrong.
The conclusion of the test is only as solid as the sample
upon which it is based. The design of the experiment is
critical. A number of unexpected effects have been ob-
served including:

• The Clever Hans effect. A horse appeared to be ca-
pable of doing simple arithmetic.

• The Hawthorne effect. Industrial workers were
more productive in better illumination, and most
productive in worse.

• The Placebo effect. Pills with no medically active
ingredients were remarkably effective.

A statistical analysis of misleading data produces mis-
leading conclusions. The issue of data quality can be
more subtle. In forecasting for example, there is no agree-
ment on a measure of forecast accuracy. In the absence
of a consensus measurement, no decision based on mea-
surements will be without controversy.
The book How to Lie with Statistics[14][15] is the most pop-
ular book on statistics ever published.[16] It does not much
consider hypothesis testing, but its cautions are applica-
ble, including: Many claims are made on the basis of sam-
ples too small to convince. If a report does not mention
sample size, be doubtful.
Hypothesis testing acts as a filter of statistical conclusions;
only those results meeting a probability threshold are pub-
lishable. Economics also acts as a publication filter; only
those results favorable to the author and funding source
may be submitted for publication. The impact of filter-
ing on publication is termed publication bias. A related
problem is that of multiple testing (sometimes linked to
data mining), in which a variety of tests for a variety of
possible effects are applied to a single data set and only
those yielding a significant result are reported. These are
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often dealt with by using multiplicity correction proce-
dures that control the family wise error rate (FWER) or
the false discovery rate (FDR).
Those making critical decisions based on the results of
a hypothesis test are prudent to look at the details rather
than the conclusion alone. In the physical sciences most
results are fully accepted only when independently con-
firmed. The general advice concerning statistics is, “Fig-
ures never lie, but liars figure” (anonymous).

26.3 Example

26.3.1 Lady tasting tea

Main article: Lady tasting tea

In a famous example of hypothesis testing, known as the
Lady tasting tea,[17] a female colleague of Fisher claimed
to be able to tell whether the tea or the milk was added
first to a cup. Fisher proposed to give her eight cups, four
of each variety, in random order. One could then ask
what the probability was for her getting the number she
got correct, but just by chance. The null hypothesis was
that the Lady had no such ability. The test statistic was a
simple count of the number of successes in selecting the
4 cups. The critical region was the single case of 4 suc-
cesses of 4 possible based on a conventional probability
criterion (< 5%; 1 of 70 ≈ 1.4%). Fisher asserted that no
alternative hypothesis was (ever) required. The lady cor-
rectly identified every cup,[18] which would be considered
a statistically significant result.

26.3.2 Analogy – Courtroom trial

A statistical test procedure is comparable to a criminal
trial; a defendant is considered not guilty as long as his
or her guilt is not proven. The prosecutor tries to prove
the guilt of the defendant. Only when there is enough
charging evidence the defendant is convicted.
In the start of the procedure, there are two hypothesesH0

: “the defendant is not guilty”, and H1 : “the defendant
is guilty”. The first one is called null hypothesis, and is
for the time being accepted. The second one is called
alternative (hypothesis). It is the hypothesis one hopes to
support.
The hypothesis of innocence is only rejected when an er-
ror is very unlikely, because one doesn't want to convict
an innocent defendant. Such an error is called error of the
first kind (i.e., the conviction of an innocent person), and
the occurrence of this error is controlled to be rare. As a
consequence of this asymmetric behaviour, the error of
the second kind (acquitting a person who committed the
crime), is often rather large.
A criminal trial can be regarded as either or both of two

decision processes: guilty vs not guilty or evidence vs a
threshold (“beyond a reasonable doubt”). In one view, the
defendant is judged; in the other view the performance
of the prosecution (which bears the burden of proof) is
judged. A hypothesis test can be regarded as either a
judgment of a hypothesis or as a judgment of evidence.

26.3.3 Example 1 – Philosopher’s beans

The following example was produced by a philosopher
describing scientific methods generations before hypoth-
esis testing was formalized and popularized.[19]

Few beans of this handful are white.
Most beans in this bag are white.
Therefore: Probably, these beans were taken
from another bag.
This is an hypothetical inference.

The beans in the bag are the population. The handful are
the sample. The null hypothesis is that the sample origi-
nated from the population. The criterion for rejecting the
null-hypothesis is the “obvious” difference in appearance
(an informal difference in the mean). The interesting re-
sult is that consideration of a real population and a real
sample produced an imaginary bag. The philosopher was
considering logic rather than probability. To be a real
statistical hypothesis test, this example requires the for-
malities of a probability calculation and a comparison of
that probability to a standard.
A simple generalization of the example considers a mixed
bag of beans and a handful that contain either very few
or very many white beans. The generalization considers
both extremes. It requires more calculations and more
comparisons to arrive at a formal answer, but the core phi-
losophy is unchanged; If the composition of the handful
is greatly different from that of the bag, then the sample
probably originated from another bag. The original ex-
ample is termed a one-sided or a one-tailed test while the
generalization is termed a two-sided or two-tailed test.
The statement also relies on the inference that the sam-
pling was random. If someone had been picking through
the bag to find white beans, then it would explain why the
handful had so many white beans, and also explain why
the number of white beans in the bag was depleted (al-
though the bag is probably intended to be assumed much
larger than one’s hand).

26.3.4 Example 2 – Clairvoyant card
game[20]

A person (the subject) is tested for clairvoyance. He is
shown the reverse of a randomly chosen playing card 25
times and asked which of the four suits it belongs to. The
number of hits, or correct answers, is called X.
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As we try to find evidence of his clairvoyance, for the
time being the null hypothesis is that the person is not
clairvoyant. The alternative is, of course: the person is
(more or less) clairvoyant.
If the null hypothesis is valid, the only thing the test per-
son can do is guess. For every card, the probability (rela-
tive frequency) of any single suit appearing is 1/4. If the
alternative is valid, the test subject will predict the suit
correctly with probability greater than 1/4. We will call
the probability of guessing correctly p. The hypotheses,
then, are:

• null hypothesis : H0 : p = 1
4 (just guessing)

and

• alternative hypothesis :H1 : p ̸= 1
4 (true clairvoy-

ant).

When the test subject correctly predicts all 25 cards, we
will consider him clairvoyant, and reject the null hypoth-
esis. Thus also with 24 or 23 hits. With only 5 or 6 hits,
on the other hand, there is no cause to consider him so.
But what about 12 hits, or 17 hits? What is the critical
number, c, of hits, at which point we consider the sub-
ject to be clairvoyant? How do we determine the critical
value c? It is obvious that with the choice c=25 (i.e. we
only accept clairvoyance when all cards are predicted cor-
rectly) we're more critical than with c=10. In the first case
almost no test subjects will be recognized to be clairvoy-
ant, in the second case, a certain number will pass the test.
In practice, one decides how critical one will be. That is,
one decides how often one accepts an error of the first
kind – a false positive, or Type I error. With c = 25 the
probability of such an error is:

P ( rejectH0|H0valid is ) = P (X = 25|p = 1
4 ) =

(
1
4

)25 ≈ 10−15,

and hence, very small. The probability of a false positive
is the probability of randomly guessing correctly all 25
times.
Being less critical, with c=10, gives:

P ( rejectH0|H0valid is ) = P (X ≥ 10|p = 1
4 ) =

25∑
k=10

P (X = k|p = 1
4 ) ≈ 0.07.

Thus, c = 10 yields a much greater probability of false
positive.
Before the test is actually performed, the maximum ac-
ceptable probability of a Type I error (α) is determined.
Typically, values in the range of 1% to 5% are selected.
(If the maximum acceptable error rate is zero, an infinite
number of correct guesses is required.) Depending on
this Type 1 error rate, the critical value c is calculated.

For example, if we select an error rate of 1%, c is calcu-
lated thus:

P ( rejectH0|H0valid is ) = P (X ≥ c|p = 1
4 ) ≤ 0.01.

From all the numbers c, with this property, we choose the
smallest, in order to minimize the probability of a Type II
error, a false negative. For the above example, we select:
c = 13 .

26.3.5 Example 3 – Radioactive suitcase

As an example, consider determining whether a suit-
case contains some radioactive material. Placed under
a Geiger counter, it produces 10 counts per minute. The
null hypothesis is that no radioactive material is in the
suitcase and that all measured counts are due to ambient
radioactivity typical of the surrounding air and harmless
objects. We can then calculate how likely it is that we
would observe 10 counts per minute if the null hypothesis
were true. If the null hypothesis predicts (say) on average
9 counts per minute, then according to the Poisson distri-
bution typical for radioactive decay there is about 41%
chance of recording 10 or more counts. Thus we can say
that the suitcase is compatible with the null hypothesis
(this does not guarantee that there is no radioactive ma-
terial, just that we don't have enough evidence to suggest
there is). On the other hand, if the null hypothesis pre-
dicts 3 counts per minute (for which the Poisson distribu-
tion predicts only 0.1% chance of recording 10 or more
counts) then the suitcase is not compatible with the null
hypothesis, and there are likely other factors responsible
to produce the measurements.
The test does not directly assert the presence of radioac-
tive material. A successful test asserts that the claim of
no radioactive material present is unlikely given the read-
ing (and therefore ...). The double negative (disproving
the null hypothesis) of the method is confusing, but using
a counter-example to disprove is standard mathematical
practice. The attraction of the method is its practical-
ity. We know (from experience) the expected range of
counts with only ambient radioactivity present, so we can
say that a measurement is unusually large. Statistics just
formalizes the intuitive by using numbers instead of ad-
jectives. We probably do not know the characteristics of
the radioactive suitcases; We just assume that they pro-
duce larger readings.
To slightly formalize intuition: Radioactivity is suspected
if the Geiger-count with the suitcase is among or ex-
ceeds the greatest (5% or 1%) of the Geiger-counts made
with ambient radiation alone. This makes no assumptions
about the distribution of counts. Many ambient radiation
observations are required to obtain good probability esti-
mates for rare events.
The test described here is more fully the null-hypothesis
statistical significance test. The null hypothesis repre-
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sents what we would believe by default, before seeing any
evidence. Statistical significance is a possible finding of
the test, declared when the observed sample is unlikely
to have occurred by chance if the null hypothesis were
true. The name of the test describes its formulation and
its possible outcome. One characteristic of the test is its
crisp decision: to reject or not reject the null hypothesis.
A calculated value is compared to a threshold, which is
determined from the tolerable risk of error.

26.4 Definition of terms

The following definitions are mainly based on the expo-
sition in the book by Lehmann and Romano:[5]

Statistical hypothesis A statement about the parame-
ters describing a population (not a sample).

Statistic A value calculated from a sample, often to
summarize the sample for comparison purposes.

Simple hypothesis Any hypothesis which specifies the
population distribution completely.

Composite hypothesis Any hypothesis which does not
specify the population distribution completely.

Null hypothesis (H0) A simple hypothesis associated
with a contradiction to a theory one would like to
prove.

Alternative hypothesis (H1) A hypothesis (often com-
posite) associated with a theory one would like to
prove.

Statistical test A procedure whose inputs are samples
and whose result is a hypothesis.

Region of acceptance The set of values of the test
statistic for which we fail to reject the null hypothe-
sis.

Region of rejection / Critical region The set of values
of the test statistic for which the null hypothesis is
rejected.

Critical value The threshold value delimiting the re-
gions of acceptance and rejection for the test statis-
tic.

Power of a test (1 − β) The test’s probability of cor-
rectly rejecting the null hypothesis. The comple-
ment of the false negative rate, β. Power is termed
sensitivity in biostatistics. (“This is a sensitive test.
Because the result is negative, we can confidently say
that the patient does not have the condition.”) See
sensitivity and specificity and Type I and type II er-
rors for exhaustive definitions.

Size For simple hypotheses, this is the test’s probabil-
ity of incorrectly rejecting the null hypothesis. The
false positive rate. For composite hypotheses this
is the supremum of the probability of rejecting the
null hypothesis over all cases covered by the null hy-
pothesis. The complement of the false positive rate
is termed specificity in biostatistics. (“This is a spe-
cific test. Because the result is positive, we can con-
fidently say that the patient has the condition.”) See
sensitivity and specificity and Type I and type II er-
rors for exhaustive definitions.

Significance level of a test (α) It is the upper bound
imposed on the size of a test. Its value is chosen by
the statistician prior to looking at the data or choos-
ing any particular test to be used. It is the maximum
exposure to erroneously rejecting H0 he/she is ready
to accept. Testing H0 at significance level α means
testing H0 with a test whose size does not exceed α.
In most cases, one uses tests whose size is equal to
the significance level.

p-value The probability, assuming the null hypothesis is
true, of observing a result at least as extreme as the
test statistic.

Statistical significance test A predecessor to the sta-
tistical hypothesis test (see the Origins section). An
experimental result was said to be statistically signif-
icant if a sample was sufficiently inconsistent with
the (null) hypothesis. This was variously considered
common sense, a pragmatic heuristic for identify-
ing meaningful experimental results, a convention
establishing a threshold of statistical evidence or a
method for drawing conclusions from data. The sta-
tistical hypothesis test added mathematical rigor and
philosophical consistency to the concept by mak-
ing the alternative hypothesis explicit. The term is
loosely used to describe the modern version which
is now part of statistical hypothesis testing.

Conservative test A test is conservative if, when con-
structed for a given nominal significance level, the
true probability of incorrectly rejecting the null hy-
pothesis is never greater than the nominal level.

Exact test A test in which the significance level or criti-
cal value can be computed exactly, i.e., without any
approximation. In some contexts this term is re-
stricted to tests applied to categorical data and to
permutation tests, in which computations are car-
ried out by complete enumeration of all possible out-
comes and their probabilities.

A statistical hypothesis test compares a test statistic (z or
t for examples) to a threshold. The test statistic (the for-
mula found in the table below) is based on optimality. For
a fixed level of Type I error rate, use of these statistics
minimizes Type II error rates (equivalent to maximizing
power). The following terms describe tests in terms of
such optimality:
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Most powerful test For a given size or significance level,
the test with the greatest power (probability of re-
jection) for a given value of the parameter(s) being
tested, contained in the alternative hypothesis.

Uniformly most powerful test (UMP) A test with the
greatest power for all values of the parameter(s) be-
ing tested, contained in the alternative hypothesis.

26.5 Common test statistics

Main article: Test statistic

One-sample tests are appropriate when a sample is be-
ing compared to the population from a hypothesis. The
population characteristics are known from theory or are
calculated from the population.
Two-sample tests are appropriate for comparing two
samples, typically experimental and control samples from
a scientifically controlled experiment.
Paired tests are appropriate for comparing two sam-
ples where it is impossible to control important variables.
Rather than comparing two sets, members are paired be-
tween samples so the difference between the members
becomes the sample. Typically the mean of the differ-
ences is then compared to zero. The common example
scenario for when a paired difference test is appropriate
is when a single set of test subjects has something applied
to them and the test is intended to check for an effect.
Z-tests are appropriate for comparing means under strin-
gent conditions regarding normality and a known stan-
dard deviation.
A t-test is appropriate for comparing means under relaxed
conditions (less is assumed).
Tests of proportions are analogous to tests of means (the
50% proportion).
Chi-squared tests use the same calculations and the same
probability distribution for different applications:

• Chi-squared tests for variance are used to determine
whether a normal population has a specified vari-
ance. The null hypothesis is that it does.

• Chi-squared tests of independence are used for de-
ciding whether two variables are associated or are
independent. The variables are categorical rather
than numeric. It can be used to decide whether left-
handedness is correlated with libertarian politics (or
not). The null hypothesis is that the variables are
independent. The numbers used in the calculation
are the observed and expected frequencies of occur-
rence (from contingency tables).

• Chi-squared goodness of fit tests are used to de-
termine the adequacy of curves fit to data. The

null hypothesis is that the curve fit is adequate. It
is common to determine curve shapes to minimize
the mean square error, so it is appropriate that the
goodness-of-fit calculation sums the squared errors.

F-tests (analysis of variance, ANOVA) are commonly
used when deciding whether groupings of data by cate-
gory are meaningful. If the variance of test scores of the
left-handed in a class is much smaller than the variance
of the whole class, then it may be useful to study lefties
as a group. The null hypothesis is that two variances are
the same – so the proposed grouping is not meaningful.
In the table below, the symbols used are defined at the
bottom of the table. Many other tests can be found
in other articles. Proofs exist that the test statistics are
appropriate.[21]

26.6 Origins and early controversy

Significance testing is largely the product of Karl Pearson
(p-value, Pearson’s chi-squared test), William Sealy Gos-
set (Student’s t-distribution), and Ronald Fisher ("null hy-
pothesis", analysis of variance, "significance test"), while
hypothesis testing was developed by Jerzy Neyman and
Egon Pearson (son of Karl). Ronald Fisher, mathemati-
cian and biologist described by Richard Dawkins as “the
greatest biologist since Darwin”, began his life in statis-
tics as a Bayesian (Zabell 1992), but Fisher soon grew
disenchanted with the subjectivity involved (namely use
of the principle of indifference when determining prior
probabilities), and sought to provide a more “objective”
approach to inductive inference.[27]

Fisher was an agricultural statistician who emphasized
rigorous experimental design and methods to extract a re-
sult from few samples assuming Gaussian distributions.
Neyman (who teamed with the younger Pearson) empha-
sized mathematical rigor and methods to obtain more re-
sults from many samples and a wider range of distribu-
tions. Modern hypothesis testing is an inconsistent hy-
brid of the Fisher vs Neyman/Pearson formulation, meth-
ods and terminology developed in the early 20th cen-
tury. While hypothesis testing was popularized early in
the 20th century, evidence of its use can be found much
earlier. In the 1770s Laplace considered the statistics of
almost half a million births. The statistics showed an ex-
cess of boys compared to girls.[28] He concluded by cal-
culation of a p-value that the excess was a real, but unex-
plained, effect.[29]

Fisher popularized the “significance test”. He required a
null-hypothesis (corresponding to a population frequency
distribution) and a sample. His (now familiar) calcula-
tions determined whether to reject the null-hypothesis or
not. Significance testing did not utilize an alternative hy-
pothesis so there was no concept of a Type II error.
The p-value was devised as an informal, but objective,
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A likely originator of the “hybrid” method of hypothesis testing,
as well as the use of “nil” null hypotheses, is E.F. Lindquist in his
statistics textbook: Lindquist, E.F. (1940) Statistical Analysis In
Educational Research. Boston: Houghton Mifflin.

index meant to help a researcher determine (based on
other knowledge) whether to modify future experiments
or strengthen one’s faith in the null hypothesis.[30] Hy-
pothesis testing (and Type I/II errors) was devised by
Neyman and Pearson as a more objective alternative to
Fisher’s p-value, also meant to determine researcher be-
haviour, but without requiring any inductive inference by
the researcher.[31][32]

Neyman & Pearson considered a different problem
(which they called “hypothesis testing”). They initially
considered two simple hypotheses (both with frequency
distributions). They calculated two probabilities and typ-
ically selected the hypothesis associated with the higher
probability (the hypothesis more likely to have generated
the sample). Their method always selected a hypothe-
sis. It also allowed the calculation of both types of error
probabilities.
Fisher and Neyman/Pearson clashed bitterly. Ney-
man/Pearson considered their formulation to be an im-
proved generalization of significance testing.(The defin-
ing paper[31] was abstract. Mathematicians have gen-
eralized and refined the theory for decades.[33]) Fisher
thought that it was not applicable to scientific research
because often, during the course of the experiment, it is
discovered that the initial assumptions about the null hy-
pothesis are questionable due to unexpected sources of
error. He believed that the use of rigid reject/accept de-
cisions based on models formulated before data is col-
lected was incompatible with this common scenario faced
by scientists and attempts to apply this method to scien-
tific research would lead to mass confusion.[34]

The dispute between Fisher and Neyman-Pearson was
waged on philosophical grounds, characterized by a
philosopher as a dispute over the proper role of models
in statistical inference.[35]

Events intervened: Neyman accepted a position in the
western hemisphere, breaking his partnership with Pear-
son and separating disputants (who had occupied the
same building) by much of the planetary diameter. World
War II provided an intermission in the debate. The dis-
pute between Fisher and Neyman terminated (unresolved
after 27 years) with Fisher’s death in 1962. Neyman
wrote a well-regarded eulogy.[36] Some of Neyman’s later
publications reported p-values and significance levels.[37]

The modern version of hypothesis testing is a hybrid of
the two approaches that resulted from confusion by writ-
ers of statistical textbooks (as predicted by Fisher) be-
ginning in the 1940s.[38] (But signal detection, for exam-
ple, still uses the Neyman/Pearson formulation.) Great
conceptual differences and many caveats in addition to
those mentioned above were ignored. Neyman and Pear-
son provided the stronger terminology, the more rigorous
mathematics and the more consistent philosophy, but the
subject taught today in introductory statistics has more
similarities with Fisher’s method than theirs.[39] This his-
tory explains the inconsistent terminology (example: the
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null hypothesis is never accepted, but there is a region of
acceptance).
Sometime around 1940,[38] in an apparent effort to pro-
vide researchers with a “non-controversial”[40] way to
have their cake and eat it too, the authors of statistical text
books began anonymously combining these two strate-
gies by using the p-value in place of the test statistic (or
data) to test against the Neyman-Pearson “significance
level”.[38] Thus, researchers were encouraged to infer the
strength of their data against some null hypothesis using
p-values, while also thinking they are retaining the post-
data collection objectivity provided by hypothesis test-
ing. It then became customary for the null hypothesis,
which was originally some realistic research hypothesis,
to be used almost solely as a strawman “nil” hypothesis
(one where a treatment has no effect, regardless of the
context).[41]

A comparison between Fisherian, frequentist
(Neyman-Pearson)

26.6.1 Early choices of null hypothesis

Paul Meehl has argued that the epistemological impor-
tance of the choice of null hypothesis has gone largely un-
acknowledged. When the null hypothesis is predicted by
theory, a more precise experiment will be a more severe
test of the underlying theory. When the null hypothesis
defaults to “no difference” or “no effect”, a more precise
experiment is a less severe test of the theory that moti-
vated performing the experiment.[42] An examination of
the origins of the latter practice may therefore be useful:
1778: Pierre Laplace compares the birthrates of boys and
girls in multiple European cities. He states: “it is natu-
ral to conclude that these possibilities are very nearly in
the same ratio”. Thus Laplace’s null hypothesis that the
birthrates of boys and girls should be equal given “con-
ventional wisdom”.[28]

1900: Karl Pearson develops the chi squared test to de-
termine “whether a given form of frequency curve will
effectively describe the samples drawn from a given pop-
ulation.” Thus the null hypothesis is that a population is
described by some distribution predicted by theory. He
uses as an example the numbers of five and sixes in the
Weldon dice throw data.[43]

1904: Karl Pearson develops the concept of
"contingency" in order to determine whether out-
comes are independent of a given categorical factor.
Here the null hypothesis is by default that two things
are unrelated (e.g. scar formation and death rates
from smallpox).[44] The null hypothesis in this case is no
longer predicted by theory or conventional wisdom, but is
instead the principle of indifference that lead Fisher and
others to dismiss the use of “inverse probabilities”.[45]

26.7 Null hypothesis statistical sig-
nificance testing vs hypothesis
testing

An example of Neyman-Pearson hypothesis testing can
be made by a change to the radioactive suitcase example.
If the “suitcase” is actually a shielded container for the
transportation of radioactive material, then a test might
be used to select among three hypotheses: no radioactive
source present, one present, two (all) present. The test
could be required for safety, with actions required in each
case. The Neyman-Pearson lemma of hypothesis testing
says that a good criterion for the selection of hypotheses
is the ratio of their probabilities (a likelihood ratio). A
simple method of solution is to select the hypothesis with
the highest probability for the Geiger counts observed.
The typical result matches intuition: few counts imply no
source, many counts imply two sources and intermediate
counts imply one source.
Neyman-Pearson theory can accommodate both prior
probabilities and the costs of actions resulting from
decisions.[46] The former allows each test to consider the
results of earlier tests (unlike Fisher’s significance tests).
The latter allows the consideration of economic issues
(for example) as well as probabilities. A likelihood ratio
remains a good criterion for selecting among hypotheses.
The two forms of hypothesis testing are based on differ-
ent problem formulations. The original test is analogous
to a true/false question; the Neyman-Pearson test is more
like multiple choice. In the view of Tukey[47] the former
produces a conclusion on the basis of only strong evidence
while the latter produces a decision on the basis of avail-
able evidence. While the two tests seem quite different
both mathematically and philosophically, later develop-
ments lead to the opposite claim. Consider many tiny
radioactive sources. The hypotheses become 0,1,2,3...
grains of radioactive sand. There is little distinction be-
tween none or some radiation (Fisher) and 0 grains of
radioactive sand versus all of the alternatives (Neyman-
Pearson). The major Neyman-Pearson paper of 1933[31]

also considered composite hypotheses (ones whose dis-
tribution includes an unknown parameter). An example
proved the optimality of the (Student’s) t-test, “there can
be no better test for the hypothesis under consideration”
(p 321). Neyman-Pearson theory was proving the opti-
mality of Fisherian methods from its inception.
Fisher’s significance testing has proven a popular flexi-
ble statistical tool in application with little mathematical
growth potential. Neyman-Pearson hypothesis testing is
claimed as a pillar of mathematical statistics,[48] creating
a new paradigm for the field. It also stimulated new ap-
plications in Statistical process control, detection theory,
decision theory and game theory. Both formulations have
been successful, but the successes have been of a differ-
ent character.
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The dispute over formulations is unresolved. Science
primarily uses Fisher’s (slightly modified) formulation
as taught in introductory statistics. Statisticians study
Neyman-Pearson theory in graduate school. Mathemati-
cians are proud of uniting the formulations. Philoso-
phers consider them separately. Learned opinions deem
the formulations variously competitive (Fisher vs Ney-
man), incompatible[27] or complementary.[33] The dis-
pute has become more complex since Bayesian inference
has achieved respectability.
The terminology is inconsistent. Hypothesis testing can
mean any mixture of two formulations that both changed
with time. Any discussion of significance testing vs hy-
pothesis testing is doubly vulnerable to confusion.
Fisher thought that hypothesis testing was a useful strat-
egy for performing industrial quality control, however, he
strongly disagreed that hypothesis testing could be use-
ful for scientists.[30] Hypothesis testing provides a means
of finding test statistics used in significance testing.[33]

The concept of power is useful in explaining the conse-
quences of adjusting the significance level and is heavily
used in sample size determination. The two methods re-
main philosophically distinct.[35] They usually (but not al-
ways) produce the same mathematical answer. The pre-
ferred answer is context dependent.[33] While the exist-
ing merger of Fisher and Neyman-Pearson theories has
been heavily criticized, modifying the merger to achieve
Bayesian goals has been considered.[49]

26.8 Criticism

See also: p-value § Criticisms

Criticism of statistical hypothesis testing fills
volumes[50][51][52][53][54][55] citing 300–400 primary
references. Much of the criticism can be summarized by
the following issues:

• The interpretation of a p-value is dependent upon
stopping rule and definition of multiple compari-
son. The former often changes during the course
of a study and the latter is unavoidably ambiguous.
(i.e. “p values depend on both the (data) observed
and on the other possible (data) that might have been
observed but weren't”).[56]

• Confusion resulting (in part) from combining the
methods of Fisher and Neyman-Pearson which are
conceptually distinct.[47]

• Emphasis on statistical significance to the exclu-
sion of estimation and confirmation by repeated
experiments.[57]

• Rigidly requiring statistical significance as a crite-
rion for publication, resulting in publication bias.[58]

Most of the criticism is indirect. Rather than be-
ing wrong, statistical hypothesis testing is misunder-
stood, overused and misused.

• When used to detect whether a difference exists be-
tween groups, a paradox arises. As improvements
are made to experimental design (e.g., increased
precision of measurement and sample size), the test
becomes more lenient. Unless one accepts the ab-
surd assumption that all sources of noise in the data
cancel out completely, the chance of finding sta-
tistical significance in either direction approaches
100%.[59]

• Layers of philosophical concerns. The probability
of statistical significance is a function of decisions
made by experimenters/analysts.[10] If the decisions
are based on convention they are termed arbitrary or
mindless[40] while those not so based may be termed
subjective. To minimize type II errors, large sam-
ples are recommended. In psychology practically
all null hypotheses are claimed to be false for suffi-
ciently large samples so "...it is usually nonsensical to
perform an experiment with the sole aim of reject-
ing the null hypothesis.”.[60] “Statistically significant
findings are often misleading” in psychology.[61] Sta-
tistical significance does not imply practical sig-
nificance and correlation does not imply causation.
Casting doubt on the null hypothesis is thus far from
directly supporting the research hypothesis.

• "[I]t does not tell us what we want to know”.[62] Lists
of dozens of complaints are available.[54][63]

Critics and supporters are largely in factual agreement re-
garding the characteristics of null hypothesis significance
testing (NHST): While it can provide critical information,
it is inadequate as the sole tool for statistical analysis. Suc-
cessfully rejecting the null hypothesis may offer no support
for the research hypothesis. The continuing controversy
concerns the selection of the best statistical practices for
the near-term future given the (often poor) existing prac-
tices. Critics would prefer to ban NHST completely, forc-
ing a complete departure from those practices, while sup-
porters suggest a less absolute change.
Controversy over significance testing, and its effects
on publication bias in particular, has produced several
results. The American Psychological Association has
strengthened its statistical reporting requirements after
review,[64] medical journal publishers have recognized
the obligation to publish some results that are not statisti-
cally significant to combat publication bias[65] and a jour-
nal (Journal of Articles in Support of the Null Hypothesis)
has been created to publish such results exclusively.[66]

Textbooks have added some cautions[67] and increased
coverage of the tools necessary to estimate the size of the
sample required to produce significant results. Major or-
ganizations have not abandoned use of significance tests
although some have discussed doing so.[64]
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26.9 Alternatives

Main article: Estimation statistics
See also: Confidence interval § Statistical hypothesis
testing

The numerous criticisms of significance testing do not
lead to a single alternative. A unifying position of critics
is that statistics should not lead to a conclusion or a de-
cision but to a probability or to an estimated value with
a confidence interval rather than to an accept-reject de-
cision regarding a particular hypothesis. It is unlikely
that the controversy surrounding significance testing will
be resolved in the near future. Its supposed flaws and
unpopularity do not eliminate the need for an objective
and transparent means of reaching conclusions regard-
ing studies that produce statistical results. Critics have
not unified around an alternative. Other forms of re-
porting confidence or uncertainty could probably grow in
popularity. One strong critic of significance testing sug-
gested a list of reporting alternatives:[68] effect sizes for
importance, prediction intervals for confidence, replica-
tions and extensions for replicability, meta-analyses for
generality. None of these suggested alternatives pro-
duces a conclusion/decision. Lehmann said that hypoth-
esis testing theory can be presented in terms of con-
clusions/decisions, probabilities, or confidence intervals.
“The distinction between the ... approaches is largely one
of reporting and interpretation.”[69]

On one “alternative” there is no disagreement: Fisher
himself said,[17] “In relation to the test of significance,
we may say that a phenomenon is experimentally demon-
strable when we know how to conduct an experiment
which will rarely fail to give us a statistically significant
result.” Cohen, an influential critic of significance test-
ing, concurred,[62] "... don't look for a magic alternative
to NHST [null hypothesis significance testing] ... It doesn't
exist.” "... given the problems of statistical induction, we
must finally rely, as have the older sciences, on replica-
tion.” The “alternative” to significance testing is repeated
testing. The easiest way to decrease statistical uncertainty
is by obtaining more data, whether by increased sample
size or by repeated tests. Nickerson claimed to have never
seen the publication of a literally replicated experiment
in psychology.[63] An indirect approach to replication is
meta-analysis.
Bayesian inference is one proposed alternative to signifi-
cance testing. (Nickerson cited 10 sources suggesting it,
including Rozeboom (1960)).[63] For example, Bayesian
parameter estimation can provide rich information about
the data from which researchers can draw inferences,
while using uncertain priors that exert only minimal in-
fluence on the results when enough data is available. Psy-
chologist Kruschke, John K. has suggested Bayesian es-
timation as an alternative for the t-test.[70] Alternatively
two competing models/hypothesis can be compared us-
ing Bayes factors.[71] Bayesian methods could be criti-

cized for requiring information that is seldom available in
the cases where significance testing is most heavily used.
Neither the prior probabilities nor the probability distri-
bution of the test statistic under the alternative hypothesis
are often available in the social sciences.[63]

Advocates of a Bayesian approach sometimes claim that
the goal of a researcher is most often to objectively assess
the probability that a hypothesis is true based on the data
they have collected.[72][73] Neither Fisher's significance
testing, nor Neyman-Pearson hypothesis testing can pro-
vide this information, and do not claim to. The proba-
bility a hypothesis is true can only be derived from use
of Bayes’ Theorem, which was unsatisfactory to both the
Fisher and Neyman-Pearson camps due to the explicit use
of subjectivity in the form of the prior probability.[31][74]

Fisher’s strategy is to sidestep this with the p-value (an ob-
jective index based on the data alone) followed by induc-
tive inference, while Neyman-Pearson devised their ap-
proach of inductive behaviour.

26.10 Philosophy

Hypothesis testing and philosophy intersect. Inferential
statistics, which includes hypothesis testing, is applied
probability. Both probability and its application are inter-
twined with philosophy. Philosopher David Hume wrote,
“All knowledge degenerates into probability.” Competing
practical definitions of probability reflect philosophical
differences. The most common application of hypothe-
sis testing is in the scientific interpretation of experimen-
tal data, which is naturally studied by the philosophy of
science.
Fisher and Neyman opposed the subjectivity of probabil-
ity. Their views contributed to the objective definitions.
The core of their historical disagreement was philosoph-
ical.
Many of the philosophical criticisms of hypothesis test-
ing are discussed by statisticians in other contexts, partic-
ularly correlation does not imply causation and the design
of experiments. Hypothesis testing is of continuing in-
terest to philosophers.[35][75]

26.11 Education

Main article: Statistics education

Statistics is increasingly being taught in schools with hy-
pothesis testing being one of the elements taught.[76][77]

Many conclusions reported in the popular press (politi-
cal opinion polls to medical studies) are based on statis-
tics. An informed public should understand the lim-
itations of statistical conclusions[78][79] and many col-
lege fields of study require a course in statistics for
the same reason.[78][79] An introductory college statistics
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class places much emphasis on hypothesis testing – per-
haps half of the course. Such fields as literature and di-
vinity now include findings based on statistical analysis
(see the Bible Analyzer). An introductory statistics class
teaches hypothesis testing as a cookbook process. Hy-
pothesis testing is also taught at the postgraduate level.
Statisticians learn how to create good statistical test pro-
cedures (like z, Student’s t, F and chi-squared). Statisti-
cal hypothesis testing is considered a mature area within
statistics,[69] but a limited amount of development con-
tinues.
The cookbook method of teaching introductory statis-
tics leaves no time for history, philosophy or controversy.
Hypothesis testing has been taught as received unified
method. Surveys showed that graduates of the class were
filled with philosophical misconceptions (on all aspects of
statistical inference) that persisted among instructors.[80]

While the problem was addressed more than a decade
ago,[81] and calls for educational reform continue,[82] stu-
dents still graduate from statistics classes holding funda-
mental misconceptions about hypothesis testing.[83] Ideas
for improving the teaching of hypothesis testing include
encouraging students to search for statistical errors in
published papers, teaching the history of statistics and
emphasizing the controversy in a generally dry subject.[84]

26.12 See also

• Behrens–Fisher problem

• Bootstrapping (statistics)

• Checking if a coin is fair

• Comparing means test decision tree

• Complete spatial randomness

• Counternull

• Falsifiability

• Fisher’s method for combining independent tests of
significance

• Granger causality

• Look-elsewhere effect

• Modifiable areal unit problem

• Omnibus test
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Chapter 27

Bayesian inference

Bayesian inference is a method of statistical inference in
which Bayes’ theorem is used to update the probability for
a hypothesis as evidence is acquired. Bayesian inference
is an important technique in statistics, and especially in
mathematical statistics. Bayesian updating is particularly
important in the dynamic analysis of a sequence of data.
Bayesian inference has found application in a wide range
of activities, including science, engineering, philosophy,
medicine, and law. In the philosophy of decision the-
ory, Bayesian inference is closely related to subjective
probability, often called "Bayesian probability". Bayesian
probability provides a rational method for updating be-
liefs.

27.1 Introduction to Bayes’ rule

Relative size Case B Case B
_

Total
Condition A w x w+x

Condition Ā y z y+z

Total w+y x+z w+x+y+z

P(A|B) × P(B)= w____
w+y

× w+y________
w+x+y+z

= w________
w+x+y+z

P(B|A) × P(A) = w____
w+x

× w+x________
w+x+y+z

= w________
w+x+y+z

Ā) P(Ā)/P(B) etc.

Main article: Bayes’ rule
See also: Bayesian probability

27.1.1 Formal

Bayesian inference derives the posterior probability as a
consequence of two antecedents, a prior probability and
a "likelihood function" derived from a statistical model

for the observed data. Bayesian inference computes the
posterior probability according to Bayes’ theorem:

P (H | E) =
P (E | H) · P (H)

P (E)

where

• | denotes a conditional probability; more specifi-
cally, it means given.

• H stands for any hypothesis whose probability may
be affected by data (called evidence below). Of-
ten there are competing hypotheses, from which one
chooses the most probable.

• the evidence E corresponds to new data that were
not used in computing the prior probability.

• P (H) , the prior probability, is the probability ofH
before E is observed. This indicates one’s previous
estimate of the probability that a hypothesis is true,
before gaining the current evidence.

• P (H | E) , the posterior probability, is the proba-
bility of H given E , i.e., after E is observed. This
tells us what we want to know: the probability of a
hypothesis given the observed evidence.

• P (E | H) is the probability of observing E given
H . As a function of H with E fixed, this is the
likelihood. The likelihood function should not be
confused with P (H | E) as a function of H rather
than of E . It indicates the compatibility of the evi-
dence with the given hypothesis.

• P (E) is sometimes termed the marginal likelihood
or “model evidence”. This factor is the same for all
possible hypotheses being considered. (This can be
seen by the fact that the hypothesis H does not ap-
pear anywhere in the symbol, unlike for all the other
factors.) This means that this factor does not enter
into determining the relative probabilities of differ-
ent hypotheses.

Note that, for different values of H , only the factors
P (H) and P (E | H) affect the value of P (H | E)
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. As both of these factors appear in the numerator, the
posterior probability is proportional to both. In words:

• (more precisely) The posterior probability of a hy-
pothesis is determined by a combination of the inher-
ent likeliness of a hypothesis (the prior) and the com-
patibility of the observed evidence with the hypothesis
(the likelihood).

• (more concisely) Posterior is proportional to likeli-
hood times prior.

Note that Bayes’ rule can also be written as follows:

P (H | E) =
P (E | H)

P (E)
· P (H)

where the factor P (E|H)
P (E) represents the impact of E on

the probability of H .

27.1.2 Informal

If the evidence does not match up with a hypothesis, one
should reject the hypothesis. But if a hypothesis is ex-
tremely unlikely a priori, one should also reject it, even if
the evidence does appear to match up.
For example, imagine that I have various hypotheses
about the nature of a newborn baby of a friend, including:

• H1 : the baby is a brown-haired boy.

• H2 : the baby is a blond-haired girl.

• H3 : the baby is a dog.

Then consider two scenarios:

1. I'm presented with evidence in the form of a pic-
ture of a blond-haired baby girl. I find this evidence
supports H2 and opposes H1 and H3 .

2. I'm presented with evidence in the form of a picture
of a baby dog. Although this evidence, treated in
isolation, supports H3 , my prior belief in this hy-
pothesis (that a human can give birth to a dog) is
extremely small, so the posterior probability is nev-
ertheless small.

The critical point about Bayesian inference, then, is that
it provides a principled way of combining new evidence
with prior beliefs, through the application of Bayes’ rule.
(Contrast this with frequentist inference, which relies
only on the evidence as a whole, with no reference to
prior beliefs.) Furthermore, Bayes’ rule can be applied
iteratively: after observing some evidence, the resulting
posterior probability can then be treated as a prior prob-
ability, and a new posterior probability computed from

new evidence. This allows for Bayesian principles to be
applied to various kinds of evidence, whether viewed all
at once or over time. This procedure is termed “Bayesian
updating”.

27.1.3 Bayesian updating

Bayesian updating is widely used and computationally
convenient. However, it is not the only updating rule that
might be considered “rational”.
Ian Hacking noted that traditional "Dutch book" argu-
ments did not specify Bayesian updating: they left open
the possibility that non-Bayesian updating rules could
avoid Dutch books. Hacking wrote[1] “And neither the
Dutch book argument, nor any other in the personalist
arsenal of proofs of the probability axioms, entails the
dynamic assumption. Not one entails Bayesianism. So
the personalist requires the dynamic assumption to be
Bayesian. It is true that in consistency a personalist could
abandon the Bayesian model of learning from experience.
Salt could lose its savour.”
Indeed, there are non-Bayesian updating rules that also
avoid Dutch books (as discussed in the literature on
"probability kinematics" following the publication of
Richard C. Jeffrey's rule, which applies Bayes’ rule to the
case where the evidence itself is assigned a probability.[2]

The additional hypotheses needed to uniquely require
Bayesian updating have been deemed to be substantial,
complicated, and unsatisfactory.[3]

27.2 Formal description of
Bayesian inference

27.2.1 Definitions

• x , a data point in general. This may in fact be a
vector of values.

• θ , the parameter of the data point’s distribution, i.e.,
x ∼ p(x | θ) . This may in fact be a vector of
parameters.

• α , the hyperparameter of the parameter, i.e., θ ∼
p(θ | α) . This may in fact be a vector of hyperpa-
rameters.

• X , a set of n observed data points, i.e., x1, . . . , xn
.

• x̃ , a new data point whose distribution is to be pre-
dicted.

27.2.2 Bayesian inference

• The prior distribution is the distribution of the pa-
rameter(s) before any data is observed, i.e. p(θ | α)

https://en.wikipedia.org/wiki/Ian_Hacking
https://en.wikipedia.org/wiki/Dutch_book
https://en.wikipedia.org/wiki/Ian_Hacking
https://en.wikipedia.org/wiki/Probability_kinematics
https://en.wikipedia.org/wiki/Richard_C._Jeffrey
https://en.wikipedia.org/wiki/Random_vector
https://en.wikipedia.org/wiki/Parameter
https://en.wikipedia.org/wiki/Random_vector
https://en.wikipedia.org/wiki/Hyperparameter
https://en.wikipedia.org/wiki/Random_vector
https://en.wikipedia.org/wiki/Prior_distribution


196 CHAPTER 27. BAYESIAN INFERENCE

.

• The prior distribution might not be easily deter-
mined. In this case, we can use the Jeffreys prior
to obtain the posterior distribution before updating
them with newer observations.

• The sampling distribution is the distribution of the
observed data conditional on its parameters, i.e.
p(X | θ) . This is also termed the likelihood, espe-
cially when viewed as a function of the parameter(s),
sometimes written L(θ | X) = p(X | θ) .

• The marginal likelihood (sometimes also termed the
evidence) is the distribution of the observed data
marginalized over the parameter(s), i.e. p(X | α) =∫
θ
p(X | θ)p(θ | α) dθ .

• The posterior distribution is the distribution of the
parameter(s) after taking into account the observed
data. This is determined by Bayes’ rule, which forms
the heart of Bayesian inference:

p(θ | X, α) = p(X | θ)p(θ | α)
p(X | α)

∝ p(X | θ)p(θ | α)

Note that this is expressed in words as “posterior is pro-
portional to likelihood times prior”, or sometimes as
“posterior = likelihood times prior, over evidence”.

27.2.3 Bayesian prediction

• The posterior predictive distribution is the distribu-
tion of a new data point, marginalized over the pos-
terior:

p(x̃ | X, α) =
∫
θ

p(x̃ | θ)p(θ | X, α) dθ

• The prior predictive distribution is the distribution
of a new data point, marginalized over the prior:

p(x̃ | α) =
∫
θ

p(x̃ | θ)p(θ | α) dθ

Bayesian theory calls for the use of the posterior predic-
tive distribution to do predictive inference, i.e., to predict
the distribution of a new, unobserved data point. That is,
instead of a fixed point as a prediction, a distribution over
possible points is returned. Only this way is the entire
posterior distribution of the parameter(s) used. By com-
parison, prediction in frequentist statistics often involves
finding an optimum point estimate of the parameter(s)—
e.g., by maximum likelihood or maximum a posteriori
estimation (MAP)—and then plugging this estimate into
the formula for the distribution of a data point. This has
the disadvantage that it does not account for any uncer-
tainty in the value of the parameter, and hence will un-
derestimate the variance of the predictive distribution.

(In some instances, frequentist statistics can work around
this problem. For example, confidence intervals and
prediction intervals in frequentist statistics when con-
structed from a normal distribution with unknown
mean and variance are constructed using a Student’s t-
distribution. This correctly estimates the variance, due to
the fact that (1) the average of normally distributed ran-
dom variables is also normally distributed; (2) the predic-
tive distribution of a normally distributed data point with
unknown mean and variance, using conjugate or uninfor-
mative priors, has a student’s t-distribution. In Bayesian
statistics, however, the posterior predictive distribution
can always be determined exactly—or at least, to an ar-
bitrary level of precision, when numerical methods are
used.)
Note that both types of predictive distributions have the
form of a compound probability distribution (as does the
marginal likelihood). In fact, if the prior distribution is a
conjugate prior, and hence the prior and posterior distri-
butions come from the same family, it can easily be seen
that both prior and posterior predictive distributions also
come from the same family of compound distributions.
The only difference is that the posterior predictive dis-
tribution uses the updated values of the hyperparameters
(applying the Bayesian update rules given in the conjugate
prior article), while the prior predictive distribution uses
the values of the hyperparameters that appear in the prior
distribution.

27.3 Inference over exclusive and
exhaustive possibilities

If evidence is simultaneously used to update belief over
a set of exclusive and exhaustive propositions, Bayesian
inference may be thought of as acting on this belief dis-
tribution as a whole.

27.3.1 General formulation

Suppose a process is generating independent and iden-
tically distributed events En , but the probability distri-
bution is unknown. Let the event space Ω represent the
current state of belief for this process. Each model is
represented by event Mm . The conditional probabilities
P (En |Mm) are specified to define the models. P (Mm)
is the degree of belief in Mm . Before the first infer-
ence step, {P (Mm)} is a set of initial prior probabilities.
These must sum to 1, but are otherwise arbitrary.
Suppose that the process is observed to generate E ∈
{En} . For each M ∈ {Mm} , the prior P (M) is up-
dated to the posterior P (M | E) . From Bayes’ theo-
rem:[4]
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Diagram illustrating event space Ω in general formulation of
Bayesian inference. Although this diagram shows discrete mod-
els and events, the continuous case may be visualized similarly
using probability densities.

P (M | E) =
P (E |M)∑

m P (E |Mm)P (Mm)
· P (M)

Upon observation of further evidence, this procedure may
be repeated.

27.3.2 Multiple observations

For a set of independent and identically distributed obser-
vationsE = {e1, . . . , en} , it may be shown that repeated
application of the above is equivalent to

P (M | E) = P (E |M)∑
m P (E |Mm)P (Mm)

· P (M)

Where

P (E |M) =
∏
k

P (ek |M).

This may be used to optimize practical calculations.

27.3.3 Parametric formulation

By parameterizing the space of models, the belief in all
models may be updated in a single step. The distribution
of belief over the model space may then be thought of
as a distribution of belief over the parameter space. The
distributions in this section are expressed as continuous,
represented by probability densities, as this is the usual

situation. The technique is however equally applicable to
discrete distributions.
Let the vector θ span the parameter space. Let the ini-
tial prior distribution over θ be p(θ | α) , where α is a
set of parameters to the prior itself, or hyperparameters.
LetE = {e1, . . . , en} be a set of independent and identi-
cally distributed event observations, where all ei are dis-
tributed as p(e | θ) for some θ . Bayes’ theorem is applied
to find the posterior distribution over θ :

p(θ | E, α) = p(E | θ, α)
p(E | α)

· p(θ | α)

=
p(E | θ, α)∫

θ
p(E|θ, α)p(θ | α) dθ · p(θ | α)

Where

p(E | θ, α) =
∏
k

p(ek | θ)

27.4 Mathematical properties

27.4.1 Interpretation of factor
P (E|M)
P (E) > 1 ⇒ P (E | M) > P (E) . That is, if the

model were true, the evidence would be more likely than
is predicted by the current state of belief. The reverse
applies for a decrease in belief. If the belief does not
change, P (E|M)

P (E) = 1 ⇒ P (E | M) = P (E) . That is,
the evidence is independent of the model. If the model
were true, the evidence would be exactly as likely as pre-
dicted by the current state of belief.

27.4.2 Cromwell’s rule

Main article: Cromwell’s rule

If P (M) = 0 then P (M | E) = 0 . If P (M) = 1 ,
then P (M |E) = 1 . This can be interpreted to mean that
hard convictions are insensitive to counter-evidence.
The former follows directly from Bayes’ theorem. The
latter can be derived by applying the first rule to the event
“not M " in place of " M ", yielding “if 1 − P (M) =
0 , then 1 − P (M | E) = 0 ", from which the result
immediately follows.

27.4.3 Asymptotic behaviour of posterior

Consider the behaviour of a belief distribution as it is
updated a large number of times with independent and
identically distributed trials. For sufficiently nice prior
probabilities, the Bernstein-von Mises theorem gives that

https://en.wikipedia.org/wiki/Independent_and_identically_distributed
https://en.wikipedia.org/wiki/Hyperparameter
https://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables
https://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables
https://en.wikipedia.org/wiki/Bayes%2527_theorem
https://en.wikipedia.org/wiki/Posterior_distribution
https://en.wikipedia.org/wiki/Cromwell%2527s_rule
https://en.wikipedia.org/wiki/Independent_and_identically_distributed
https://en.wikipedia.org/wiki/Independent_and_identically_distributed
https://en.wikipedia.org/wiki/Bernstein%E2%80%93von_Mises_theorem


198 CHAPTER 27. BAYESIAN INFERENCE

in the limit of infinite trials, the posterior converges to a
Gaussian distribution independent of the initial prior un-
der some conditions firstly outlined and rigorously proven
by Joseph L. Doob in 1948, namely if the random vari-
able in consideration has a finite probability space. The
more general results were obtained later by the statisti-
cian David A. Freedman who published in two seminal
research papers in 1963 and 1965 when and under what
circumstances the asymptotic behaviour of posterior is
guaranteed. His 1963 paper treats, like Doob (1949), the
finite case and comes to a satisfactory conclusion. How-
ever, if the random variable has an infinite but countable
probability space (i.e., corresponding to a die with infi-
nite many faces) the 1965 paper demonstrates that for a
dense subset of priors the Bernstein-von Mises theorem
is not applicable. In this case there is almost surely no
asymptotic convergence. Later in the 1980s and 1990s
Freedman and Persi Diaconis continued to work on the
case of infinite countable probability spaces.[5] To sum-
marise, there may be insufficient trials to suppress the ef-
fects of the initial choice, and especially for large (but
finite) systems the convergence might be very slow.

27.4.4 Conjugate priors

Main article: Conjugate prior

In parameterized form, the prior distribution is often
assumed to come from a family of distributions called
conjugate priors. The usefulness of a conjugate prior is
that the corresponding posterior distribution will be in
the same family, and the calculation may be expressed
in closed form.

27.4.5 Estimates of parameters and pre-
dictions

It is often desired to use a posterior distribution to es-
timate a parameter or variable. Several methods of
Bayesian estimation select measurements of central ten-
dency from the posterior distribution.
For one-dimensional problems, a unique median exists
for practical continuous problems. The posterior median
is attractive as a robust estimator.[6]

If there exists a finite mean for the posterior distribution,
then the posterior mean is a method of estimation.

θ̃ = E[θ] =
∫
θ

θ p(θ | X, α) dθ

Taking a value with the greatest probability defines
maximum a posteriori (MAP) estimates:

{θMAP} ⊂ arg max
θ
p(θ | X, α).

There are examples where no maximum is attained, in
which case the set of MAP estimates is empty.
There are other methods of estimation that minimize the
posterior risk (expected-posterior loss) with respect to a
loss function, and these are of interest to statistical deci-
sion theory using the sampling distribution (“frequentist
statistics”).
The posterior predictive distribution of a new observa-
tion x̃ (that is independent of previous observations) is
determined by

p(x̃|X, α) =
∫
θ

p(x̃, θ | X, α) dθ =
∫
θ

p(x̃ | θ)p(θ | X, α) dθ.

27.5 Examples

27.5.1 Probability of a hypothesis

Suppose there are two full bowls of cookies. Bowl #1 has
10 chocolate chip and 30 plain cookies, while bowl #2 has
20 of each. Our friend Fred picks a bowl at random, and
then picks a cookie at random. We may assume there is
no reason to believe Fred treats one bowl differently from
another, likewise for the cookies. The cookie turns out to
be a plain one. How probable is it that Fred picked it out
of bowl #1?
Intuitively, it seems clear that the answer should be more
than a half, since there are more plain cookies in bowl #1.
The precise answer is given by Bayes’ theorem. Let H1

correspond to bowl #1, andH2 to bowl #2. It is given that
the bowls are identical from Fred’s point of view, thus
P (H1) = P (H2) , and the two must add up to 1, so
both are equal to 0.5. The event E is the observation of
a plain cookie. From the contents of the bowls, we know
that P (E | H1) = 30/40 = 0.75 and P (E | H2) =
20/40 = 0.5. Bayes’ formula then yields

P (H1 | E) =
P (E | H1)P (H1)

P (E | H1)P (H1) + P (E | H2)P (H2)

=
0.75× 0.5

0.75× 0.5 + 0.5× 0.5

= 0.6

Before we observed the cookie, the probability we as-
signed for Fred having chosen bowl #1 was the prior prob-
ability, P (H1) , which was 0.5. After observing the
cookie, we must revise the probability to P (H1 | E) ,
which is 0.6.
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Example results for archaeology example. This simulation was
generated using c=15.2.

27.5.2 Making a prediction

An archaeologist is working at a site thought to be from
the medieval period, between the 11th century to the 16th
century. However, it is uncertain exactly when in this
period the site was inhabited. Fragments of pottery are
found, some of which are glazed and some of which are
decorated. It is expected that if the site were inhabited
during the early medieval period, then 1% of the pottery
would be glazed and 50% of its area decorated, whereas
if it had been inhabited in the late medieval period then
81% would be glazed and 5% of its area decorated. How
confident can the archaeologist be in the date of inhabi-
tation as fragments are unearthed?
The degree of belief in the continuous variable C (cen-
tury) is to be calculated, with the discrete set of events
{GD,GD̄, ḠD, ḠD̄} as evidence. Assuming linear
variation of glaze and decoration with time, and that these
variables are independent,

P (E = GD | C = c) = (0.01+0.16(c−11))(0.5−0.09(c−11))

P (E = GD̄ | C = c) = (0.01+0.16(c−11))(0.5+0.09(c−11))

P (E = ḠD | C = c) = (0.99−0.16(c−11))(0.5−0.09(c−11))

P (E = ḠD̄ | C = c) = (0.99−0.16(c−11))(0.5+0.09(c−11))

Assume a uniform prior of fC(c) = 0.2 , and that tri-
als are independent and identically distributed. When a
new fragment of type e is discovered, Bayes’ theorem is
applied to update the degree of belief for each c :
fC(c | E = e) = P (E=e|C=c)

P (E=e) fC(c) =
P (E=e|C=c)∫ 16

11
P (E=e|C=c)fC(c)dc

fC(c)

A computer simulation of the changing belief as 50 frag-
ments are unearthed is shown on the graph. In the sim-
ulation, the site was inhabited around 1420, or c = 15.2
. By calculating the area under the relevant portion of
the graph for 50 trials, the archaeologist can say that
there is practically no chance the site was inhabited in the
11th and 12th centuries, about 1% chance that it was in-
habited during the 13th century, 63% chance during the

14th century and 36% during the 15th century. Note
that the Bernstein-von Mises theorem asserts here the
asymptotic convergence to the “true” distribution because
the probability space corresponding to the discrete set of
events {GD,GD̄, ḠD, ḠD̄} is finite (see above section
on asymptotic behaviour of the posterior).

27.6 In frequentist statistics and
decision theory

A decision-theoretic justification of the use of Bayesian
inference was given by Abraham Wald, who proved that
every unique Bayesian procedure is admissible. Con-
versely, every admissible statistical procedure is either a
Bayesian procedure or a limit of Bayesian procedures.[7]

Wald characterized admissible procedures as Bayesian
procedures (and limits of Bayesian procedures), mak-
ing the Bayesian formalism a central technique in such
areas of frequentist inference as parameter estimation,
hypothesis testing, and computing confidence intervals.[8]

For example:

• “Under some conditions, all admissible procedures
are either Bayes procedures or limits of Bayes proce-
dures (in various senses). These remarkable results,
at least in their original form, are due essentially to
Wald. They are useful because the property of being
Bayes is easier to analyze than admissibility.”[7]

• “In decision theory, a quite general method for prov-
ing admissibility consists in exhibiting a procedure
as a unique Bayes solution.”[9]

• “In the first chapters of this work, prior distributions
with finite support and the corresponding Bayes pro-
cedures were used to establish some of the main the-
orems relating to the comparison of experiments.
Bayes procedures with respect to more general prior
distributions have played a very important role in
the development of statistics, including its asymp-
totic theory.” “There are many problems where a
glance at posterior distributions, for suitable priors,
yields immediately interesting information. Also,
this technique can hardly be avoided in sequential
analysis.”[10]

• “A useful fact is that any Bayes decision rule ob-
tained by taking a proper prior over the whole pa-
rameter space must be admissible”[11]

• “An important area of investigation in the develop-
ment of admissibility ideas has been that of conven-
tional sampling-theory procedures, and many inter-
esting results have been obtained.”[12]
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27.6.1 Model selection

See Bayesian model selection

27.7 Applications

27.7.1 Computer applications

Bayesian inference has applications in artificial intelli-
gence and expert systems. Bayesian inference techniques
have been a fundamental part of computerized pattern
recognition techniques since the late 1950s. There is
also an ever growing connection between Bayesian meth-
ods and simulation-based Monte Carlo techniques since
complex models cannot be processed in closed form by
a Bayesian analysis, while a graphical model structure
may allow for efficient simulation algorithms like the
Gibbs sampling and other Metropolis–Hastings algorithm
schemes.[13] Recently Bayesian inference has gained pop-
ularity amongst the phylogenetics community for these
reasons; a number of applications allow many demo-
graphic and evolutionary parameters to be estimated si-
multaneously.
As applied to statistical classification, Bayesian infer-
ence has been used in recent years to develop algo-
rithms for identifying e-mail spam. Applications which
make use of Bayesian inference for spam filtering in-
clude CRM114, DSPAM, Bogofilter, SpamAssassin,
SpamBayes, Mozilla, XEAMS, and others. Spam classi-
fication is treated in more detail in the article on the naive
Bayes classifier.
Solomonoff’s Inductive inference is the theory of predic-
tion based on observations; for example, predicting the
next symbol based upon a given series of symbols. The
only assumption is that the environment follows some un-
known but computable probability distribution. It is a for-
mal inductive framework that combines two well-studied
principles of inductive inference: Bayesian statistics and
Occam’s Razor.[14] Solomonoff’s universal prior proba-
bility of any prefix p of a computable sequence x is the
sum of the probabilities of all programs (for a universal
computer) that compute something starting with p. Given
some p and any computable but unknown probability dis-
tribution from which x is sampled, the universal prior and
Bayes’ theorem can be used to predict the yet unseen parts
of x in optimal fashion.[15][16]

27.7.2 In the courtroom

Bayesian inference can be used by jurors to coherently ac-
cumulate the evidence for and against a defendant, and to
see whether, in totality, it meets their personal threshold
for 'beyond a reasonable doubt'.[17][18][19] Bayes’ theorem
is applied successively to all evidence presented, with the

posterior from one stage becoming the prior for the next.
The benefit of a Bayesian approach is that it gives the ju-
ror an unbiased, rational mechanism for combining evi-
dence. It may be appropriate to explain Bayes’ theorem to
jurors in odds form, as betting odds are more widely un-
derstood than probabilities. Alternatively, a logarithmic
approach, replacing multiplication with addition, might
be easier for a jury to handle.

Adding up evidence.

If the existence of the crime is not in doubt, only the iden-
tity of the culprit, it has been suggested that the prior
should be uniform over the qualifying population.[20]

For example, if 1,000 people could have committed the
crime, the prior probability of guilt would be 1/1000.
The use of Bayes’ theorem by jurors is controversial. In
the United Kingdom, a defence expert witness explained
Bayes’ theorem to the jury in R v Adams. The jury con-
victed, but the case went to appeal on the basis that no
means of accumulating evidence had been provided for
jurors who did not wish to use Bayes’ theorem. The Court
of Appeal upheld the conviction, but it also gave the opin-
ion that “To introduce Bayes’ Theorem, or any similar
method, into a criminal trial plunges the jury into inap-
propriate and unnecessary realms of theory and complex-
ity, deflecting them from their proper task.”
Gardner-Medwin[21] argues that the criterion on which a
verdict in a criminal trial should be based is not the prob-
ability of guilt, but rather the probability of the evidence,
given that the defendant is innocent (akin to a frequentist
p-value). He argues that if the posterior probability of
guilt is to be computed by Bayes’ theorem, the prior prob-
ability of guilt must be known. This will depend on the
incidence of the crime, which is an unusual piece of evi-
dence to consider in a criminal trial. Consider the follow-
ing three propositions:
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A The known facts and testimony could have
arisen if the defendant is guilty
B The known facts and testimony could have
arisen if the defendant is innocent
C The defendant is guilty.

Gardner-Medwin argues that the jury should believe both
A and not-B in order to convict. A and not-B implies the
truth of C, but the reverse is not true. It is possible that
B and C are both true, but in this case he argues that a
jury should acquit, even though they know that they will
be letting some guilty people go free. See also Lindley’s
paradox.

27.7.3 Bayesian epistemology

Bayesian epistemology is a movement that advocates for
Bayesian inference as a means of justifying the rules of
inductive logic.
Karl Popper and David Miller have rejected the alleged
rationality of Bayesianism, i.e. using Bayes rule to make
epistemological inferences:[22] It is prone to the same
vicious circle as any other justificationist epistemology,
because it presupposes what it attempts to justify. Ac-
cording to this view, a rational interpretation of Bayesian
inference would see it merely as a probabilistic version
of falsification, rejecting the belief, commonly held by
Bayesians, that high likelihood achieved by a series of
Bayesian updates would prove the hypothesis beyond any
reasonable doubt, or even with likelihood greater than 0.

27.7.4 Other

• The scientific method is sometimes interpreted as
an application of Bayesian inference. In this view,
Bayes’ rule guides (or should guide) the updating of
probabilities about hypotheses conditional on new
observations or experiments.[23]

• Bayesian search theory is used to search for lost ob-
jects.

• Bayesian inference in phylogeny

• Bayesian tool for methylation analysis

27.8 Bayes and Bayesian inference

The problem considered by Bayes in Proposition 9 of his
essay, "An Essay towards solving a Problem in the Doc-
trine of Chances", is the posterior distribution for the pa-
rameter a (the success rate) of the binomial distribution.

27.9 History

Main article: History of statistics § Bayesian statistics

The term Bayesian refers to Thomas Bayes (1702–1761),
who proved a special case of what is now called Bayes’
theorem. However, it was Pierre-Simon Laplace (1749–
1827) who introduced a general version of the theorem
and used it to approach problems in celestial mechanics,
medical statistics, reliability, and jurisprudence.[24] Early
Bayesian inference, which used uniform priors follow-
ing Laplace’s principle of insufficient reason, was called
"inverse probability" (because it infers backwards from
observations to parameters, or from effects to causes[25]).
After the 1920s, “inverse probability” was largely sup-
planted by a collection of methods that came to be called
frequentist statistics.[25]

In the 20th century, the ideas of Laplace were further
developed in two different directions, giving rise to ob-
jective and subjective currents in Bayesian practice. In
the objective or “non-informative” current, the statisti-
cal analysis depends on only the model assumed, the data
analyzed,[26] and the method assigning the prior, which
differs from one objective Bayesian to another objective
Bayesian. In the subjective or “informative” current, the
specification of the prior depends on the belief (that is,
propositions on which the analysis is prepared to act),
which can summarize information from experts, previous
studies, etc.
In the 1980s, there was a dramatic growth in research
and applications of Bayesian methods, mostly attributed
to the discovery of Markov chain Monte Carlo meth-
ods, which removed many of the computational prob-
lems, and an increasing interest in nonstandard, complex
applications.[27] Despite growth of Bayesian research,
most undergraduate teaching is still based on frequentist
statistics.[28] Nonetheless, Bayesian methods are widely
accepted and used, such as for example in the field of
machine learning.[29]

27.10 See also

• Bayes’ theorem

• Bayesian hierarchical modeling

• Bayesian Analysis, the journal of the ISBA

• Inductive probability

• International Society for Bayesian Analysis (ISBA)

• Jeffreys prior
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Chapter 28

Chi-squared distribution

This article is about the mathematics of the chi-squared
distribution. For its uses in statistics, see chi-squared
test. For the music group, see Chi2 (band).

In probability theory and statistics, the chi-squared dis-
tribution (also chi-square or χ²-distribution) with k
degrees of freedom is the distribution of a sum of the
squares of k independent standard normal random vari-
ables. It is a special case of the gamma distribution and
is one of the most widely used probability distributions in
inferential statistics, e.g., in hypothesis testing or in con-
struction of confidence intervals.[2][3][4][5] When it is be-
ing distinguished from the more general noncentral chi-
squared distribution, this distribution is sometimes called
the central chi-squared distribution.
The chi-squared distribution is used in the common chi-
squared tests for goodness of fit of an observed distribu-
tion to a theoretical one, the independence of two criteria
of classification of qualitative data, and in confidence in-
terval estimation for a population standard deviation of
a normal distribution from a sample standard deviation.
Many other statistical tests also use this distribution, like
Friedman’s analysis of variance by ranks.

28.1 History and name

This distribution was first described by the German statis-
tician Friedrich Robert Helmert in papers of 1875-6,[6][7]

where he computed the sampling distribution of the sam-
ple variance of a normal population. Thus in German this
was traditionally known as the Helmert’sche (“Helmer-
tian”) or “Helmert distribution”.
The distribution was independently rediscovered by the
English mathematician Karl Pearson in the context of
goodness of fit, for which he developed his Pearson’s chi-
squared test, published in 1900, with computed table of
values published in (Elderton 1902), collected in (Pearson
1914, pp. xxxi–xxxiii, 26–28, Table XII). The name
“chi-squared” ultimately derives from Pearson’s short-
hand for the exponent in a multivariate normal distri-
bution with the Greek letter Chi, writing -½χ² for what
would appear in modern notation as -½xTΣ−1x (Σ being

the covariance matrix).[8] The idea of a family of “chi-
squared distributions”, however, is not due to Pearson
but arose as a further development due to Fisher in the
1920s.[6]

28.2 Definition

If Z1, ..., Zk are independent, standard normal random
variables, then the sum of their squares,

Q =
k∑
i=1

Z2
i ,

is distributed according to the chi-squared distribution
with k degrees of freedom. This is usually denoted as

Q ∼ χ2(k) or Q ∼ χ2
k.

The chi-squared distribution has one parameter: k — a
positive integer that specifies the number of degrees of
freedom (i.e. the number of Zi’s)

28.3 Characteristics

Further properties of the chi-squared distribution can be
found in the box at the upper right corner of this article.

28.3.1 Probability density function

The probability density function (pdf) of the chi-squared
distribution is

f(x; k) =

{
x(k/2−1)e−x/2

2k/2Γ( k
2 )

, x ≥ 0;

0, otherwise.

where Γ(k/2) denotes the Gamma function, which has
closed-form values for integer k.
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For derivations of the pdf in the cases of one, two and
k degrees of freedom, see Proofs related to chi-squared
distribution.

28.3.2 Differential equation

The pdf of the chi-squared distribution is a solution to the
following differential equation:

{
2xf ′(x) + f(x)(−k + x+ 2) = 0,

f(1) = 2−k/2

√
eΓ( k

2 )

}

28.3.3 Cumulative distribution function

Chernoff bound for the CDF and tail (1-CDF) of a chi-squared
random variable with ten degrees of freedom (k = 10)

Its cumulative distribution function is:

F (x; k) =
γ(k2 ,

x
2 )

Γ(k2 )
= P

(
k

2
,
x

2

)
,

where γ(s,t) is the lower incomplete Gamma function and
P(s,t) is the regularized Gamma function.
In a special case of k = 2 this function has a simple form:

F (x; 2) = 1− e−
x
2

and the form is not much more complicated for other
small even k.
Tables of the chi-squared cumulative distribution func-
tion are widely available and the function is included in
many spreadsheets and all statistical packages.
Letting z ≡ x/k , Chernoff bounds on the lower and
upper tails of the CDF may be obtained.[9] For the cases
when 0 < z < 1 (which include all of the cases when
this CDF is less than half):

F (zk; k) ≤ (ze1−z)k/2.

The tail bound for the cases when z > 1 , similarly, is

1− F (zk; k) ≤ (ze1−z)k/2.

For another approximation for the CDF modeled after
the cube of a Gaussian, see under Noncentral chi-squared
distribution.

28.3.4 Additivity

It follows from the definition of the chi-squared distri-
bution that the sum of independent chi-squared variables
is also chi-squared distributed. Specifically, if {Xi}i₌₁n
are independent chi-squared variables with {ki}i₌₁n de-
grees of freedom, respectively, then Y = X1 + ⋯ + Xn
is chi-squared distributed with k1 + ⋯ + kn degrees of
freedom.

28.3.5 Sample mean

The sample mean of n i.i.d. chi-squared
variables of degree k is distributed accord-
ing to a gamma distribution with shape α and
scale θ parameters: X̄ = 1

n

∑n
i=1Xi ∼

Gamma (α = nk/2, θ = 2/n) where Xi ∼
χ2(k)

Asymptotically, given that for a scale parameter α go-
ing to infinity, a Gamma distribution converges towards a
Normal distribution with expectation µ = α · θ and vari-
ance σ2 = α θ2 , the sample mean converges towards:
X̄

n→∞−−−−→N(µ = k, σ2 = 2 k/n)

Note that we would have obtained the same result invok-
ing instead the central limit theorem, noting that for each
chi-squared variable of degree k the expectation is k ,
and its variance 2 k (and hence the variance of the sam-
ple mean X̄ being σ2 = 2 k/n ).

28.3.6 Entropy

The differential entropy is given by

h =

∫ ∞

−∞
f(x; k) ln f(x; k) dx =

k

2
+ln
[
2Γ

(
k

2

)]
+

(
1− k

2

)
ψ

[
k

2

]
,

where ψ(x) is the Digamma function.
The chi-squared distribution is the maximum entropy
probability distribution for a random variate X for which
E(X) = k and E(ln(X)) = ψ (k/2) + log(2) are
fixed. Since the chi-squared is in the family of gamma
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distributions, this can be derived by substituting appro-
priate values in the Expectation of the Log moment of
Gamma. For derivation from more basic principles, see
the derivation in moment generating function of the suf-
ficient statistic.

28.3.7 Noncentral moments

The moments about zero of a chi-squared distribution
with k degrees of freedom are given by[10][11]

E(Xm) = k(k+2)(k+4) · · · (k+2m−2) = 2m
Γ(m+ k

2 )

Γ(k2 )
.

28.3.8 Cumulants

The cumulants are readily obtained by a (formal) power
series expansion of the logarithm of the characteristic
function:

κn = 2n−1(n− 1)! k

28.3.9 Asymptotic properties

By the central limit theorem, because the chi-squared dis-
tribution is the sum of k independent random variables
with finite mean and variance, it converges to a normal
distribution for large k. For many practical purposes, for
k > 50 the distribution is sufficiently close to a normal dis-
tribution for the difference to be ignored.[12] Specifically,
if X ~ χ²(k), then as k tends to infinity, the distribution of
(X − k)/

√
2k tends to a standard normal distribution.

However, convergence is slow as the skewness is
√
8/k

and the excess kurtosis is 12/k.

• The sampling distribution of ln(χ2) converges to
normality much faster than the sampling distribu-
tion of χ2,[13] as the logarithm removes much of the
asymmetry.[14] Other functions of the chi-squared
distribution converge more rapidly to a normal dis-
tribution. Some examples are:

• If X ~ χ²(k) then √
2X is approximately normally dis-

tributed with mean √
2k−1 and unit variance (result

credited to R. A. Fisher).

• If X ~ χ²(k) then 3
√
X/k is approximately normally

distributed with mean 1−2/(9k) and variance 2/(9k).
[15] This is known as the Wilson–Hilferty transfor-
mation.

Approximate formula for median compared with numerical
quantile (top). Difference between numerical quantile and ap-
proximate formula (bottom).

28.4 Relation to other distributions

• As k → ∞ , (χ2
k − k)/

√
2k

d−→ N(0, 1) (normal
distribution)

• χ2
k ∼ χ′2

k(0) (Noncentral chi-squared distribution
with non-centrality parameter λ = 0 )

• If X ∼ F(ν1, ν2) then Y = limν2→∞ ν1X has the
chi-squared distribution χ2

ν1

• As a special case, if X ∼ F(1, ν2) then Y =
limν2→∞X has the chi-squared distribution χ2

1

• ∥N i=1,...,k(0, 1)∥2 ∼ χ2
k (The squared norm of

k standard normally distributed variables is a chi-
squared distribution with k degrees of freedom)

• If X ∼ χ2(ν) and c > 0 , then cX ∼ Γ(k =
ν/2, θ = 2c) . (gamma distribution)

• If X ∼ χ2
k then

√
X ∼ χk (chi distribution)

• If X ∼ χ2 (2) , then X ∼ Exp(1/2) is an
exponential distribution. (See Gamma distribution
for more.)

• If X ∼ Rayleigh(1) (Rayleigh distribution) then
X2 ∼ χ2(2)

• If X ∼ Maxwell(1) (Maxwell distribution) then
X2 ∼ χ2(3)

• If X ∼ χ2(ν) then 1
X ∼ Inv-χ2(ν) (Inverse-chi-

squared distribution)

• The chi-squared distribution is a special case of type
3 Pearson distribution
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• If X ∼ χ2(ν1) and Y ∼ χ2(ν2) are independent
then X

X+Y ∼ Beta(ν12 ,
ν2
2 ) (beta distribution)

• If X ∼ U(0, 1) (uniform distribution) then
−2 log (X) ∼ χ2(2)

• χ2(6) is a transformation of Laplace distribution

• If Xi ∼ Laplace(µ, β) then
∑n
i=1

2|Xi−µ|
β ∼

χ2(2n)

• chi-squared distribution is a transformation of
Pareto distribution

• Student’s t-distribution is a transformation of chi-
squared distribution

• Student’s t-distribution can be obtained from chi-
squared distribution and normal distribution

• Noncentral beta distribution can be obtained as
a transformation of chi-squared distribution and
Noncentral chi-squared distribution

• Noncentral t-distribution can be obtained from nor-
mal distribution and chi-squared distribution

A chi-squared variable with k degrees of freedom is de-
fined as the sum of the squares of k independent standard
normal random variables.
If Y is a k-dimensional Gaussian random vector with
mean vector μ and rank k covariance matrix C, then X
= (Y−μ)TC−1(Y−μ) is chi-squared distributed with k de-
grees of freedom.
The sum of squares of statistically independent unit-
variance Gaussian variables which do not have mean zero
yields a generalization of the chi-squared distribution
called the noncentral chi-squared distribution.
If Y is a vector of k i.i.d. standard normal random vari-
ables and A is a k×k symmetric, idempotent matrix with
rank k−n then the quadratic form YTAY is chi-squared
distributed with k−n degrees of freedom.
The chi-squared distribution is also naturally related to
other distributions arising from the Gaussian. In particu-
lar,

• Y is F-distributed, Y ~ F(k1,k2) if Y=
X1/k1
X2/k2

where
X1 ~ χ²(k1) and X2 ~ χ²(k2) are statistically inde-
pendent.

• If X is chi-squared distributed, then √
X is chi dis-

tributed.

• If X1 ~ χ2k1 and X2 ~ χ2k2 are statistically inde-
pendent, then X1 + X2 ~ χ2k1₊k2. If X1 and X2 are
not independent, then X1 + X2 is not chi-squared
distributed.

28.5 Generalizations

The chi-squared distribution is obtained as the sum of
the squares of k independent, zero-mean, unit-variance
Gaussian random variables. Generalizations of this distri-
bution can be obtained by summing the squares of other
types of Gaussian random variables. Several such distri-
butions are described below.

28.5.1 Linear combination

If X1, ..., Xn are chi square random variables and
a1, ..., an ∈ R>0 , then a closed expression for the dis-
tribution of X =

∑n
i=1 aiXi is not known. It may be,

however, calculated using the property of characteristic
functions of the chi-squared random variable.[16]

28.5.2 Chi-squared distributions

Noncentral chi-squared distribution

Main article: Noncentral chi-squared distribution

The noncentral chi-squared distribution is obtained from
the sum of the squares of independent Gaussian random
variables having unit variance and nonzero means.

Generalized chi-squared distribution

Main article: Generalized chi-squared distribution

The generalized chi-squared distribution is obtained from
the quadratic form z′Az where z is a zero-mean Gaussian
vector having an arbitrary covariance matrix, and A is an
arbitrary matrix.

28.5.3 Gamma, exponential, and related
distributions

The chi-squared distribution X ~ χ²(k) is a special case of
the gamma distribution, in that X ~ Γ(k/2, 1/2) using the
rate parameterization of the gamma distribution (or X ~
Γ(k/2, 2) using the scale parameterization of the gamma
distribution) where k is an integer.
Because the exponential distribution is also a special case
of the Gamma distribution, we also have that if X ~ χ²(2),
then X ~ Exp(1/2) is an exponential distribution.
The Erlang distribution is also a special case of the
Gamma distribution and thus we also have that if X ~
χ²(k) with even k, then X is Erlang distributed with shape
parameter k/2 and scale parameter 1/2.
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28.6 Applications

The chi-squared distribution has numerous applications
in inferential statistics, for instance in chi-squared tests
and in estimating variances. It enters the problem of esti-
mating the mean of a normally distributed population and
the problem of estimating the slope of a regression line
via its role in Student’s t-distribution. It enters all analysis
of variance problems via its role in the F-distribution,
which is the distribution of the ratio of two independent
chi-squared random variables, each divided by their re-
spective degrees of freedom.
Following are some of the most common situations
in which the chi-squared distribution arises from a
Gaussian-distributed sample.

• if X1, ..., Xn are i.i.d. N(μ, σ2) random variables,
then

∑n
i=1(Xi − X̄)2 ∼ σ2χ2

n−1 where X̄ =
1
n

∑n
i=1Xi .

• The box below shows some statistics based on Xi ∼
Normal(μi, σ2i), i = 1, ⋯, k, independent random
variables that have probability distributions related
to the chi-squared distribution:

The chi-squared distribution is also often encountered in
Magnetic Resonance Imaging .[17]

28.7 Table of χ2 value vs p-value

The p-value is the probability of observing a test statistic
at least as extreme in a chi-squared distribution. Accord-
ingly, since the cumulative distribution function (CDF)
for the appropriate degrees of freedom (df) gives the
probability of having obtained a value less extreme than
this point, subtracting the CDF value from 1 gives the p-
value. The table below gives a number of p-values match-
ing to χ2 for the first 10 degrees of freedom.
A low p-value indicates greater statistical significance, i.e.
greater confidence that the observed deviation from the
null hypothesis is significant. A p-value of 0.05 is often
used as a bright-line cutoff between significant and not-
significant results.

28.8 See also
• Cochran’s theorem

• F-distribution

• Fisher’s method for combining independent tests of
significance

• Gamma distribution

• Generalized chi-squared distribution

• Noncentral chi-squared distribution

• Hotelling’s T-squared distribution

• Pearson’s chi-squared test

• Student’s t-distribution

• Wilks’ lambda distribution

• Wishart distribution
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Chi-squared test

Chi-square distribution, showing X2 on the x-axis and P-value
on the y-axis.

A chi-squared test, also referred to as χ2 test (or chi-
square test), is any statistical hypothesis test in which the
sampling distribution of the test statistic is a chi-square
distribution when the null hypothesis is true. Chi-squared
tests are often constructed from a sum of squared errors,
or through the sample variance. Test statistics that fol-
low a chi-squared distribution arise from an assumption
of independent normally distributed data, which is valid
in many cases due to the central limit theorem. A chi-
squared test can then be used to reject the hypothesis that
the data are independent.
Also considered a chi-square test is a test in which this
is asymptotically true, meaning that the sampling distri-
bution (if the null hypothesis is true) can be made to ap-
proximate a chi-square distribution as closely as desired
by making the sample size large enough. The chi-squared
test is used to determine whether there is a significant
difference between the expected frequencies and the ob-
served frequencies in one or more categories. Does the
number of individuals or objects that fall in each category
differ significantly from the number you would expect?
Is this difference between the expected and observed due
to sampling variation, or is it a real difference?

29.1 Examples of chi-square tests
with samples

One test statistic that follows a chi-square distribution ex-
actly is the test that the variance of a normally distributed
population has a given value based on a sample variance.
Such tests are uncommon in practice because the true
variance of the population is usually unknown. However,
there are several statistical tests where the chi-square dis-
tribution is approximately valid:

29.1.1 Pearson’s chi-square test

Main article: Pearson’s chi-square test

Pearson’s chi-square test, also known as the chi-square
goodness-of-fit test or chi-square test for independence.
When the chi-square test is mentioned without any modi-
fiers or without other precluding context, this test is often
meant (for an exact test used in place of χ2 , see Fisher’s
exact test).

29.1.2 Yates’s correction for continuity

Main article: Yates’s correction for continuity

Using the chi-square distribution to interpret Pearson’s
chi-square statistic requires one to assume that the
discrete probability of observed binomial frequencies in
the table can be approximated by the continuous chi-
square distribution. This assumption is not quite correct,
and introduces some error.
To reduce the error in approximation, Frank Yates sug-
gested a correction for continuity that adjusts the formula
for Pearson’s chi-square test by subtracting 0.5 from the
difference between each observed value and its expected
value in a 2 × 2 contingency table.[1] This reduces the chi-
square value obtained and thus increases its p-value.
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29.1.3 Other chi-square tests

• Cochran–Mantel–Haenszel chi-squared test.

• McNemar’s test, used in certain 2 × 2 tables with
pairing

• Tukey’s test of additivity

• The portmanteau test in time-series analysis, testing
for the presence of autocorrelation

• Likelihood-ratio tests in general statistical mod-
elling, for testing whether there is evidence of the
need to move from a simple model to a more compli-
cated one (where the simple model is nested within
the complicated one).

29.2 Chi-squared test for variance
in a normal population

If a sample of size n is taken from a population having a
normal distribution, then there is a result (see distribution
of the sample variance) which allows a test to be made
of whether the variance of the population has a pre-
determined value. For example, a manufacturing process
might have been in stable condition for a long period, al-
lowing a value for the variance to be determined essen-
tially without error. Suppose that a variant of the process
is being tested, giving rise to a small sample of n product
items whose variation is to be tested. The test statistic
T in this instance could be set to be the sum of squares
about the sample mean, divided by the nominal value for
the variance (i.e. the value to be tested as holding). Then
T has a chi-square distribution with n − 1 degrees of free-
dom. For example if the sample size is 21, the acceptance
region for T for a significance level of 5% is the interval
9.59 to 34.17.

29.3 Example chi-squared test for
categorical data

Suppose there is a city of 1 million residents with four
neighborhoods: A, B, C, and D. A random sample of
650 residents of the city is taken and their occupation
is recorded as “blue collar”, “white collar”, or “service”.
The null hypothesis is that each person’s neighborhood
of residence is independent of the person’s occupational
classification. The data are tabulated as:
Let us take the sample living in neighborhood A,
150/650, to estimate what proportion of the whole 1 mil-
lion people live in neighborhood A. Similarly we take
349/650 to estimate what proportion of the 1 million peo-
ple are blue-collar workers. By the assumption of inde-
pendence under the hypothesis we should “expect” the
number of blue-collar workers in neighborhood A to be

150

650
× 349

650
× 650 ≈ 80.54.

Then in that “cell” of the table, we have

(observed − expected)2
expected =

(90− 80.54)2

80.54
.

The sum of these quantities over all of the cells is the test
statistic. Under the null hypothesis, it has approximately a
chi-square distribution whose number of degrees of free-
dom is

(rows of number−1)(columns of number−1) = (3−1)(4−1) = 6.

If the test statistic is improbably large according to that
chi-square distribution, then one rejects the null hypoth-
esis of independence.
A related issue is a test of homogeneity. Suppose that
instead of giving every resident of each of the four neigh-
borhoods an equal chance of inclusion in the sample, we
decide in advance how many residents of each neighbor-
hood to include. Then each resident has the same chance
of being chosen as do all residents of the same neigh-
borhood, but residents of different neighborhoods would
have different probabilities of being chosen if the four
sample sizes are not proportional to the populations of
the four neighborhoods. In such a case, we would be
testing “homogeneity” rather than “independence”. The
question is whether the proportions of blue-collar, white-
collar, and service workers in the four neighborhoods are
the same. However, the test is done in the same way.

29.4 Applications

In cryptanalysis, chi-square test is used to compare
the distribution of plaintext and (possibly) decrypted
ciphertext. The lowest value of the test means that the
decryption was successful with high probability.[2][3] This
method can be generalized for solving modern crypto-
graphic problems.[4]

29.5 See also

• Chi-square test nomogram

• G-test

• Minimum chi-square estimation

• The Wald test can be evaluated against a chi-square
distribution.
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Chapter 30

Goodness of fit

The goodness of fit of a statistical model describes how
well it fits a set of observations. Measures of goodness
of fit typically summarize the discrepancy between ob-
served values and the values expected under the model
in question. Such measures can be used in statistical hy-
pothesis testing, e.g. to test for normality of residuals,
to test whether two samples are drawn from identical
distributions (see Kolmogorov–Smirnov test), or whether
outcome frequencies follow a specified distribution (see
Pearson’s chi-squared test). In the analysis of variance,
one of the components into which the variance is parti-
tioned may be a lack-of-fit sum of squares.

30.1 Fit of distributions

In assessing whether a given distribution is suited to a
data-set, the following tests and their underlying measures
of fit can be used:

• Kolmogorov–Smirnov test;
• Cramér–von Mises criterion;
• Anderson–Darling test;
• Shapiro–Wilk test;
• Chi Square test;
• Akaike information criterion;
• Hosmer–Lemeshow test;

30.2 Regression analysis

In regression analysis, the following topics relate to good-
ness of fit:

• Coefficient of determination (The R
squared measure of goodness of fit);

• Lack-of-fit sum of squares.

30.2.1 Example

One way in which a measure of goodness of fit statistic
can be constructed, in the case where the variance of the

measurement error is known, is to construct a weighted
sum of squared errors:

χ2 =
∑ (O − E)2

σ2

where σ2 is the known variance of the observation, O
is the observed data and E is the theoretical data.[1] This
definition is only useful when one has estimates for the er-
ror on the measurements, but it leads to a situation where
a chi-squared distribution can be used to test goodness
of fit, provided that the errors can be assumed to have a
normal distribution.
The reduced chi-squared statistic is simply the chi-
squared divided by the number of degrees of free-
dom:[1][2][3][4]

χ2
red =

χ2

ν
=

1

ν

∑ (O − E)2

σ2

where ν is the number of degrees of freedom, usually
given by N −n− 1 , where N is the number of observa-
tions, and n is the number of fitted parameters, assuming
that the mean value is an additional fitted parameter. The
advantage of the reduced chi-squared is that it already
normalizes for the number of data points and model com-
plexity. This is also known as the mean square weighted
deviation.
As a rule of thumb (again valid only when the variance
of the measurement error is known a priori rather than
estimated from the data), a χ2

red ≫ 1 indicates a poor
model fit. A χ2

red > 1 indicates that the fit has not fully
captured the data (or that the error variance has been un-
derestimated). In principle, a value of χ2

red = 1 indicates
that the extent of the match between observations and es-
timates is in accord with the error variance. A χ2

red < 1
indicates that the model is 'over-fitting' the data: either
the model is improperly fitting noise, or the error vari-
ance has been overestimated.[5]
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30.3 Categorical data

The following are examples that arise in the context of
categorical data.

30.3.1 Pearson’s chi-squared test

Pearson’s chi-squared test uses a measure of goodness of
fit which is the sum of differences between observed and
expected outcome frequencies (that is, counts of obser-
vations), each squared and divided by the expectation:

χ2 =
n∑
i=1

(Oi − Ei)

Ei

2

where:

Oi = an observed frequency (i.e. count) for bin
i

Ei = an expected (theoretical) frequency for bin
i, asserted by the null hypothesis.

The expected frequency is calculated by:

Ei =

(
F (Yu) − F (Yl)

)
N

where:

F = the cumulative Distribution function for
the distribution being tested.
Yu = the upper limit for class i,
Yl = the lower limit for class i, and
N = the sample size

The resulting value can be compared to the chi-squared
distribution to determine the goodness of fit. In order to
determine the degrees of freedom of the chi-squared dis-
tribution, one takes the total number of observed frequen-
cies and subtracts the number of estimated parameters.
The test statistic follows, approximately, a chi-square dis-
tribution with (k − c) degrees of freedom where k is the
number of non-empty cells and c is the number of esti-
mated parameters (including location and scale parame-
ters and shape parameters) for the distribution.

Example: equal frequencies of men and women

For example, to test the hypothesis that a random sam-
ple of 100 people has been drawn from a population in
which men and women are equal in frequency, the ob-
served number of men and women would be compared

to the theoretical frequencies of 50 men and 50 women.
If there were 44 men in the sample and 56 women, then

χ2 =
(44− 50)2

50
+

(56− 50)2

50
= 1.44

If the null hypothesis is true (i.e., men and women are
chosen with equal probability in the sample), the test
statistic will be drawn from a chi-squared distribution
with one degree of freedom. Though one might ex-
pect two degrees of freedom (one each for the men and
women), we must take into account that the total number
of men and women is constrained (100), and thus there is
only one degree of freedom (2 − 1). Alternatively, if the
male count is known the female count is determined, and
vice versa.
Consultation of the chi-squared distribution for 1 degree
of freedom shows that the probability of observing this
difference (or a more extreme difference than this) if men
and women are equally numerous in the population is ap-
proximately 0.23. This probability is higher than con-
ventional criteria for statistical significance (.001-.05), so
normally we would not reject the null hypothesis that the
number of men in the population is the same as the num-
ber of women (i.e. we would consider our sample within
the range of what we'd expect for a 50/50 male/female
ratio.)

30.3.2 Binomial case

A binomial experiment is a sequence of independent tri-
als in which the trials can result in one of two outcomes,
success or failure. There are n trials each with probability
of success, denoted by p. Provided that npi ≫ 1 for every
i (where i = 1, 2, ..., k), then

χ2 =
∑k
i=1

(Ni−npi)2
npi

=
∑

all cells
(O−E)2

E .

This has approximately a chi-squared distribution with k
− 1 df. The fact that df = k − 1 is a consequence of the
restriction

∑
Ni = n . We know there are k observed

cell counts, however, once any k − 1 are known, the re-
maining one is uniquely determined. Basically, one can
say, there are only k − 1 freely determined cell counts,
thus df = k − 1.

30.4 Other measures of fit

The likelihood ratio test statistic is a measure of the good-
ness of fit of a model, judged by whether an expanded
form of the model provides a substantially improved fit.

30.5 See also
• Deviance (statistics) (related to GLM)
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• Overfitting
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Chapter 31

Likelihood-ratio test

Not to be confused with the use of likelihood ratios in
diagnostic testing.

In statistics, a likelihood ratio test is a statistical test
used to compare the goodness of fit of two models, one of
which (the null model) is a special case of the other (the
alternative model). The test is based on the likelihood
ratio, which expresses how many times more likely the
data are under one model than the other. This likelihood
ratio, or equivalently its logarithm, can then be used to
compute a p-value, or compared to a critical value to de-
cide whether to reject the null model in favour of the al-
ternative model. When the logarithm of the likelihood
ratio is used, the statistic is known as a log-likelihood ra-
tio statistic, and the probability distribution of this test
statistic, assuming that the null model is true, can be ap-
proximated using Wilks’s theorem.
In the case of distinguishing between two models, each of
which has no unknown parameters, use of the likelihood
ratio test can be justified by the Neyman–Pearson lemma,
which demonstrates that such a test has the highest power
among all competitors.[1]

31.1 Use

Each of the two competing models, the null model and the
alternative model, is separately fitted to the data and the
log-likelihood recorded. The test statistic (often denoted
by D) is twice the difference in these log-likelihoods:

D = −2 ln
( model null for likelihood

model alternative for likelihood

)
= −2 ln(model null for likelihood) + 2 ln(model alternative for likelihood)

The model with more parameters will always fit at least as
well (have an equal or greater log-likelihood). Whether it
fits significantly better and should thus be preferred is de-
termined by deriving the probability or p-value of the dif-
ference D. Where the null hypothesis represents a special
case of the alternative hypothesis, the probability distri-
bution of the test statistic is approximately a chi-squared
distribution with degrees of freedom equal to df2 − df1

.[2] Symbols df1 and df2 represent the number of free
parameters of models 1 and 2, the null model and the al-
ternative model, respectively.
Here is an example of use. If the null model has 1
parameter and a log-likelihood of −8024 and the alter-
native model has 3 parameters and a log-likelihood of
−8012, then the probability of this difference is that of
chi-squared value of +2·(8024 − 8012) = 24 with 3 − 1
= 2 degrees of freedom. Certain assumptions[3] must be
met for the statistic to follow a chi-squared distribution,
and often empirical p-values are computed.
The likelihood-ratio test requires nested models, i.e.
models in which the more complex one can be trans-
formed into the simpler model by imposing a set of con-
straints on the parameters. If the models are not nested,
then a generalization of the likelihood-ratio test can usu-
ally be used instead: the relative likelihood.

31.2 Simple-vs-simple hypotheses

Main article: Neyman–Pearson lemma

A statistical model is often a parametrized family of
probability density functions or probability mass func-
tions f(x|θ) . A simple-vs-simple hypothesis test has
completely specified models under both the null and
alternative hypotheses, which for convenience are writ-
ten in terms of fixed values of a notional parameter θ :

H0 : θ = θ0,

H1 : θ = θ1.

Note that under either hypothesis, the distribution of the
data is fully specified; there are no unknown parameters
to estimate. The likelihood ratio test is based on the like-
lihood ratio, which is often denoted by Λ (the capital
Greek letter lambda). The likelihood ratio is defined as
follows:[4][5]

Λ(x) =
L(θ0|x)
L(θ1|x)

=
f(∪i xi|θ0)
f(∪i xi|θ1)
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or

Λ(x) =
L(θ0 | x)

sup{L(θ | x) : θ ∈ {θ0, θ1}}
,

where L(θ|x) is the likelihood function, and sup is the
supremum function. Note that some references may use
the reciprocal as the definition.[6] In the form stated here,
the likelihood ratio is small if the alternative model is bet-
ter than the null model and the likelihood ratio test pro-
vides the decision rule as follows:

If Λ > c , do not reject H0 ;

If Λ < c , reject H0 ;

Reject with probability q if Λ = c.

The values c, q are usually chosen to obtain a speci-
fied significance level α , through the relation q · P (Λ =
c | H0) + P (Λ < c | H0) = α . The Neyman-Pearson
lemma states that this likelihood ratio test is the most
powerful among all level α tests for this problem.[1]

31.3 Definition (likelihood ratio
test for composite hypotheses)

A null hypothesis is often stated by saying the parameter
θ is in a specified subset Θ0 of the parameter space Θ .

H0 : θ ∈ Θ0

H1 : θ ∈ Θ∁
0

The likelihood function isL(θ|x) = f(x|θ) (with f(x|θ)
being the pdf or pmf), which is a function of the param-
eter θ with x held fixed at the value that was actually ob-
served, i.e., the data. The likelihood ratio test statistic
is [7]

Λ(x) =
sup{L(θ | x) : θ ∈ Θ0 }
sup{L(θ | x) : θ ∈ Θ }

.

Here, the sup notation refers to the supremum function.
A likelihood ratio test is any test with critical region
(or rejection region) of the form {x|Λ ≤ c} where c
is any number satisfying 0 ≤ c ≤ 1 . Many common
test statistics such as the Z-test, the F-test, Pearson’s chi-
squared test and the G-test are tests for nested models and
can be phrased as log-likelihood ratios or approximations
thereof.

31.3.1 Interpretation

Being a function of the data x , the likelihood ratio is
therefore a statistic. The likelihood ratio test rejects the
null hypothesis if the value of this statistic is too small.
How small is too small depends on the significance level
of the test, i.e., on what probability of Type I error is con-
sidered tolerable (“Type I” errors consist of the rejection
of a null hypothesis that is true).
The numerator corresponds to the maximum likelihood
of an observed outcome under the null hypothesis. The
denominator corresponds to the maximum likelihood of
an observed outcome varying parameters over the whole
parameter space. The numerator of this ratio is less than
the denominator. The likelihood ratio hence is between
0 and 1. Low values of the likelihood ratio mean that
the observed result was less likely to occur under the null
hypothesis as compared to the alternative. High values of
the statistic mean that the observed outcome was nearly as
likely to occur under the null hypothesis as the alternative,
and the null hypothesis cannot be rejected.

31.3.2 Distribution: Wilks’s theorem

If the distribution of the likelihood ratio corresponding to
a particular null and alternative hypothesis can be explic-
itly determined then it can directly be used to form deci-
sion regions (to accept/reject the null hypothesis). In most
cases, however, the exact distribution of the likelihood ra-
tio corresponding to specific hypotheses is very difficult
to determine. A convenient result, attributed to Samuel
S. Wilks, says that as the sample size n approaches ∞
, the test statistic −2 log(Λ) for a nested model will be
asymptotically χ2 -distributed with degrees of freedom
equal to the difference in dimensionality of Θ and Θ0 .[3]

This means that for a great variety of hypotheses, a prac-
titioner can compute the likelihood ratio Λ for the data
and compare −2 log(Λ) to the χ2 value corresponding to
a desired statistical significance as an approximate statis-
tical test.

31.4 Examples

31.4.1 Coin tossing

An example, in the case of Pearson’s test, we might try
to compare two coins to determine whether they have the
same probability of coming up heads. Our observation
can be put into a contingency table with rows correspond-
ing to the coin and columns corresponding to heads or
tails. The elements of the contingency table will be the
number of times the coin for that row came up heads or
tails. The contents of this table are our observation X .
Here Θ consists of the possible combinations of values
of the parameters p1H , p1T , p2H , and p2T , which are
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the probability that coins 1 and 2 come up heads or tails.
In what follows, i = 1, 2 and j = H,T . The hypothesis
spaceH is constrained by the usual constraints on a prob-
ability distribution, 0 ≤ pij ≤ 1 , and piH + piT = 1 .
The space of the null hypothesisH0 is the subspace where
p1j = p2j . Writing nij for the best values for pij under
the hypothesis H , the maximum likelihood estimate is
given by
nij =

kij
kiH+kiT

.

Similarly, the maximum likelihood estimates of pij under
the null hypothesis H0 are given by
mij =

k1j+k2j
k1H+k2H+k1T+k2T

,

which does not depend on the coin i .
The hypothesis and null hypothesis can be rewritten
slightly so that they satisfy the constraints for the log-
arithm of the likelihood ratio to have the desired nice
distribution. Since the constraint causes the two-
dimensional H to be reduced to the one-dimensional H0

, the asymptotic distribution for the test will be χ2(1) ,
the χ2 distribution with one degree of freedom.
For the general contingency table, we can write the log-
likelihood ratio statistic as

−2 logΛ = 2
∑
i,j

kij log nij
mij

.
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31.6 External links
• Practical application of likelihood ratio test de-

scribed

• R Package: Wald’s Sequential Probability Ratio Test

• Richard Lowry’s Predictive Values and Likelihood
Ratios Online Clinical Calculator
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Chapter 32

Statistical classification

For the unsupervised learning approach, see Cluster
analysis.

In machine learning and statistics, classification is the
problem of identifying to which of a set of categories
(sub-populations) a new observation belongs, on the ba-
sis of a training set of data containing observations (or
instances) whose category membership is known. An ex-
ample would be assigning a given email into “spam” or
“non-spam” classes or assigning a diagnosis to a given pa-
tient as described by observed characteristics of the pa-
tient (gender, blood pressure, presence or absence of cer-
tain symptoms, etc.).
In the terminology of machine learning,[1] classification is
considered an instance of supervised learning, i.e. learn-
ing where a training set of correctly identified observa-
tions is available. The corresponding unsupervised pro-
cedure is known as clustering, and involves grouping data
into categories based on some measure of inherent simi-
larity or distance.
Often, the individual observations are analyzed into a set
of quantifiable properties, known variously explanatory
variables, features, etc. These properties may vari-
ously be categorical (e.g. “A”, “B”, “AB” or “O”, for
blood type), ordinal (e.g. “large”, “medium” or “small”),
integer-valued (e.g. the number of occurrences of a part
word in an email) or real-valued (e.g. a measurement
of blood pressure). Other classifiers work by compar-
ing observations to previous observations by means of a
similarity or distance function.
An algorithm that implements classification, especially in
a concrete implementation, is known as a classifier. The
term “classifier” sometimes also refers to the mathemat-
ical function, implemented by a classification algorithm,
that maps input data to a category.
Terminology across fields is quite varied. In statistics,
where classification is often done with logistic regres-
sion or a similar procedure, the properties of observa-
tions are termed explanatory variables (or independent
variables, regressors, etc.), and the categories to be pre-
dicted are known as outcomes, which are considered to
be possible values of the dependent variable. In ma-
chine learning, the observations are often known as in-

stances, the explanatory variables are termed features
(grouped into a feature vector), and the possible cate-
gories to be predicted are classes. There is also some ar-
gument over whether classification methods that do not
involve a statistical model can be considered “statisti-
cal”. Other fields may use different terminology: e.g.
in community ecology, the term “classification” normally
refers to cluster analysis, i.e. a type of unsupervised
learning, rather than the supervised learning described in
this article.

32.1 Relation to other problems

Classification and clustering are examples of the more
general problem of pattern recognition, which is the as-
signment of some sort of output value to a given in-
put value. Other examples are regression, which assigns
a real-valued output to each input; sequence labeling,
which assigns a class to each member of a sequence of
values (for example, part of speech tagging, which as-
signs a part of speech to each word in an input sentence);
parsing, which assigns a parse tree to an input sentence,
describing the syntactic structure of the sentence; etc.
A common subclass of classification is probabilistic clas-
sification. Algorithms of this nature use statistical in-
ference to find the best class for a given instance. Un-
like other algorithms, which simply output a “best” class,
probabilistic algorithms output a probability of the in-
stance being a member of each of the possible classes.
The best class is normally then selected as the one with
the highest probability. However, such an algorithm has
numerous advantages over non-probabilistic classifiers:

• It can output a confidence value associated with its
choice (in general, a classifier that can do this is
known as a confidence-weighted classifier).

• Correspondingly, it can abstain when its confidence
of choosing any particular output is too low.

• Because of the probabilities which are generated,
probabilistic classifiers can be more effectively in-
corporated into larger machine-learning tasks, in a
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way that partially or completely avoids the problem
of error propagation.

32.2 Frequentist procedures

Early work on statistical classification was undertaken by
Fisher,[2][3] in the context of two-group problems, leading
to Fisher’s linear discriminant function as the rule for as-
signing a group to a new observation.[4] This early work
assumed that data-values within each of the two groups
had a multivariate normal distribution. The extension
of this same context to more than two-groups has also
been considered with a restriction imposed that the clas-
sification rule should be linear.[4][5] Later work for the
multivariate normal distribution allowed the classifier to
be nonlinear:[6] several classification rules can be derived
based on slight different adjustments of the Mahalanobis
distance, with a new observation being assigned to the
group whose centre has the lowest adjusted distance from
the observation.

32.3 Bayesian procedures

Unlike frequentist procedures, Bayesian classification
procedures provide a natural way of taking into ac-
count any available information about the relative sizes of
the sub-populations associated with the different groups
within the overall population.[7] Bayesian procedures tend
to be computationally expensive and, in the days before
Markov chain Monte Carlo computations were devel-
oped, approximations for Bayesian clustering rules were
devised.[8]

Some Bayesian procedures involve the calculation of
group membership probabilities: these can be viewed as
providing a more informative outcome of a data analysis
than a simple attribution of a single group-label to each
new observation.

32.4 Binary and multiclass classifi-
cation

Classification can be thought of as two separate problems
– binary classification and multiclass classification. In
binary classification, a better understood task, only two
classes are involved, whereas multiclass classification in-
volves assigning an object to one of several classes.[9]

Since many classification methods have been developed
specifically for binary classification, multiclass classifica-
tion often requires the combined use of multiple binary
classifiers.

32.5 Feature vectors

Most algorithms describe an individual instance whose
category is to be predicted using a feature vector of indi-
vidual, measurable properties of the instance. Each prop-
erty is termed a feature, also known in statistics as an
explanatory variable (or independent variable, although in
general different features may or may not be statistically
independent). Features may variously be binary (“male”
or “female”); categorical (e.g. “A”, “B”, “AB” or “O”, for
blood type); ordinal (e.g. “large”, “medium” or “small”);
integer-valued (e.g. the number of occurrences of a par-
ticular word in an email); or real-valued (e.g. a measure-
ment of blood pressure). If the instance is an image, the
feature values might correspond to the pixels of an image;
if the instance is a piece of text, the feature values might
be occurrence frequencies of different words. Some al-
gorithms work only in terms of discrete data and require
that real-valued or integer-valued data be discretized into
groups (e.g. less than 5, between 5 and 10, or greater than
10).
The vector space associated with these vectors is often
called the feature space. In order to reduce the dimen-
sionality of the feature space, a number of dimensionality
reduction techniques can be employed.

32.6 Linear classifiers

A large number of algorithms for classification can be
phrased in terms of a linear function that assigns a score
to each possible category k by combining the feature vec-
tor of an instance with a vector of weights, using a dot
product. The predicted category is the one with the high-
est score. This type of score function is known as a linear
predictor function and has the following general form:

score(Xi, k) = βk · Xi,

whereXi is the feature vector for instance i, βk is the vec-
tor of weights corresponding to category k, and score(Xi,
k) is the score associated with assigning instance i to cat-
egory k. In discrete choice theory, where instances rep-
resent people and categories represent choices, the score
is considered the utility associated with person i choosing
category k.
Algorithms with this basic setup are known as linear clas-
sifiers. What distinguishes them is the procedure for de-
termining (training) the optimal weights/coefficients and
the way that the score is interpreted.
Examples of such algorithms are

• Logistic regression and Multinomial logistic regres-
sion

• Probit regression

https://en.wikipedia.org/wiki/Fisher%2527s_linear_discriminant
https://en.wikipedia.org/wiki/Multivariate_normal_distribution
https://en.wikipedia.org/wiki/Linear
https://en.wikipedia.org/wiki/Nonlinear
https://en.wikipedia.org/wiki/Mahalanobis_distance
https://en.wikipedia.org/wiki/Mahalanobis_distance
https://en.wikipedia.org/wiki/Markov_chain_Monte_Carlo
https://en.wikipedia.org/wiki/Class_membership_probabilities
https://en.wikipedia.org/wiki/Binary_classification
https://en.wikipedia.org/wiki/Multiclass_classification
https://en.wikipedia.org/wiki/Feature_vector
https://en.wikipedia.org/wiki/Feature_(pattern_recognition)
https://en.wikipedia.org/wiki/Explanatory_variable
https://en.wikipedia.org/wiki/Independent_variable
https://en.wikipedia.org/wiki/Statistically_independent
https://en.wikipedia.org/wiki/Statistically_independent
https://en.wikipedia.org/wiki/Binary_data
https://en.wikipedia.org/wiki/Categorical_data
https://en.wikipedia.org/wiki/Blood_type
https://en.wikipedia.org/wiki/Ordinal_data
https://en.wikipedia.org/wiki/Integer
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Vector_space
https://en.wikipedia.org/wiki/Feature_space
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Linear_function
https://en.wikipedia.org/wiki/Linear_combination
https://en.wikipedia.org/wiki/Dot_product
https://en.wikipedia.org/wiki/Dot_product
https://en.wikipedia.org/wiki/Linear_predictor_function
https://en.wikipedia.org/wiki/Linear_predictor_function
https://en.wikipedia.org/wiki/Discrete_choice
https://en.wikipedia.org/wiki/Utility
https://en.wikipedia.org/wiki/Linear_classifier
https://en.wikipedia.org/wiki/Linear_classifier
https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/wiki/Multinomial_logistic_regression
https://en.wikipedia.org/wiki/Multinomial_logistic_regression
https://en.wikipedia.org/wiki/Probit_regression


222 CHAPTER 32. STATISTICAL CLASSIFICATION

• The perceptron algorithm

• Support vector machines

• Linear discriminant analysis.

32.7 Algorithms

Examples of classification algorithms include:

• Linear classifiers

• Fisher’s linear discriminant
• Logistic regression
• Naive Bayes classifier
• Perceptron

• Support vector machines

• Least squares support vector machines

• Quadratic classifiers

• Kernel estimation

• k-nearest neighbor

• Boosting (meta-algorithm)

• Decision trees

• Random forests

• Neural networks

• Learning vector quantization

32.8 Evaluation

Classifier performance depends greatly on the character-
istics of the data to be classified. There is no single classi-
fier that works best on all given problems (a phenomenon
that may be explained by the no-free-lunch theorem).
Various empirical tests have been performed to compare
classifier performance and to find the characteristics of
data that determine classifier performance. Determining
a suitable classifier for a given problem is however still
more an art than a science.
The measures precision and recall are popular metrics
used to evaluate the quality of a classification system.
More recently, receiver operating characteristic (ROC)
curves have been used to evaluate the tradeoff between
true- and false-positive rates of classification algorithms.
As a performance metric, the uncertainty coefficient has
the advantage over simple accuracy in that it is not af-
fected by the relative sizes of the different classes. [10]

Further, it will not penalize an algorithm for simply rear-
ranging the classes.

32.9 Application domains

See also: Cluster analysis § Applications

Classification has many applications. In some of these it
is employed as a data mining procedure, while in others
more detailed statistical modeling is undertaken.

• Computer vision

• Medical imaging and medical image analysis
• Optical character recognition
• Video tracking

• Drug discovery and development

• Toxicogenomics
• Quantitative structure-activity relationship

• Geostatistics

• Speech recognition

• Handwriting recognition

• Biometric identification

• Biological classification

• Statistical natural language processing

• Document classification

• Internet search engines

• Credit scoring

• Pattern recognition

• Micro-array classification

32.10 See also
• Class membership probabilities

• Classification rule

• Binary classification

• Compound term processing

• Data mining

• Fuzzy logic

• Data warehouse

• Information retrieval

• Artificial intelligence

• Machine learning

• Recommender system
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32.12 External links
• Classifier showdown A practical comparison of clas-

sification algorithms.

• Statistical Pattern Recognition Toolbox for Matlab.

• TOOLDIAG Pattern recognition toolbox.

• Statistical classification software based on adaptive
kernel density estimation.

• PAL Classification Suite written in Java.

• kNN and Potential energy (Applet), University of
Leicester

• scikit-learn a widely used package in python

• Weka A java based package with an extensive vari-
ety of algorithms.
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Binary classification

Binary or binomial classification is the task of
classifying the elements of a given set into two groups
on the basis of a classification rule. Some typical binary
classification tasks are:

• medical testing to determine if a patient has cer-
tain disease or not – the classification property is the
presence of the disease;

• A “pass or fail” test method or quality control in fac-
tories; i.e. deciding if a specification has or has not
been met: a Go/no go classification.

• An item may have a qualitative property; it does or
does not have a specified characteristic

• information retrieval, namely deciding whether a
page or an article should be in the result set of a
search or not – the classification property is the rel-
evance of the article, or the usefulness to the user.

An important point is that in many practical binary clas-
sification problems, the two groups are not symmetric –
rather than overall accuracy, the relative proportion of
different types of errors is of interest. For example, in
medical testing, a false positive (detecting a disease when
it is not present) is considered differently from a false neg-
ative (not detecting a disease when it is present).
Statistical classification in general is one of the prob-
lems studied in computer science, in order to automat-
ically learn classification systems; some methods suitable
for learning binary classifiers include the decision trees,
Bayesian networks, support vector machines, neural net-
works, probit regression, and logistic regression.
Sometimes, classification tasks are trivial. Given 100
balls, some of them red and some blue, a human with
normal color vision can easily separate them into red ones
and blue ones. However, some tasks, like those in prac-
tical medicine, and those interesting from the computer
science point of view, are far from trivial, and may pro-
duce faulty results if executed imprecisely.

33.1 Evaluation of binary classi-
fiers

Main article: Evaluation of binary classifiers
There are many metrics that can be used to measure the

FN(II) TN

FP(I)
TP

T
P
R

FPR

PPV

NPV

From the contingency table you can derive four basic ratios

performance of a classifier or predictor; different fields
have different preferences for specific metrics due to dif-
ferent goals. For example, in medicine sensitivity and
specificity are often used, while in information retrieval
precision and recall are preferred. An important dis-
tinction is between metrics that are independent on the
prevalence (how often each category occurs in the popu-
lation), and metrics that depend on the prevalence – both
types are useful, but they have very different properties.
Given a classification of a specific data set, there are four
basic data: the number of true positives (TP), true nega-
tives (TN), false positives (FP), and false negatives (FN).
These can be arranged into a 2×2 contingency table, with
columns corresponding to actual value – condition pos-
itive (CP) or condition negative (CN) – and rows cor-
responding to classification value – test outcome posi-
tive or test outcome negative. There are eight basic ra-
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tios that one can compute from this table, which come
in four complementary pairs (each pair summing to 1).
These are obtained by dividing each of the four numbers
by the sum of its row or column, yielding eight numbers,
which can be referred to generically in the form “true pos-
itive row ratio” or “false negative column ratio”, though
there are conventional terms. There are thus two pairs
of column ratios and two pairs of row ratios, and one can
summarize these with four numbers by choosing one ratio
from each pair – the other four numbers are the comple-
ments.
The column ratios are True Positive Rate (TPR, aka
Sensitivity or recall), with complement the False Neg-
ative Rate (FNR); and True Negative Rate (TNR, aka
Specificity, SPC), with complement False Positive Rate
(FPR). These are the proportion of the population with
the condition (resp., without the condition) for which the
test is correct (or, complementarily, for which the test is
incorrect); these are independent of prevalence.
The row ratios are Positive Predictive Value (PPV, aka
precision), with complement the False Discovery Rate
(FDR); and Negative Predictive Value (NPV), with com-
plement the False Omission Rate (FOR). These are the
proportion of the population with a given test result for
which the test is correct (or, complementarily, for which
the test is incorrect); these depend on prevalence.
In diagnostic testing, the main ratios used are the true col-
umn ratios – True Positive Rate and True Negative Rate –
where they are known as sensitivity and specificity. In in-
formational retrieval, the main ratios are the true positive
ratios (row and column) – Positive Predictive Value and
True Positive Rate – where they are known as precision
and recall.
One can take ratios of a complementary pair of ratios,
yielding four likelihood ratios (two column ratio of ratios,
two row ratio of ratios). This is primarily done for the col-
umn (condition) ratios, yielding likelihood ratios in diag-
nostic testing. Taking the ratio of one of these groups of
ratios yields a final ratio, the diagnostic odds ratio (DOR).
This can also be defined directly as (TP×TN)/(FP×FN) =
(TP/FN)/(FP/TN); this has a useful interpretation – as an
odds ratio – and is prevalence-independent.
There are a number of other metrics, most simply the
accuracy or Fraction Correct (FC), which measures the
fraction of all instances that are correctly categorized;
the complement is the Fraction Incorrect (FiC). The F-
score combines precision and recall into one number via
a choice of weighing, most simply equal weighing, as
the balanced F-score (F1 score). Some metrics come
from regression coefficients: the markedness and the
informedness, and their geometric mean, the Matthews
correlation coefficient. Other metrics include Youden’s J
statistic, the uncertainty coefficient, the Phi coefficient,
and Cohen’s kappa.

33.2 Converting continuous values
to binary

Tests whose results are of continuous values, such as most
blood values, can artificially be made binary by defining a
cutoff value, with test results being designated as positive
or negative depending on whether the resultant value is
higher or lower than the cutoff.
However, such conversion causes a loss of information, as
the resultant binary classification does not tell how much
above or below the cutoff a value is. As a result, when
converting a continuous value that is close to the cutoff to
a binary one, the resultant positive or negative predictive
value is generally higher than the predictive value given
directly from the continuous value. In such cases, the
designation of the test of being either positive or negative
gives the appearance of an inappropriately high certainty,
while the value is in fact in an interval of uncertainty. For
example, with the urine concentration of hCG as a con-
tinuous value, a urine pregnancy test that measured 52
mIU/ml of hCG may show as “positive” with 50 mIU/ml
as cutoff, but is in fact in an interval of uncertainty, which
may be apparent only by knowing the original continuous
value. On the other hand, a test result very far from the
cutoff generally has a resultant positive or negative pre-
dictive value that is lower than the predictive value given
from the continuous value. For example, a urine hCG
value of 200,000 mIU/ml confers a very high probability
of pregnancy, but conversion to binary values results in
that it shows just as “positive” as the one of 52 mIU/ml.

33.3 See also
• Examples of Bayesian inference

• Classification rule

• Detection theory

• Kernel methods

• Matthews correlation coefficient

• Multiclass classification

• Multi-label classification

• One-class classification

• Prosecutor’s fallacy

• Receiver operating characteristic

• Thresholding (image processing)

• Type I and type II errors

• Uncertainty coefficient, aka Proficiency

• Qualitative property
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Chapter 34

Maximum likelihood

This article is about the statistical techniques. For
computer data storage, see Partial response maximum
likelihood.

In statistics, maximum-likelihood estimation (MLE)
is a method of estimating the parameters of a statistical
model. When applied to a data set and given a
statistical model, maximum-likelihood estimation pro-
vides estimates for the model’s parameters.
The method of maximum likelihood corresponds to many
well-known estimation methods in statistics. For exam-
ple, one may be interested in the heights of adult fe-
male penguins, but be unable to measure the height of
every single penguin in a population due to cost or time
constraints. Assuming that the heights are normally dis-
tributed with some unknown mean and variance, the
mean and variance can be estimated with MLE while only
knowing the heights of some sample of the overall pop-
ulation. MLE would accomplish this by taking the mean
and variance as parameters and finding particular para-
metric values that make the observed results the most
probable given the model.
In general, for a fixed set of data and underlying sta-
tistical model, the method of maximum likelihood se-
lects the set of values of the model parameters that maxi-
mizes the likelihood function. Intuitively, this maximizes
the “agreement” of the selected model with the observed
data, and for discrete random variables it indeed max-
imizes the probability of the observed data under the
resulting distribution. Maximum-likelihood estimation
gives a unified approach to estimation, which is well-
defined in the case of the normal distribution and many
other problems. However, in some complicated prob-
lems, difficulties do occur: in such problems, maximum-
likelihood estimators are unsuitable or do not exist.

34.1 Principles

Suppose there is a sample x1, x2, …, xn of n independent
and identically distributed observations, coming from a
distribution with an unknown probability density func-
tion f0(·). It is however surmised that the function f0

belongs to a certain family of distributions { f(·| θ), θ ∈
Θ } (where θ is a vector of parameters for this family),
called the parametric model, so that f0 = f(·| θ0). The
value θ0 is unknown and is referred to as the true value
of the parameter vector. It is desirable to find an esti-
mator θ̂ which would be as close to the true value θ0 as
possible. Either or both the observed variables xi and the
parameter θ can be vectors.
To use the method of maximum likelihood, one first spec-
ifies the joint density function for all observations. For an
independent and identically distributed sample, this joint
density function is

f(x1, x2, . . . , xn | θ) = f(x1|θ)×f(x2|θ)×· · ·×f(xn|θ).

Now we look at this function from a different perspective
by considering the observed values x1, x2, …, xn to be
fixed “parameters” of this function, whereas θ will be the
function’s variable and allowed to vary freely; this func-
tion will be called the likelihood:

L(θ ; x1, . . . , xn) = f(x1, x2, . . . , xn | θ) =
n∏
i=1

f(xi | θ).

Note ; denotes a separation between the two input argu-
ments: θ and the vector-valued input x1, . . . , xn .
In practice it is often more convenient to work with
the logarithm of the likelihood function, called the log-
likelihood:

lnL(θ ; x1, . . . , xn) =
n∑
i=1

ln f(xi | θ),

or the average log-likelihood:

ℓ̂ =
1

n
lnL.

The hat over ℓ indicates that it is akin to some estimator.
Indeed, ℓ̂ estimates the expected log-likelihood of a single
observation in the model.
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The method of maximum likelihood estimates θ0 by find-
ing a value of θ that maximizes ℓ̂(θ;x) . This method
of estimation defines a maximum-likelihood estimator
(MLE) of θ0 …

{θ̂mle} ⊆ {arg max
θ∈Θ

ℓ̂(θ ; x1, . . . , xn)}.

… if any maximum exists. An MLE estimate is the same
regardless of whether we maximize the likelihood or the
log-likelihood function, since log is a strictly monotoni-
cally increasing function.
For many models, a maximum likelihood estimator can
be found as an explicit function of the observed data x1,
…, xn. For many other models, however, no closed-
form solution to the maximization problem is known or
available, and an MLE has to be found numerically us-
ing optimization methods. For some problems, there may
be multiple estimates that maximize the likelihood. For
other problems, no maximum likelihood estimate exists
(meaning that the log-likelihood function increases with-
out attaining the supremum value).
In the exposition above, it is assumed that the data are
independent and identically distributed. The method can
be applied however to a broader setting, as long as it is
possible to write the joint density function f(x1, …, xn |
θ), and its parameter θ has a finite dimension which does
not depend on the sample size n. In a simpler extension,
an allowance can be made for data heterogeneity, so that
the joint density is equal to f1(x1|θ) · f2(x2|θ) · ··· · fn(xn
| θ). Put another way, we are now assuming that each
observation xᵢ comes from a random variable that has its
own distribution function f ᵢ. In the more complicated
case of time series models, the independence assumption
may have to be dropped as well.
A maximum likelihood estimator coincides with the most
probable Bayesian estimator given a uniform prior distri-
bution on the parameters. Indeed, the maximum a poste-
riori estimate is the parameter θ that maximizes the prob-
ability of θ given the data, given by Bayes’ theorem:

P (θ | x1, x2, . . . , xn) =
f(x1, x2, . . . , xn | θ)P (θ)

P (x1, x2, . . . , xn)

where P (θ) is the prior distribution for the parameter
θ and where P (x1, x2, . . . , xn) is the probability of the
data averaged over all parameters. Since the denominator
is independent of θ, the Bayesian estimator is obtained by
maximizing f(x1, x2, . . . , xn | θ)P (θ)with respect to θ.
If we further assume that the prior P (θ) is a uniform dis-
tribution, the Bayesian estimator is obtained by maximiz-
ing the likelihood function f(x1, x2, . . . , xn|θ) . Thus
the Bayesian estimator coincides with the maximum-
likelihood estimator for a uniform prior distributionP (θ)
.

34.2 Properties

A maximum-likelihood estimator is an extremum estima-
tor obtained by maximizing, as a function of θ, the objec-
tive function (c.f., the loss function)

ℓ̂(θ | x) = 1

n

n∑
i=1

ln f(xi | θ),

this being the sample analogue of the expected log-
likelihood ℓ(θ) = E[ ln f(xi | θ) ] , where this expec-
tation is taken with respect to the true density f(· | θ0)
.
Maximum-likelihood estimators have no optimum prop-
erties for finite samples, in the sense that (when evaluated
on finite samples) other estimators may have greater con-
centration around the true parameter-value.[1] However,
like other estimation methods, maximum-likelihood es-
timation possesses a number of attractive limiting prop-
erties: As the sample size increases to infinity, sequences
of maximum-likelihood estimators have these properties:

• Consistency: the sequence of MLEs converges in
probability to the value being estimated.

• Asymptotic normality: as the sample size increases,
the distribution of the MLE tends to the Gaus-
sian distribution with mean θ and covariance matrix
equal to the inverse of the Fisher information ma-
trix.

• Efficiency, i.e., it achieves the Cramér–Rao lower
bound when the sample size tends to infinity. This
means that no consistent estimator has lower asymp-
totic mean squared error than the MLE (or other es-
timators attaining this bound).

• Second-order efficiency after correction for bias.

34.2.1 Consistency

Under the conditions outlined below, the maximum like-
lihood estimator is consistent. The consistency means
that having a sufficiently large number of observations n,
it is possible to find the value of θ0 with arbitrary preci-
sion. In mathematical terms this means that as n goes to
infinity the estimator θ̂ converges in probability to its true
value:

θ̂mle
p−→ θ0.

Under slightly stronger conditions, the estimator con-
verges almost surely (or strongly) to:

θ̂mle
a.s.−→ θ0.
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To establish consistency, the following conditions are
sufficient:[2]

1. Identification of the model:

θ ̸= θ0 ⇔ f(· | θ) ̸= f(· | θ0).

In other words, different parameter values θ corre-
spond to different distributions within the model.
If this condition did not hold, there would be some
value θ1 such that θ0 and θ1 generate an identical
distribution of the observable data. Then we
wouldn't be able to distinguish between these two
parameters even with an infinite amount of data —
these parameters would have been observationally
equivalent.

The identification condition is absolutely necessary
for the ML estimator to be consistent. When this
condition holds, the limiting likelihood function
ℓ (θ|·) has unique global maximum at θ0.

2. Compactness: the parameter space Θ of the model
is compact. The identification condition establishes

θ0

that the log-likelihood has a unique global maxi-
mum. Compactness implies that the likelihood can-
not approach the maximum value arbitrarily close
at some other point (as demonstrated for example in
the picture on the right).
Compactness is only a sufficient condition and not a
necessary condition. Compactness can be replaced
by some other conditions, such as:

• both concavity of the log-likelihood function
and compactness of some (nonempty) upper
level sets of the log-likelihood function, or

• existence of a compact neighborhood N of θ0
such that outside of N the log-likelihood func-
tion is less than the maximum by at least some
ε > 0.

3. Continuity: the function ln f(x|θ) is continuous in
θ for almost all values of x:

Pr
[

ln f(x | θ) ∈ C0(Θ)
]
= 1.

The continuity here can be replaced with a slightly
weaker condition of upper semi-continuity.

4. Dominance: there exists D(x) integrable with re-
spect to the distribution f(x|θ0) such that∣∣ ln f(x | θ)

∣∣ < D(x) all for θ ∈ Θ.

By the uniform law of large numbers, the domi-
nance condition together with continuity establish
the uniform convergence in probability of the log-
likelihood:

sup
θ∈Θ

∣∣ℓ̂(θ | x)− ℓ(θ)
∣∣ p−→ 0.

The dominance condition can be employed in the case
of i.i.d. observations. In the non-i.i.d. case the uniform
convergence in probability can be checked by showing
that the sequence ℓ̂(θ|x) is stochastically equicontinuous.
If one wants to demonstrate that the ML estimator θ̂ con-
verges to θ0 almost surely, then a stronger condition of
uniform convergence almost surely has to be imposed:

sup
θ∈Θ

∥∥ ℓ̂(x | θ)− ℓ(θ)
∥∥ a.s.−→ 0.

34.2.2 Asymptotic normality

Maximum-likelihood estimators can lack asymptotic
normality and can be inconsistent if there is a failure of
one (or more) of the below regularity conditions:
Estimate on boundary. Sometimes the maximum like-
lihood estimate lies on the boundary of the set of possible
parameters, or (if the boundary is not, strictly speaking,
allowed) the likelihood gets larger and larger as the pa-
rameter approaches the boundary. Standard asymptotic
theory needs the assumption that the true parameter value
lies away from the boundary. If we have enough data,
the maximum likelihood estimate will keep away from
the boundary too. But with smaller samples, the estimate
can lie on the boundary. In such cases, the asymptotic
theory clearly does not give a practically useful approx-
imation. Examples here would be variance-component
models, where each component of variance, σ2, must sat-
isfy the constraint σ2 ≥0.
Data boundary parameter-dependent. For the theory
to apply in a simple way, the set of data values which
has positive probability (or positive probability density)
should not depend on the unknown parameter. A sim-
ple example where such parameter-dependence does hold
is the case of estimating θ from a set of independent
identically distributed when the common distribution is
uniform on the range (0,θ). For estimation purposes the
relevant range of θ is such that θ cannot be less than
the largest observation. Because the interval (0,θ) is not
compact, there exists no maximum for the likelihood
function: For any estimate of theta, there exists a greater
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estimate that also has greater likelihood. In contrast, the
interval [0,θ] includes the end-point θ and is compact,
in which case the maximum-likelihood estimator exists.
However, in this case, the maximum-likelihood estima-
tor is biased. Asymptotically, this maximum-likelihood
estimator is not normally distributed.[3]

Nuisance parameters. For maximum likelihood esti-
mations, a model may have a number of nuisance param-
eters. For the asymptotic behaviour outlined to hold, the
number of nuisance parameters should not increase with
the number of observations (the sample size). A well-
known example of this case is where observations occur
as pairs, where the observations in each pair have a dif-
ferent (unknown) mean but otherwise the observations
are independent and normally distributed with a common
variance. Here for 2N observations, there are N+1 pa-
rameters. It is well known that the maximum likelihood
estimate for the variance does not converge to the true
value of the variance.
Increasing information. For the asymptotics to hold
in cases where the assumption of independent identically
distributed observations does not hold, a basic require-
ment is that the amount of information in the data in-
creases indefinitely as the sample size increases. Such a
requirement may not be met if either there is too much
dependence in the data (for example, if new observations
are essentially identical to existing observations), or if
new independent observations are subject to an increas-
ing observation error.
Some regularity conditions which ensure this behavior
are:

1. The first and second derivatives of the log-likelihood
function must be defined.

2. The Fisher information matrix must not be zero, and
must be continuous as a function of the parameter.

3. The maximum likelihood estimator is consistent.

Suppose that conditions for consistency of maximum
likelihood estimator are satisfied, and[4]

1. θ0 ∈ interior(Θ);

2. f(x | θ) > 0 and is twice continuously differentiable
in θ in some neighborhood N of θ0;

3. ∫ supθ∈N ||∇θf(x | θ)||dx < ∞, and ∫
supθ∈N ||∇θθf(x|θ)||dx < ∞;

4. I = E[∇θlnf(x | θ0) ∇θlnf(x|θ0)′] exists and is non-
singular;

5. E[ supθ∈N ||∇θθlnf(x | θ)||] < ∞.

Then the maximum likelihood estimator has asymptoti-
cally normal distribution:

√
n
(
θ̂mle − θ0

) d−→N (0, I−1).

Proof, skipping the technicalities:
Since the log-likelihood function is differentiable, and θ0
lies in the interior of the parameter set, in the maximum
the first-order condition will be satisfied:

∇θ ℓ̂(θ̂ | x) =
1

n

n∑
i=1

∇θ ln f(xi | θ̂) = 0.

When the log-likelihood is twice differentiable, this ex-
pression can be expanded into a Taylor series around the
point θ = θ0:

0 =
1

n

n∑
i=1

∇θ ln f(xi | θ0)+
[
1

n

n∑
i=1

∇θθ ln f(xi | θ̃)
]
(θ̂−θ0),

where θ̃ is some point intermediate between θ0 and θ̂ .
From this expression we can derive that

√
n(θ̂−θ0) =

[
− 1

n

n∑
i=1

∇θθ ln f(xi | θ̃)
]−1

1√
n

n∑
i=1

∇θ ln f(xi | θ0)

Here the expression in square brackets converges in prob-
ability toH = E[−∇θθln f(x | θ0)] by the law of large num-
bers. The continuous mapping theorem ensures that the
inverse of this expression also converges in probability, to
H−1. The second sum, by the central limit theorem, con-
verges in distribution to a multivariate normal with mean
zero and variance matrix equal to the Fisher information
I. Thus, applying Slutsky’s theorem to the whole expres-
sion, we obtain that

√
n(θ̂ − θ0)

d−→ N
(
0, H−1IH−1

)
.

Finally, the information equality guarantees that when the
model is correctly specified, matrix H will be equal to
the Fisher information I, so that the variance expression
simplifies to just I−1.

34.2.3 Functional invariance

The maximum likelihood estimator selects the parame-
ter value which gives the observed data the largest possi-
ble probability (or probability density, in the continuous
case). If the parameter consists of a number of compo-
nents, then we define their separate maximum likelihood
estimators, as the corresponding component of the MLE
of the complete parameter. Consistent with this, if θ̂ is
the MLE for θ, and if g(θ) is any transformation of θ,
then the MLE for α = g(θ) is by definition
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α̂ = g( θ̂ ).

It maximizes the so-called profile likelihood:

L̄(α) = sup
θ:α=g(θ)

L(θ).

The MLE is also invariant with respect to certain trans-
formations of the data. If Y = g(X) where g is one to one
and does not depend on the parameters to be estimated,
then the density functions satisfy

fY (y) = fX(x)/|g′(x)|

and hence the likelihood functions for X and Y differ only
by a factor that does not depend on the model parameters.
For example, the MLE parameters of the log-normal dis-
tribution are the same as those of the normal distribution
fitted to the logarithm of the data.

34.2.4 Higher-order properties

The standard asymptotics tells that the maximum-
likelihood estimator is √n-consistent and asymptotically
efficient, meaning that it reaches the Cramér–Rao bound:

√
n(θ̂mle − θ0)

d−→ N (0, I−1),

where I is the Fisher information matrix:

Ijk = EX
[
−∂

2 ln fθ0(Xt)

∂θj ∂θk

]
.

In particular, it means that the bias of the maximum-
likelihood estimator is equal to zero up to the order n−1/2.
However when we consider the higher-order terms in the
expansion of the distribution of this estimator, it turns
out that θ⛻⛺ₑ has bias of order n−1. This bias is equal to
(componentwise)[5]

bs ≡ E[(θ̂mle − θ0)s] =
1

n
· IsiIjk

(
1
2Kijk + Jj,ik

)
where Einstein’s summation convention over the repeat-
ing indices has been adopted; I jk denotes the j,k-th com-
ponent of the inverse Fisher information matrix I−1, and

1
2Kijk+Jj,ik = E

[
1

2

∂3 ln fθ0(xt)
∂θi ∂θj ∂θk

+
∂ ln fθ0(xt)

∂θj

∂2 ln fθ0(xt)
∂θi ∂θk

]
.

Using these formulas it is possible to estimate the second-
order bias of the maximum likelihood estimator, and cor-
rect for that bias by subtracting it:

θ̂∗mle = θ̂mle − b̂.

This estimator is unbiased up to the terms of order n−1,
and is called the bias-corrected maximum likelihood
estimator.
This bias-corrected estimator is second-order efficient (at
least within the curved exponential family), meaning that
it has minimal mean squared error among all second-
order bias-corrected estimators, up to the terms of the
order n−2. It is possible to continue this process, that is
to derive the third-order bias-correction term, and so on.
However as was shown by Kano (1996), the maximum-
likelihood estimator is not third-order efficient.

34.3 Examples

34.3.1 Discrete uniform distribution

Main article: German tank problem

Consider a case where n tickets numbered from 1 to n
are placed in a box and one is selected at random (see
uniform distribution); thus, the sample size is 1. If n is
unknown, then the maximum-likelihood estimator n̂ of
n is the number m on the drawn ticket. (The likelihood
is 0 for n < m, 1/n for n ≥ m, and this is greatest when
n = m. Note that the maximum likelihood estimate of
n occurs at the lower extreme of possible values {m, m
+ 1, ...}, rather than somewhere in the “middle” of the
range of possible values, which would result in less bias.)
The expected value of the number m on the drawn ticket,
and therefore the expected value of n̂ , is (n + 1)/2. As a
result, with a sample size of 1, the maximum likelihood
estimator for n will systematically underestimate n by (n
− 1)/2.

34.3.2 Discrete distribution, finite param-
eter space

Suppose one wishes to determine just how biased an
unfair coin is. Call the probability of tossing a HEAD
p. The goal then becomes to determine p.
Suppose the coin is tossed 80 times: i.e., the sample
might be something like x1 = H, x2 = T, …, x80 = T,
and the count of the number of HEADS “H” is observed.
The probability of tossing TAILS is 1 − p (so here p is
θ above). Suppose the outcome is 49 HEADS and 31
TAILS, and suppose the coin was taken from a box con-
taining three coins: one which gives HEADS with prob-
ability p = 1/3, one which gives HEADS with probability
p = 1/2 and another which gives HEADS with probabil-
ity p = 2/3. The coins have lost their labels, so which
one it was is unknown. Using maximum likelihood
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estimation the coin that has the largest likelihood can
be found, given the data that were observed. By using
the probability mass function of the binomial distribution
with sample size equal to 80, number successes equal to
49 but different values of p (the “probability of success”),
the likelihood function (defined below) takes one of three
values:

Pr(H = 49 | p = 1/3) =

(
80

49

)
(1/3)49(1− 1/3)31 ≈ 0.000,

Pr(H = 49 | p = 1/2) =

(
80

49

)
(1/2)49(1− 1/2)31 ≈ 0.012,

Pr(H = 49 | p = 2/3) =

(
80

49

)
(2/3)49(1− 2/3)31 ≈ 0.054.

The likelihood is maximized when p = 2/3, and so this is
the maximum likelihood estimate for p.

34.3.3 Discrete distribution, continuous
parameter space

Now suppose that there was only one coin but its p could
have been any value 0 ≤ p ≤ 1. The likelihood function
to be maximised is

L(p) = fD(H = 49 | p) =
(
80

49

)
p49(1− p)31,

and the maximisation is over all possible values 0 ≤ p ≤
1.
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One way to maximize this function is by differentiating
with respect to p and setting to zero:

0 =
∂

∂p

((
80

49

)
p49(1− p)31

)
∝ 49p48(1− p)31 − 31p49(1− p)30

= p48(1− p)30 [49(1− p)− 31p]

= p48(1− p)30 [49− 80p]

which has solutions p = 0, p = 1, and p = 49/80. The solu-
tion which maximizes the likelihood is clearly p = 49/80
(since p = 0 and p = 1 result in a likelihood of zero). Thus
the maximum likelihood estimator for p is 49/80.
This result is easily generalized by substituting a letter
such as t in the place of 49 to represent the observed
number of 'successes’ of our Bernoulli trials, and a let-
ter such as n in the place of 80 to represent the number
of Bernoulli trials. Exactly the same calculation yields the
maximum likelihood estimator t / n for any sequence of n
Bernoulli trials resulting in t 'successes’.

34.3.4 Continuous distribution, continu-
ous parameter space

For the normal distribution N (µ, σ2) which has
probability density function

f(x | µ, σ2) =
1√
2π σ

exp
(
− (x− µ)2

2σ2

)
,

the corresponding probability density function for a sam-
ple of n independent identically distributed normal ran-
dom variables (the likelihood) is

f(x1, . . . , xn | µ, σ2) =

n∏
i=1

f(xi | µ, σ2) =

(
1

2πσ2

)n/2
exp

(
−
∑n
i=1(xi − µ)2

2σ2

)
,

or more conveniently:

f(x1, . . . , xn | µ, σ2) =

(
1

2πσ2

)n/2
exp

(
−
∑n
i=1(xi − x̄)2 + n(x̄− µ)2

2σ2

)
,

where x̄ is the sample mean.
This family of distributions has two parameters: θ =
(μ, σ), so we maximize the likelihood, L(µ, σ) =
f(x1, . . . , xn | µ, σ) , over both parameters simultane-
ously, or if possible, individually.
Since the logarithm is a continuous strictly increasing
function over the range of the likelihood, the values which
maximize the likelihood will also maximize its logarithm.
This log likelihood can be written as follows:
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log(L(µ, σ)) = (−n/2) log(2πσ2)− 1

2σ2

n∑
i=1

(xi−µ)2

(Note: the log-likelihood is closely related to information
entropy and Fisher information.)
We now compute the derivatives of this log likelihood as
follows.

0 =
∂

∂µ
log(L(µ, σ)) = 0− −2n(x̄− µ)

2σ2
.

This is solved by

µ̂ = x̄ =

n∑
i=1

xi
n
.

This is indeed the maximum of the function since it is
the only turning point in μ and the second derivative is
strictly less than zero. Its expectation value is equal to the
parameter μ of the given distribution,

E [µ̂] = µ,

which means that the maximum-likelihood estimator µ̂ is
unbiased.
Similarly we differentiate the log likelihood with respect
to σ and equate to zero:

0 =
∂

∂σ
log
((

1

2πσ2

)n/2
exp

(
−
∑n
i=1(xi − x̄)2 + n(x̄− µ)2

2σ2

))

=
∂

∂σ

(
n

2
log
(

1

2πσ2

)
−
∑n
i=1(xi − x̄)2 + n(x̄− µ)2

2σ2

)

= −n
σ
+

∑n
i=1(xi − x̄)2 + n(x̄− µ)2

σ3

which is solved by

σ̂2 =
1

n

n∑
i=1

(xi − µ)2.

Inserting the estimate µ = µ̂ we obtain

σ̂2 =
1

n

n∑
i=1

(xi − x̄)2 =
1

n

n∑
i=1

x2i −
1

n2

n∑
i=1

n∑
j=1

xixj .

To calculate its expected value, it is convenient to rewrite
the expression in terms of zero-mean random variables

(statistical error) δi ≡ µ − xi . Expressing the estimate
in these variables yields

σ̂2 =
1

n

n∑
i=1

(µ− δi)
2 − 1

n2

n∑
i=1

n∑
j=1

(µ− δi)(µ− δj).

Simplifying the expression above, utilizing the facts that
E [δi] = 0 and E[δ2i ] = σ2 , allows us to obtain

E
[
σ̂2
]
=
n− 1

n
σ2.

This means that the estimator σ̂ is biased. However, σ̂ is
consistent.
Formally we say that the maximum likelihood estimator
for θ = (µ, σ2) is:

θ̂ =
(
µ̂, σ̂2

)
.

In this case the MLEs could be obtained individually. In
general this may not be the case, and the MLEs would
have to be obtained simultaneously.
The normal log likelihood at its maximum takes a partic-
ularly simple form:

log(L(µ̂, σ̂)) = −n
2

(log(2πσ̂2) + 1)

This maximum log likelihood can be shown to be the
same for more general least squares, even for non-
linear least squares. This is often used in determin-
ing likelihood-based approximate confidence intervals
and confidence regions, which are generally more accu-
rate than those using the asymptotic normality discussed
above.

34.4 Non-independent variables

It may be the case that variables are correlated, that is,
not independent. Two random variables X and Y are in-
dependent only if their joint probability density function
is the product of the individual probability density func-
tions, i.e.

f(x, y) = f(x)f(y)

Suppose one constructs an order-n Gaussian vector out
of random variables (x1, . . . , xn) , where each variable
has means given by (µ1, . . . , µn) . Furthermore, let the
covariance matrix be denoted by Σ .
The joint probability density function of these n random
variables is then given by:
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f(x1, . . . , xn) =
1

(2π)n/2
√

det(Σ)
exp

(
−1

2
[x1 − µ1, . . . , xn − µn] Σ

−1 [x1 − µ1, . . . , xn − µn]
T

)
In the two variable case, the joint probability density
function is given by:

f(x, y) =
1

2πσxσy
√
1− ρ2

exp
[
− 1

2(1− ρ2)

(
(x− µx)

2

σ2
x

− 2ρ(x− µx)(y − µy)

σxσy
+

(y − µy)
2

σ2
y

)]
In this and other cases where a joint density function ex-
ists, the likelihood function is defined as above, in the
section Principles, using this density.

34.5 Iterative procedures

Consider problems where both states xi and parame-
ters such as σ2 require to be estimated. Iterative proce-
dures such as Expectation-maximization algorithms may
be used to solve joint state-parameter estimation prob-
lems.
For example, suppose that n samples of state estimates x̂i
together with a sample mean x̄ have been calculated by
either a minimum-variance Kalman filter or a minimum-
variance smoother using a previous variance estimate σ̂2

. Then the next variance iterate may be obtained from the
maximum likelihood estimate calculation

σ̂2 =
1

n

n∑
i=1

(x̂i − x̄)2.

The convergence of MLEs within filtering and smoothing
EM algorithms are studied in[6] [7] .[8]

34.6 Applications

Maximum likelihood estimation is used for a wide range
of statistical models, including:

• linear models and generalized linear models;

• exploratory and confirmatory factor analysis;

• structural equation modeling;

• many situations in the context of hypothesis testing
and confidence interval \

• discrete choice models;

These uses arise across applications in widespread set of
fields, including:

• communication systems;

• psychometrics;

• econometrics;

• time-delay of arrival (TDOA) in acoustic or electro-
magnetic detection;

• data modeling in nuclear and particle physics;

• magnetic resonance imaging;[9][10]

• computational phylogenetics;

• origin/destination and path-choice modeling in
transport networks;

• geographical satellite-image classification.

• power system state estimation

34.7 History

Maximum-likelihood estimation was recommended, ana-
lyzed (with flawed attempts at proofs) and vastly popular-
ized by R. A. Fisher between 1912 and 1922[11] (although
it had been used earlier by Gauss, Laplace, T. N. Thiele,
and F. Y. Edgeworth).[12] Reviews of the development of
maximum likelihood have been provided by a number of
authors.[13]

Much of the theory of maximum-likelihood estimation
was first developed for Bayesian statistics, and then sim-
plified by later authors.[11]

34.8 See also

• Other estimation methods

• Generalized method of moments are methods
related to the likelihood equation in maximum
likelihood estimation.

• M-estimator, an approach used in robust
statistics.

• Maximum a posteriori (MAP) estimator, for
a contrast in the way to calculate estimators
when prior knowledge is postulated.

• Maximum spacing estimation, a related
method that is more robust in many situations.

• Method of moments (statistics), another pop-
ular method for finding parameters of distri-
butions.

• Method of support, a variation of the maxi-
mum likelihood technique.

• Minimum distance estimation
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• Quasi-maximum likelihood estimator, an
MLE estimator that is misspecified, but still
consistent.

• Restricted maximum likelihood, a variation
using a likelihood function calculated from a
transformed set of data.

• Related concepts:

• The BHHH algorithm is a non-linear opti-
mization algorithm that is popular for Maxi-
mum Likelihood estimations.

• Extremum estimator, a more general class of
estimators to which MLE belongs.

• Fisher information, information matrix, its re-
lationship to covariance matrix of ML esti-
mates

• Likelihood function, a description on what
likelihood functions are.

• Mean squared error, a measure of how 'good'
an estimator of a distributional parameter is
(be it the maximum likelihood estimator or
some other estimator).

• The Rao–Blackwell theorem, a result which
yields a process for finding the best possi-
ble unbiased estimator (in the sense of having
minimal mean squared error). The MLE is of-
ten a good starting place for the process.

• Sufficient statistic, a function of the data
through which the MLE (if it exists and is
unique) will depend on the data.
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Chapter 35

Linear classifier

In the field of machine learning, the goal of statistical
classification is to use an object’s characteristics to iden-
tify which class (or group) it belongs to. A linear clas-
sifier achieves this by making a classification decision
based on the value of a linear combination of the char-
acteristics. An object’s characteristics are also known as
feature values and are typically presented to the machine
in a vector called a feature vector. Such classifiers work
well for practical problems such as document classifica-
tion, and more generally for problems with many vari-
ables (features), reaching accuracy levels comparable to
non-linear classifiers while taking less time to train and
use.[1]

35.1 Definition

In this case, the solid and empty dots can be correctly classified
by any number of linear classifiers. H1 (blue) classifies them
correctly, as does H2 (red). H2 could be considered “better” in
the sense that it is also furthest from both groups. H3 (green)
fails to correctly classify the dots.

If the input feature vector to the classifier is a real vector
x⃗ , then the output score is

y = f(w⃗ · x⃗) = f

∑
j

wjxj

 ,

where w⃗ is a real vector of weights and f is a function
that converts the dot product of the two vectors into the
desired output. (In other words, w⃗ is a one-form or linear
functional mapping x⃗ onto R.) The weight vector w⃗ is
learned from a set of labeled training samples. Often f
is a simple function that maps all values above a certain
threshold to the first class and all other values to the sec-
ond class. A more complex f might give the probability
that an item belongs to a certain class.
For a two-class classification problem, one can visual-
ize the operation of a linear classifier as splitting a high-
dimensional input space with a hyperplane: all points on
one side of the hyperplane are classified as “yes”, while
the others are classified as “no”.
A linear classifier is often used in situations where the
speed of classification is an issue, since it is often the
fastest classifier, especially when x⃗ is sparse. Also, lin-
ear classifiers often work very well when the number of
dimensions in x⃗ is large, as in document classification,
where each element in x⃗ is typically the number of oc-
currences of a word in a document (see document-term
matrix). In such cases, the classifier should be well-
regularized.

35.2 Generative models vs. dis-
criminative models

There are two broad classes of methods for determin-
ing the parameters of a linear classifier w⃗ .[2][3] Meth-
ods of the first class model conditional density functions
P (x⃗|class) . Examples of such algorithms include:

• Linear Discriminant Analysis (or Fisher’s linear dis-
criminant) (LDA)—assumes Gaussian conditional
density models

• Naive Bayes classifier with multinomial or multi-
variate Bernoulli event models.
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The second set of methods includes discriminative mod-
els, which attempt to maximize the quality of the out-
put on a training set. Additional terms in the training
cost function can easily perform regularization of the fi-
nal model. Examples of discriminative training of linear
classifiers include

• Logistic regression—maximum likelihood estima-
tion of w⃗ assuming that the observed training set was
generated by a binomial model that depends on the
output of the classifier.

• Perceptron—an algorithm that attempts to fix all er-
rors encountered in the training set

• Support vector machine—an algorithm that maxi-
mizes the margin between the decision hyperplane
and the examples in the training set.

Note: Despite its name, LDA does not belong to the
class of discriminative models in this taxonomy. How-
ever, its name makes sense when we compare LDA
to the other main linear dimensionality reduction algo-
rithm: principal components analysis (PCA). LDA is a
supervised learning algorithm that utilizes the labels of
the data, while PCA is an unsupervised learning algo-
rithm that ignores the labels. To summarize, the name
is a historical artifact.[4]:117

Discriminative training often yields higher accuracy than
modeling the conditional density functions. However,
handling missing data is often easier with conditional
density models.
All of the linear classifier algorithms listed above can be
converted into non-linear algorithms operating on a dif-
ferent input space φ(x⃗) , using the kernel trick.

35.2.1 Discriminative training

Discriminative training of linear classifiers usually pro-
ceeds in a supervised way, by means of an optimization
algorithm that is given a training set with desired outputs
and a loss function that measures the discrepancy between
the classifier’s outputs and the desired outputs. Thus, the
learning algorithm solves an optimization problem of the
form[1]

arg min
w
R(w) + C

N∑
i=1

L(yi,wTxi)

where

• w are the classifier’s parameters,

• L(yi, wTxi) is the loss of the prediction given the
desired output yᵢ for the i'th training example,

• R(w) is a regularization term that prevents the pa-
rameters from getting too large (causing overfitting),
and

• C is some constant (set by the user of the learning
algorithm) that weighs the regularization against the
loss.

Popular loss functions include the hinge loss (for linear
SVMs) and the log loss (for linear logistic regression). If
the regularization function R is convex, then the above
is a convex problem.[1] Many algorithms exist for solving
such problems; popular ones for linear classification in-
clude (stochastic) gradient descent, L-BFGS, coordinate
descent and Newton methods.

35.3 See also
• Linear regression

• Winnow (algorithm)

• Quadratic classifier

• Support vector machines

35.4 Notes
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Chapter 36

Logistic regression

In statistics, logistic regression, or logit regression, or
logit model[1] is a direct probability model that was de-
veloped by statistician D. R. Cox in 1958[2] [3] although
much work was done in the single independent vari-
able case almost two decades earlier. The binary logis-
tic model is used to predict a binary response based on
one or more predictor variables (features). That is, it
is used in estimating the parameters of a qualitative re-
sponse model. The probabilities describing the possi-
ble outcomes of a single trial are modeled, as a function
of the explanatory (predictor) variables, using a logistic
function. Frequently (and hereafter in this article) “logis-
tic regression” is used to refer specifically to the prob-
lem in which the dependent variable is binary—that is,
the number of available categories is two—while prob-
lems with more than two categories are referred to as
multinomial logistic regression, or, if the multiple cate-
gories are ordered, as ordinal logistic regression.[3]

Logistic regression measures the relationship between the
categorical dependent variable and one or more indepen-
dent variables, which are usually (but not necessarily)
continuous, by estimating probabilities. Thus, it treats the
same set of problems as does probit regression using sim-
ilar techniques; the first assumes a logistic function and
the second a standard normal distribution function.
Logistic regression can be seen as a special case of
generalized linear model and thus analogous to linear re-
gression. The model of logistic regression, however, is
based on quite different assumptions (about the relation-
ship between dependent and independent variables) from
those of linear regression. In particular the key differ-
ences of these two models can be seen in the following
two features of logistic regression. First, the conditional
distribution p(y | x) is a Bernoulli distribution rather
than a Gaussian distribution, because the dependent vari-
able is binary. Second, the estimated probabilities are
restricted to [0,1] through the logistic distribution func-
tion because logistic regression predicts the probability
of the instance being positive.
Logistic regression is an alternative to Fisher’s 1936 clas-
sification method, linear discriminant analysis.[4] If the
assumptions of linear discriminant analysis hold, appli-
cation of Bayes’ rule to reverse the conditioning results
in the logistic model, so if linear discriminant assump-

tions are true, logistic regression assumptions must hold.
The converse is not true, so the logistic model has fewer
assumptions than discriminant analysis and makes no as-
sumption on the distribution of the independent variables.

36.1 Fields and example applica-
tions

Logistic regression is used widely in many fields, in-
cluding the medical and social sciences. For example,
the Trauma and Injury Severity Score (TRISS), which
is widely used to predict mortality in injured patients,
was originally developed by Boyd et al. using logistic
regression.[5] Many other medical scales used to assess
severity of a patient have been developed using logis-
tic regression.[6][7][8][9] Logistic regression may be used
to predict whether a patient has a given disease (e.g.
diabetes; coronary heart disease), based on observed
characteristics of the patient (age, sex, body mass in-
dex, results of various blood tests, etc.; age, blood choles-
terol level, systolic blood pressure, relative weight, blood
hemoglobin level, smoking (at 3 levels), and abnormal
electrocardiogram.).[1][10] Another example might be to
predict whether an American voter will vote Democratic
or Republican, based on age, income, sex, race, state of
residence, votes in previous elections, etc.[11] The tech-
nique can also be used in engineering, especially for pre-
dicting the probability of failure of a given process, sys-
tem or product.[12][13] It is also used in marketing applica-
tions such as prediction of a customer’s propensity to pur-
chase a product or halt a subscription, etc. In economics it
can be used to predict the likelihood of a person’s choos-
ing to be in the labor force, and a business application
would be to predict the likelihood of a homeowner de-
faulting on a mortgage. Conditional random fields, an ex-
tension of logistic regression to sequential data, are used
in natural language processing.
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36.2 Basics

Logistic regression can be binomial or multinomial. Bi-
nomial or binary logistic regression deals with situations
in which the observed outcome for a dependent variable
can have only two possible types (for example, “dead”
vs. “alive” or “win” vs. “loss”). Multinomial logistic re-
gression deals with situations where the outcome can have
three or more possible types (e.g., “disease A” vs. “dis-
ease B” vs. “disease C”). In binary logistic regression,
the outcome is usually coded as “0” or “1”, as this leads
to the most straightforward interpretation.[14] If a partic-
ular observed outcome for the dependent variable is the
noteworthy possible outcome (referred to as a “success”
or a “case”) it is usually coded as “1” and the contrary out-
come (referred to as a “failure” or a “noncase”) as “0”.
Logistic regression is used to predict the odds of being
a case based on the values of the independent variables
(predictors). The odds are defined as the probability that
a particular outcome is a case divided by the probability
that it is a noncase.
Like other forms of regression analysis, logistic regres-
sion makes use of one or more predictor variables that
may be either continuous or categorical data. Unlike ordi-
nary linear regression, however, logistic regression is used
for predicting binary outcomes of the dependent vari-
able (treating the dependent variable as the outcome of a
Bernoulli trial) rather than a continuous outcome. Given
this difference, it is necessary that logistic regression take
the natural logarithm of the odds of the dependent vari-
able being a case (referred to as the logit or log-odds)
to create a continuous criterion as a transformed version
of the dependent variable. Thus the logit transformation
is referred to as the link function in logistic regression—
although the dependent variable in logistic regression is
binomial, the logit is the continuous criterion upon which
linear regression is conducted.[14]

The logit of success is then fitted to the predictors using
linear regression analysis. The predicted value of the logit
is converted back into predicted odds via the inverse of
the natural logarithm, namely the exponential function.
Thus, although the observed dependent variable in logis-
tic regression is a zero-or-one variable, the logistic regres-
sion estimates the odds, as a continuous variable, that the
dependent variable is a success (a case). In some applica-
tions the odds are all that is needed. In others, a specific
yes-or-no prediction is needed for whether the dependent
variable is or is not a case; this categorical prediction can
be based on the computed odds of a success, with pre-
dicted odds above some chosen cutoff value being trans-
lated into a prediction of a success.

0
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1

−6 −4 −2 0 2 4 6

Figure 1. The logistic function σ(t) ; note that σ(t) ∈ [0, 1] for
all t .

36.3 Logistic function, odds, odds
ratio, and logit

36.3.1 Definition of the logistic function

An explanation of logistic regression begins with an ex-
planation of the logistic function. The logistic function is
useful because it can take an input with any value from
negative to positive infinity, whereas the output always
takes values between zero and one[14] and hence is inter-
pretable as a probability. The logistic function σ(t) is
defined as follows:

σ(t) =
et

et + 1
=

1

1 + e−t
,

A graph of the logistic function is shown in Figure 1.
If t is viewed as a linear function of an explanatory vari-
able x (or of a linear combination of explanatory vari-
ables), then we express t as follows:

t = β0 + β1x

And the logistic function can now be written as:

F (x) =
1

1 + e−(β0+β1x)

Note that F (x) is interpreted as the probability of the
dependent variable equaling a “success” or “case” rather
than a failure or non-case. It’s clear that the response vari-
ables Yi are not identically distributed: P (Yi = 1 | X)
differs from one data point Xi to another, though they
are independent given design matrix X and shared with
parameters β .[1]
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36.3.2 Definition of the inverse of the logis-
tic function

We can now define the inverse of the logistic function, g
, the logit (log odds):

g(F (x)) = ln F (x)

1− F (x)
= β0 + β1x,

and equivalently:

F (x)

1− F (x)
= eβ0+β1x.

36.3.3 Interpretation of these terms

In the above equations, the terms are as follows:

• g(·) refers to the logit function. The equation for
g(F (x)) illustrates that the logit (i.e., log-odds or
natural logarithm of the odds) is equivalent to the
linear regression expression.

• ln denotes the natural logarithm.

• F (x) is the probability that the dependent variable
equals a case, given some linear combination x of
the predictors. The formula for F (x) illustrates that
the probability of the dependent variable equaling a
case is equal to the value of the logistic function of
the linear regression expression. This is important
in that it shows that the value of the linear regres-
sion expression can vary from negative to positive
infinity and yet, after transformation, the resulting
expression for the probability F (x) ranges between
0 and 1.

• β0 is the intercept from the linear regression equa-
tion (the value of the criterion when the predictor is
equal to zero).

• β1x is the regression coefficient multiplied by some
value of the predictor.

• base e denotes the exponential function.

36.3.4 Definition of the odds

The odds of the dependent variable equaling a case (given
some linear combination x of the predictors) is equiva-
lent to the exponential function of the linear regression
expression. This illustrates how the logit serves as a link
function between the probability and the linear regres-
sion expression. Given that the logit ranges between neg-
ative and positive infinity, it provides an adequate crite-
rion upon which to conduct linear regression and the logit
is easily converted back into the odds.[14]

So we define odds of the dependent variable equaling a
case (given some linear combination x of the predictors)
as follows:

odds = eβ0+β1x.

36.3.5 Definition of the odds ratio

The odds ratio can be defined as:

OR = odds(x+1)/ odds(x) =
F (x+1)

1−F (x+1)

F (x)
1−F (x)

= eβ0+β1(x+1)/eβ0+β1x = eβ1

or for binary variable F(0) instead of F(x) and F(1) for
F(x+1). This exponential relationship provides an inter-
pretation for β1 : The odds multiply by eβ1 for every 1-
unit increase in x.[15]

36.3.6 Multiple explanatory variables

If there are multiple explanatory variables, the above ex-
pression β0+β1x can be revised to β0+β1x1+β2x2+
· · · + βmxm. Then when this is used in the equation re-
lating the logged odds of a success to the values of the
predictors, the linear regression will be a multiple regres-
sion with m explanators; the parameters βj for all j = 0,
1, 2, ..., m are all estimated.

36.4 Model fitting

36.4.1 Estimation

Because the model can be expressed as a generalized lin-
ear model (see below), for 0<p<1, ordinary least squares
can suffice, with R-squared as the measure of goodness
of fit in the fitting space. When p=0 or 1, more complex
methods are required.

Maximum likelihood estimation

The regression coefficients are usually estimated using
maximum likelihood estimation.[16] Unlike linear regres-
sion with normally distributed residuals, it is not possible
to find a closed-form expression for the coefficient values
that maximize the likelihood function, so that an itera-
tive process must be used instead; for example Newton’s
method. This process begins with a tentative solution, re-
vises it slightly to see if it can be improved, and repeats
this revision until improvement is minute, at which point
the process is said to have converged.[17]

In some instances the model may not reach convergence.
Nonconvergence of a model indicates that the coefficients
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are not meaningful because the iterative process was un-
able to find appropriate solutions. A failure to converge
may occur for a number of reasons: having a large ra-
tio of predictors to cases, multicollinearity, sparseness,
or complete separation.

• Having a large ratio of variables to cases results in an
overly conservative Wald statistic (discussed below)
and can lead to nonconvergence.

• Multicollinearity refers to unacceptably high corre-
lations between predictors. As multicollinearity in-
creases, coefficients remain unbiased but standard
errors increase and the likelihood of model con-
vergence decreases.[16] To detect multicollinearity
amongst the predictors, one can conduct a linear re-
gression analysis with the predictors of interest for
the sole purpose of examining the tolerance statistic
[16] used to assess whether multicollinearity is unac-
ceptably high.

• Sparseness in the data refers to having a large pro-
portion of empty cells (cells with zero counts). Zero
cell counts are particularly problematic with cate-
gorical predictors. With continuous predictors, the
model can infer values for the zero cell counts, but
this is not the case with categorical predictors. The
model will not converge with zero cell counts for cat-
egorical predictors because the natural logarithm of
zero is an undefined value, so that final solutions to
the model cannot be reached. To remedy this prob-
lem, researchers may collapse categories in a the-
oretically meaningful way or add a constant to all
cells.[16]

• Another numerical problem that may lead to a lack
of convergence is complete separation, which refers
to the instance in which the predictors perfectly pre-
dict the criterion – all cases are accurately classified.
In such instances, one should reexamine the data, as
there is likely some kind of error.[14]

As a general rule of thumb, logistic regression models re-
quire a minimum of about 10 events per explaining vari-
able (where event denotes the cases belonging to the less
frequent category in the dependent variable).[18]

Minimum chi-squared estimator for grouped data

While individual data will have a dependent variable with
a value of zero or one for every observation, with grouped
data one observation is on a group of people who all share
the same characteristics (e.g., demographic characteris-
tics); in this case the researcher observes the proportion
of people in the group for whom the response variable
falls into one category or the other. If this proportion
is neither zero nor one for any group, the minimum chi-
squared estimator involves using weighted least squares

to estimate a linear model in which the dependent vari-
able is the logit of the proportion: that is, the log of the
ratio of the fraction in one group to the fraction in the
other group.[19]:pp.686–9

36.4.2 Evaluating goodness of fit

Goodness of fit in linear regression models is generally
measured using the R2. Since this has no direct analog in
logistic regression, various methods[19]:ch.21 including the
following can be used instead.

Deviance and likelihood ratio tests

In linear regression analysis, one is concerned with par-
titioning variance via the sum of squares calculations –
variance in the criterion is essentially divided into vari-
ance accounted for by the predictors and residual vari-
ance. In logistic regression analysis, deviance is used
in lieu of sum of squares calculations.[20] Deviance is
analogous to the sum of squares calculations in linear
regression[14] and is a measure of the lack of fit to the
data in a logistic regression model.[20] When a “saturated”
model is available (a model with a theoretically perfect
fit), deviance is calculated by comparing a given model
with the saturated model.[14] This computation give the
likelihood-ratio test:.[14]

D = −2 ln model fitted the of likelihood
model saturated the of likelihood .

In the above equation D represents the deviance and ln
represents the natural logarithm. The log of the likeli-
hood ratio (the ratio of the fitted model to the saturated
model) will produce a negative value, so the product is
multiplied by negative two times its natural logarithm to
produce a value with an approximate chi-squared distri-
bution.[14] Smaller values indicate better fit as the fitted
model deviates less from the saturated model. When as-
sessed upon a chi-square distribution, nonsignificant chi-
square values indicate very little unexplained variance
and thus, good model fit. Conversely, a significant chi-
square value indicates that a significant amount of the
variance is unexplained.
When the saturated model is not available (a common
case), deviance is calculated simply as (−2)x(log likeli-
hood of the fitted model), and the reference to the satu-
rated model’s log likelihood can be removed from all that
follows without harm.
Two measures of deviance are particularly important in
logistic regression: null deviance and model deviance.
The null deviance represents the difference between a
model with only the intercept (which means “no predic-
tors”) and the saturated model. The model deviance rep-
resents the difference between a model with at least one
predictor and the saturated model.[20] In this respect, the
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null model provides a baseline upon which to compare
predictor models. Given that deviance is a measure of
the difference between a given model and the saturated
model, smaller values indicate better fit. Thus, to assess
the contribution of a predictor or set of predictors, one
can subtract the model deviance from the null deviance
and assess the difference on a χ2

s−p, chi-square distribu-
tion with degrees of freedom[14] equal to the difference
in the number of parameters estimated.
Let

Dnull = −2 ln model null of likelihood
model saturated the of likelihood

Dfitted = −2 ln model fitted of likelihood
model saturated the of likelihood .

Then

Dnull −Dfitted =

(
−2 ln model null of likelihood

model saturated the of likelihood

)
−
(
−2 ln model fitted of likelihood

model saturated the of likelihood

)
= −2

(
ln model null of likelihood

model saturated the of likelihood − ln model fitted of likelihood
model saturated the of likelihood

)
=− 2 ln

( model null of likelihood
model saturated the of likelihood

)( model fitted of likelihood
model saturated the of likelihood

)
=− 2 ln model null the of likelihood

model fitted of likelihood .

If the model deviance is significantly smaller than the null
deviance then one can conclude that the predictor or set of
predictors significantly improved model fit. This is anal-
ogous to the F-test used in linear regression analysis to
assess the significance of prediction.[20]

Pseudo-R2s

In linear regression the squared multiple correlation, R2

is used to assess goodness of fit as it represents the pro-
portion of variance in the criterion that is explained by
the predictors.[20] In logistic regression analysis, there is
no agreed upon analogous measure, but there are several
competing measures each with limitations.[20] Three of
the most commonly used indices are examined on this
page beginning with the likelihood ratio R2, R2L:[20]

R2
L =

Dnull −Dfitted
Dnull

.

This is the most analogous index to the squared multiple
correlation in linear regression.[16] It represents the pro-
portional reduction in the deviance wherein the deviance
is treated as a measure of variation analogous but not
identical to the variance in linear regression analysis.[16]

One limitation of the likelihood ratio R2 is that it is not
monotonically related to the odds ratio,[20] meaning that it

does not necessarily increase as the odds ratio increases
and does not necessarily decrease as the odds ratio de-
creases.
The Cox and Snell R2 is an alternative index of good-
ness of fit related to the R2 value from linear regression.
The Cox and Snell index is problematic as its maximum
value is .75, when the variance is at its maximum (.25).
The Nagelkerke R2 provides a correction to the Cox and
Snell R2 so that the maximum value is equal to one. Nev-
ertheless, the Cox and Snell and likelihood ratio R2s show
greater agreement with each other than either does with
the Nagelkerke R2.[20] Of course, this might not be the
case for values exceeding .75 as the Cox and Snell index
is capped at this value. The likelihood ratio R2 is often
preferred to the alternatives as it is most analogous to R2

in linear regression, is independent of the base rate (both
Cox and Snell and Nagelkerke R2s increase as the propor-
tion of cases increase from 0 to .5) and varies between 0
and 1.
A word of caution is in order when interpreting pseudo-
R2 statistics. The reason these indices of fit are referred
to as pseudo R2 is that they do not represent the propor-
tionate reduction in error as the R2 in linear regression
does.[20] Linear regression assumes homoscedasticity,
that the error variance is the same for all values of the cri-
terion. Logistic regression will always be heteroscedastic
– the error variances differ for each value of the predicted
score. For each value of the predicted score there would
be a different value of the proportionate reduction in er-
ror. Therefore, it is inappropriate to think of R2 as a pro-
portionate reduction in error in a universal sense in logis-
tic regression.[20]

Hosmer–Lemeshow test

The Hosmer–Lemeshow test uses a test statistic that
asymptotically follows a χ2 distribution to assess whether
or not the observed event rates match expected event rates
in subgroups of the model population.

Evaluating binary classification performance

If the estimated probabilities are to be used to classify
each observation of independent variable values as pre-
dicting the category that the dependent variable is found
in, the various methods below for judging the model’s
suitability in out-of-sample forecasting can also be used
on the data that were used for estimation—accuracy,
precision (also called positive predictive value), recall
(also called sensitivity), specificity and negative predic-
tive value. In each of these evaluative methods, an aspect
of the model’s effectiveness in assigning instances to the
correct categories is measured.
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36.5 Coefficients

After fitting the model, it is likely that researchers will
want to examine the contribution of individual predic-
tors. To do so, they will want to examine the regression
coefficients. In linear regression, the regression coeffi-
cients represent the change in the criterion for each unit
change in the predictor.[20] In logistic regression, how-
ever, the regression coefficients represent the change in
the logit for each unit change in the predictor. Given that
the logit is not intuitive, researchers are likely to focus on
a predictor’s effect on the exponential function of the re-
gression coefficient – the odds ratio (see definition). In
linear regression, the significance of a regression coeffi-
cient is assessed by computing a t test. In logistic regres-
sion, there are several different tests designed to assess
the significance of an individual predictor, most notably
the likelihood ratio test and the Wald statistic.

36.5.1 Likelihood ratio test

The likelihood-ratio test discussed above to assess
model fit is also the recommended procedure to assess
the contribution of individual “predictors” to a given
model.[14][16][20] In the case of a single predictor model,
one simply compares the deviance of the predictor model
with that of the null model on a chi-square distribution
with a single degree of freedom. If the predictor model
has a significantly smaller deviance (c.f chi-square using
the difference in degrees of freedom of the two models),
then one can conclude that there is a significant associa-
tion between the “predictor” and the outcome. Although
some common statistical packages (e.g. SPSS) do pro-
vide likelihood ratio test statistics, without this computa-
tionally intensive test it would be more difficult to assess
the contribution of individual predictors in the multiple
logistic regression case. To assess the contribution of in-
dividual predictors one can enter the predictors hierar-
chically, comparing each new model with the previous to
determine the contribution of each predictor.[20] There is
some debate among statisticians about the appropriate-
ness of so-called “stepwise” procedures. The fear is that
they may not preserve nominal statistical properties and
may become misleading.

36.5.2 Wald statistic

Alternatively, when assessing the contribution of individ-
ual predictors in a given model, one may examine the sig-
nificance of the Wald statistic. The Wald statistic, analo-
gous to the t-test in linear regression, is used to assess the
significance of coefficients. The Wald statistic is the ratio
of the square of the regression coefficient to the square of
the standard error of the coefficient and is asymptotically
distributed as a chi-square distribution.[16]

Wj =
B2

j

SE2
Bj

Although several statistical packages (e.g., SPSS, SAS)
report the Wald statistic to assess the contribution of
individual predictors, the Wald statistic has limitations.
When the regression coefficient is large, the standard er-
ror of the regression coefficient also tends to be large
increasing the probability of Type-II error. The Wald
statistic also tends to be biased when data are sparse.[20]

36.5.3 Case-control sampling

Suppose cases are rare. Then we might wish to sample
them more frequently than their prevalence in the popula-
tion. For example, suppose there is a disease that affects
1 person in 10,000 and to collect our data we need to do
a complete physical. It may be too expensive to do thou-
sands of physicals of healthy people in order to obtain
data for only a few diseased individuals. Thus, we may
evaluate more diseased individuals. This is also called
unbalanced data. As a rule of thumb, sampling controls
at a rate of five times the number of cases will produce
sufficient control data.[21]

If we form a logistic model from such data, if the model
is correct, the βj parameters are all correct except for β0
. We can correct β0 if we know the true prevalence as
follows:[21]

β̂∗
0 = β̂0 + log π

1−π − log π̃
1−π̃

where π is the true prevalence and π̃ is the prevalence in
the sample.

36.6 Formal mathematical specifi-
cation

There are various equivalent specifications of logistic re-
gression, which fit into different types of more general
models. These different specifications allow for different
sorts of useful generalizations.

36.6.1 Setup

The basic setup of logistic regression is the same as for
standard linear regression.
It is assumed that we have a series of N observed data
points. Each data point i consists of a set of m explana-
tory variables x₁,i ... xm,i (also called independent vari-
ables, predictor variables, input variables, features, or at-
tributes), and an associated binary-valued outcome vari-
able Yi (also known as a dependent variable, response
variable, output variable, outcome variable or class vari-
able), i.e. it can assume only the two possible values 0 (of-
ten meaning “no” or “failure”) or 1 (often meaning “yes”
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or “success”). The goal of logistic regression is to ex-
plain the relationship between the explanatory variables
and the outcome, so that an outcome can be predicted for
a new set of explanatory variables.
Some examples:

• The observed outcomes are the presence or absence
of a given disease (e.g. diabetes) in a set of patients,
and the explanatory variables might be characteris-
tics of the patients thought to be pertinent (sex, race,
age, blood pressure, body-mass index, etc.).

• The observed outcomes are the votes (e.g.
Democratic or Republican) of a set of people in
an election, and the explanatory variables are the
demographic characteristics of each person (e.g.
sex, race, age, income, etc.). In such a case, one of
the two outcomes is arbitrarily coded as 1, and the
other as 0.

As in linear regression, the outcome variables Yi are as-
sumed to depend on the explanatory variables x₁,i ... xm,i.

Explanatory variables

As shown above in the above examples, the explana-
tory variables may be of any type: real-valued, binary,
categorical, etc. The main distinction is between
continuous variables (such as income, age and blood pres-
sure) and discrete variables (such as sex or race). Discrete
variables referring to more than two possible choices are
typically coded using dummy variables (or indicator vari-
ables), that is, separate explanatory variables taking the
value 0 or 1 are created for each possible value of the
discrete variable, with a 1 meaning “variable does have
the given value” and a 0 meaning “variable does not have
that value”. For example, a four-way discrete variable of
blood type with the possible values “A, B, AB, O” can
be converted to four separate two-way dummy variables,
“is-A, is-B, is-AB, is-O”, where only one of them has the
value 1 and all the rest have the value 0. This allows for
separate regression coefficients to be matched for each
possible value of the discrete variable. (In a case like this,
only three of the four dummy variables are independent
of each other, in the sense that once the values of three of
the variables are known, the fourth is automatically deter-
mined. Thus, it is necessary to encode only three of the
four possibilities as dummy variables. This also means
that when all four possibilities are encoded, the overall
model is not identifiable in the absence of additional con-
straints such as a regularization constraint. Theoretically,
this could cause problems, but in reality almost all logis-
tic regression models are fitted with regularization con-
straints.)

Outcome variables

Formally, the outcomes Yi are described as being
Bernoulli-distributed data, where each outcome is deter-
mined by an unobserved probability pi that is specific
to the outcome at hand, but related to the explanatory
variables. This can be expressed in any of the following
equivalent forms:

Yi | x1,i, . . . , xm,i ∼ Bernoulli(pi)
E[Yi | x1,i, . . . , xm,i] = pi

Pr(Yi = yi | x1,i, . . . , xm,i) =

{
pi ifyi = 1

1− pi ifyi = 0

Pr(Yi = yi | x1,i, . . . , xm,i) = pyii (1− pi)
(1−yi)

The meanings of these four lines are:

1. The first line expresses the probability distribution
of each Yi: Conditioned on the explanatory vari-
ables, it follows a Bernoulli distribution with param-
eters pi, the probability of the outcome of 1 for trial
i. As noted above, each separate trial has its own
probability of success, just as each trial has its own
explanatory variables. The probability of success pi
is not observed, only the outcome of an individual
Bernoulli trial using that probability.

2. The second line expresses the fact that the expected
value of each Yi is equal to the probability of success
pi, which is a general property of the Bernoulli dis-
tribution. In other words, if we run a large number
of Bernoulli trials using the same probability of suc-
cess pi, then take the average of all the 1 and 0 out-
comes, then the result would be close to pi. This is
because doing an average this way simply computes
the proportion of successes seen, which we expect to
converge to the underlying probability of success.

3. The third line writes out the probability mass func-
tion of the Bernoulli distribution, specifying the
probability of seeing each of the two possible out-
comes.

4. The fourth line is another way of writing the proba-
bility mass function, which avoids having to write
separate cases and is more convenient for certain
types of calculations. This relies on the fact that Yi
can take only the value 0 or 1. In each case, one of
the exponents will be 1, “choosing” the value under
it, while the other is 0, “canceling out” the value un-
der it. Hence, the outcome is either pi or 1 − pi, as
in the previous line.

Linear predictor function

The basic idea of logistic regression is to use the mecha-
nism already developed for linear regression by modeling
the probability pi using a linear predictor function, i.e. a
linear combination of the explanatory variables and a set
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of regression coefficients that are specific to the model
at hand but the same for all trials. The linear predictor
function f(i) for a particular data point i is written as:

f(i) = β0 + β1x1,i + · · ·+ βmxm,i,

where β0, . . . , βm are regression coefficients indicating
the relative effect of a particular explanatory variable on
the outcome.
The model is usually put into a more compact form as
follows:

• The regression coefficients β0, β1, ..., βm are
grouped into a single vector β of size m + 1.

• For each data point i, an additional explanatory
pseudo-variable x₀,i is added, with a fixed value of
1, corresponding to the intercept coefficient β0.

• The resulting explanatory variables x₀,i, x₁,i, ..., xm,i
are then grouped into a single vector Xi of size m +
1.

This makes it possible to write the linear predictor func-
tion as follows:

f(i) = β · Xi,

using the notation for a dot product between two vectors.

36.6.2 As a generalized linear model

The particular model used by logistic regression, which
distinguishes it from standard linear regression and from
other types of regression analysis used for binary-valued
outcomes, is the way the probability of a particular out-
come is linked to the linear predictor function:

logit(E[Yi | x1,i, . . . , xm,i]) = logit(pi) = ln
(

pi
1− pi

)
= β0+β1x1,i+· · ·+βmxm,i

Written using the more compact notation described
above, this is:

logit(E[Yi | Xi]) = logit(pi) = ln
(

pi
1− pi

)
= β · Xi

This formulation expresses logistic regression as a type of
generalized linear model, which predicts variables with
various types of probability distributions by fitting a lin-
ear predictor function of the above form to some sort of
arbitrary transformation of the expected value of the vari-
able.

The intuition for transforming using the logit function (the
natural log of the odds) was explained above. It also has
the practical effect of converting the probability (which is
bounded to be between 0 and 1) to a variable that ranges
over (−∞,+∞) — thereby matching the potential range
of the linear prediction function on the right side of the
equation.
Note that both the probabilities pi and the regression co-
efficients are unobserved, and the means of determining
them is not part of the model itself. They are typically
determined by some sort of optimization procedure, e.g.
maximum likelihood estimation, that finds values that
best fit the observed data (i.e. that give the most accurate
predictions for the data already observed), usually subject
to regularization conditions that seek to exclude unlikely
values, e.g. extremely large values for any of the regres-
sion coefficients. The use of a regularization condition
is equivalent to doing maximum a posteriori (MAP) esti-
mation, an extension of maximum likelihood. (Regular-
ization is most commonly done using a squared regulariz-
ing function, which is equivalent to placing a zero-mean
Gaussian prior distribution on the coefficients, but other
regularizers are also possible.) Whether or not regulariza-
tion is used, it is usually not possible to find a closed-form
solution; instead, an iterative numerical method must be
used, such as iteratively reweighted least squares (IRLS)
or, more commonly these days, a quasi-Newton method
such as the L-BFGS method.
The interpretation of the βj parameter estimates is as the
additive effect on the log of the odds for a unit change in
the jth explanatory variable. In the case of a dichotomous
explanatory variable, for instance gender, eβ is the esti-
mate of the odds of having the outcome for, say, males
compared with females.
An equivalent formula uses the inverse of the logit func-
tion, which is the logistic function, i.e.:

E[Yi | Xi] = pi = logit−1(β · Xi) =
1

1 + e−β·Xi

The formula can also be written as a probability distribu-
tion (specifically, using a probability mass function):

Pr(Yi = yi | Xi) = pi
yi(1−pi)1−yi =

(
eβ·Xi

1 + eβ·Xi

)yi (
1− eβ·Xi

1 + eβ·Xi

)1−yi
=

eβ·Xi·yi

1 + eβ·Xi

36.6.3 As a latent-variable model

The above model has an equivalent formulation as a
latent-variable model. This formulation is common in the
theory of discrete choice models, and makes it easier to
extend to certain more complicated models with multiple,
correlated choices, as well as to compare logistic regres-
sion to the closely related probit model.
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Imagine that, for each trial i, there is a continuous latent
variable Yi* (i.e. an unobserved random variable) that is
distributed as follows:

Y ∗
i = β · Xi + ε

where

ε ∼ Logistic(0, 1)

i.e. the latent variable can be written directly in terms of
the linear predictor function and an additive random error
variable that is distributed according to a standard logistic
distribution.
Then Yi can be viewed as an indicator for whether this
latent variable is positive:

Yi =

{
1 ifY ∗

i > 0 i.e. − ε < β · Xi,
0 otherwise.

The choice of modeling the error variable specifically
with a standard logistic distribution, rather than a gen-
eral logistic distribution with the location and scale set
to arbitrary values, seems restrictive, but in fact it is not.
It must be kept in mind that we can choose the regres-
sion coefficients ourselves, and very often can use them
to offset changes in the parameters of the error variable’s
distribution. For example, a logistic error-variable distri-
bution with a non-zero location parameter μ (which sets
the mean) is equivalent to a distribution with a zero loca-
tion parameter, where μ has been added to the intercept
coefficient. Both situations produce the same value for
Yi* regardless of settings of explanatory variables. Simi-
larly, an arbitrary scale parameter s is equivalent to setting
the scale parameter to 1 and then dividing all regression
coefficients by s. In the latter case, the resulting value
of Yi* will be smaller by a factor of s than in the former
case, for all sets of explanatory variables — but critically,
it will always remain on the same side of 0, and hence lead
to the same Yi choice.
(Note that this predicts that the irrelevancy of the scale
parameter may not carry over into more complex models
where more than two choices are available.)
It turns out that this formulation is exactly equivalent to
the preceding one, phrased in terms of the generalized
linear model and without any latent variables. This can
be shown as follows, using the fact that the cumulative
distribution function (CDF) of the standard logistic dis-
tribution is the logistic function, which is the inverse of
the logit function, i.e.

Pr(ε < x) = logit−1(x)

Then:

Pr(Yi = 1 | Xi) = Pr(Y ∗
i > 0 | Xi)

= Pr(β · Xi + ε > 0)

= Pr(ε > −β · Xi)
= Pr(ε < β · Xi) symmetric) is distribution logistic the (because
= logit−1(β · Xi)
= pi above) (see

This formulation—which is standard in discrete choice
models—makes clear the relationship between logistic
regression (the “logit model”) and the probit model,
which uses an error variable distributed according to a
standard normal distribution instead of a standard logis-
tic distribution. Both the logistic and normal distributions
are symmetric with a basic unimodal, “bell curve” shape.
The only difference is that the logistic distribution has
somewhat heavier tails, which means that it is less sensi-
tive to outlying data (and hence somewhat more robust to
model mis-specifications or erroneous data).

36.6.4 As a two-way latent-variable model

Yet another formulation uses two separate latent vari-
ables:

Y 0∗
i = β0 · Xi + ε0

Y 1∗
i = β1 · Xi + ε1

where

ε0 ∼ EV1(0, 1)

ε1 ∼ EV1(0, 1)

where EV1(0,1) is a standard type-1 extreme value dis-
tribution: i.e.

Pr(ε0 = x) = Pr(ε1 = x) = e−xe−e
−x

Then

Yi =

{
1 ifY 1∗

i > Y 0∗
i ,

0 otherwise.

This model has a separate latent variable and a separate
set of regression coefficients for each possible outcome of
the dependent variable. The reason for this separation is
that it makes it easy to extend logistic regression to multi-
outcome categorical variables, as in the multinomial logit
model. In such a model, it is natural to model each pos-
sible outcome using a different set of regression coeffi-
cients. It is also possible to motivate each of the separate
latent variables as the theoretical utility associated with

https://en.wikipedia.org/wiki/Latent_variable
https://en.wikipedia.org/wiki/Latent_variable
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Error_variable
https://en.wikipedia.org/wiki/Error_variable
https://en.wikipedia.org/wiki/Logistic_distribution
https://en.wikipedia.org/wiki/Logistic_distribution
https://en.wikipedia.org/wiki/Generalized_linear_model
https://en.wikipedia.org/wiki/Generalized_linear_model
https://en.wikipedia.org/wiki/Latent_variable
https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Cumulative_distribution_function
https://en.wikipedia.org/wiki/Logistic_distribution
https://en.wikipedia.org/wiki/Logistic_distribution
https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Logit_function
https://en.wikipedia.org/wiki/Discrete_choice
https://en.wikipedia.org/wiki/Probit_model
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Heavy-tailed_distribution
https://en.wikipedia.org/wiki/Robust_statistics
https://en.wikipedia.org/wiki/Extreme_value_distribution
https://en.wikipedia.org/wiki/Extreme_value_distribution
https://en.wikipedia.org/wiki/Multinomial_logit
https://en.wikipedia.org/wiki/Utility


248 CHAPTER 36. LOGISTIC REGRESSION

making the associated choice, and thus motivate logistic
regression in terms of utility theory. (In terms of utility
theory, a rational actor always chooses the choice with
the greatest associated utility.) This is the approach taken
by economists when formulating discrete choice models,
because it both provides a theoretically strong foundation
and facilitates intuitions about the model, which in turn
makes it easy to consider various sorts of extensions. (See
the example below.)
The choice of the type-1 extreme value distribution seems
fairly arbitrary, but it makes the mathematics work out,
and it may be possible to justify its use through rational
choice theory.
It turns out that this model is equivalent to the previous
model, although this seems non-obvious, since there are
now two sets of regression coefficients and error variables,
and the error variables have a different distribution. In
fact, this model reduces directly to the previous one with
the following substitutions:

β = β1 − β0

ε = ε1 − ε0

An intuition for this comes from the fact that, since we
choose based on the maximum of two values, only their
difference matters, not the exact values — and this ef-
fectively removes one degree of freedom. Another crit-
ical fact is that the difference of two type-1 extreme-
value-distributed variables is a logistic distribution, i.e.
if ε = ε1 − ε0 ∼ Logistic(0, 1).
We can demonstrate the equivalent as follows:

Pr(Yi = 1 | Xi)

= Pr(Y 1∗
i > Y 0∗

i | Xi)
= Pr(Y 1∗

i − Y 0∗
i > 0 | Xi)

= Pr(β1 · Xi + ε1 − (β0 · Xi + ε0) > 0)

= Pr((β1 · Xi − β0 · Xi) + (ε1 − ε0) > 0)

= Pr((β1 − β0) · Xi + (ε1 − ε0) > 0)

= Pr((β1 − β0) · Xi + ε > 0) (substituteεabove) as
= Pr(β · Xi + ε > 0) (substituteβabove) as
= Pr(ε > −β · Xi) model) above as same (now,
= Pr(ε < β · Xi)
= logit−1(β · Xi)
= pi

Example

As an example, consider a province-level election where
the choice is between a right-of-center party, a left-of-
center party, and a secessionist party (e.g. the Parti
Québécois, which wants Quebec to secede from Canada).

We would then use three latent variables, one for each
choice. Then, in accordance with utility theory, we can
then interpret the latent variables as expressing the utility
that results from making each of the choices. We can
also interpret the regression coefficients as indicating the
strength that the associated factor (i.e. explanatory vari-
able) has in contributing to the utility — or more cor-
rectly, the amount by which a unit change in an explana-
tory variable changes the utility of a given choice. A
voter might expect that the right-of-center party would
lower taxes, especially on rich people. This would give
low-income people no benefit, i.e. no change in utility
(since they usually don't pay taxes); would cause mod-
erate benefit (i.e. somewhat more money, or moderate
utility increase) for middle-incoming people; and would
cause significant benefits for high-income people. On the
other hand, the left-of-center party might be expected to
raise taxes and offset it with increased welfare and other
assistance for the lower and middle classes. This would
cause significant positive benefit to low-income people,
perhaps weak benefit to middle-income people, and sig-
nificant negative benefit to high-income people. Finally,
the secessionist party would take no direct actions on the
economy, but simply secede. A low-income or middle-
income voter might expect basically no clear utility gain
or loss from this, but a high-income voter might expect
negative utility, since he/she is likely to own companies,
which will have a harder time doing business in such an
environment and probably lose money.
These intuitions can be expressed as follows:
This clearly shows that

1. Separate sets of regression coefficients need to exist
for each choice. When phrased in terms of utility,
this can be seen very easily. Different choices have
different effects on net utility; furthermore, the ef-
fects vary in complex ways that depend on the char-
acteristics of each individual, so there need to be
separate sets of coefficients for each characteristic,
not simply a single extra per-choice characteristic.

2. Even though income is a continuous variable, its ef-
fect on utility is too complex for it to be treated as
a single variable. Either it needs to be directly split
up into ranges, or higher powers of income need to
be added so that polynomial regression on income is
effectively done.

36.6.5 As a “log-linear” model

Yet another formulation combines the two-way latent
variable formulation above with the original formulation
higher up without latent variables, and in the process pro-
vides a link to one of the standard formulations of the
multinomial logit.
Here, instead of writing the logit of the probabilities pi
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as a linear predictor, we separate the linear predictor into
two, one for each of the two outcomes:

ln Pr(Yi = 0) = β0 · Xi − lnZ
ln Pr(Yi = 1) = β1 · Xi − lnZ

Note that two separate sets of regression coefficients have
been introduced, just as in the two-way latent variable
model, and the two equations appear a form that writes
the logarithm of the associated probability as a linear pre-
dictor, with an extra term −lnZ at the end. This term, as
it turns out, serves as the normalizing factor ensuring that
the result is a distribution. This can be seen by exponen-
tiating both sides:

Pr(Yi = 0) =
1

Z
eβ0·Xi

Pr(Yi = 1) =
1

Z
eβ1·Xi

In this form it is clear that the purpose of Z is to en-
sure that the resulting distribution over Yi is in fact a
probability distribution, i.e. it sums to 1. This means that
Z is simply the sum of all un-normalized probabilities,
and by dividing each probability by Z, the probabilities
become "normalized". That is:

Z = eβ0·Xi + eβ1·Xi

and the resulting equations are

Pr(Yi = 0) =
eβ0·Xi

eβ0·Xi + eβ1·Xi

Pr(Yi = 1) =
eβ1·Xi

eβ0·Xi + eβ1·Xi

Or generally:

Pr(Yi = c) =
eβc·Xi∑
h e

βh·Xi

This shows clearly how to generalize this formulation to
more than two outcomes, as in multinomial logit. Note
that this general formulation is exactly the Softmax func-
tion as in

Pr(Yi = c) = softmax(c,β0 · Xi,β1 · Xi, . . . ).

In order to prove that this is equivalent to the previous
model, note that the above model is overspecified, in that
Pr(Yi = 0) and Pr(Yi = 1) cannot be independently
specified: rather Pr(Yi = 0)+Pr(Yi = 1) = 1 so know-
ing one automatically determines the other. As a result,

the model is nonidentifiable, in that multiple combina-
tions of β0 and β1 will produce the same probabilities
for all possible explanatory variables. In fact, it can be
seen that adding any constant vector to both of them will
produce the same probabilities:

Pr(Yi = 1) =
e(β1+C)·Xi

e(β0+C)·Xi + e(β1+C)·Xi

=
eβ1·XieC·Xi

eβ0·XieC·Xi + eβ1·XieC·Xi

=
eC·Xieβ1·Xi

eC·Xi(eβ0·Xi + eβ1·Xi)

=
eβ1·Xi

eβ0·Xi + eβ1·Xi

As a result, we can simplify matters, and restore identi-
fiability, by picking an arbitrary value for one of the two
vectors. We choose to set β0 = 0. Then,

eβ0·Xi = e0·Xi = 1

and so

Pr(Yi = 1) =
eβ1·Xi

1 + eβ1·Xi
=

1

1 + e−β1·Xi
= pi

which shows that this formulation is indeed equivalent to
the previous formulation. (As in the two-way latent vari-
able formulation, any settings where β = β1 − β0 will
produce equivalent results.)
Note that most treatments of the multinomial logit model
start out either by extending the “log-linear” formulation
presented here or the two-way latent variable formulation
presented above, since both clearly show the way that the
model could be extended to multi-way outcomes. In gen-
eral, the presentation with latent variables is more com-
mon in econometrics and political science, where discrete
choice models and utility theory reign, while the “log-
linear” formulation here is more common in computer
science, e.g. machine learning and natural language pro-
cessing.

36.6.6 As a single-layer perceptron

The model has an equivalent formulation

pi =
1

1 + e−(β0+β1x1,i+···+βkxk,i)
.

This functional form is commonly called a single-layer
perceptron or single-layer artificial neural network. A
single-layer neural network computes a continuous out-
put instead of a step function. The derivative of pi with
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respect to X = (x1, ..., xk) is computed from the general
form:

y =
1

1 + e−f(X)

where f(X) is an analytic function in X. With this choice,
the single-layer neural network is identical to the logistic
regression model. This function has a continuous deriva-
tive, which allows it to be used in backpropagation. This
function is also preferred because its derivative is easily
calculated:

dy
dX = y(1− y)

df
dX .

36.6.7 In terms of binomial data

A closely related model assumes that each i is associated
not with a single Bernoulli trial but with ni independent
identically distributed trials, where the observation Yi is
the number of successes observed (the sum of the individ-
ual Bernoulli-distributed random variables), and hence
follows a binomial distribution:

Yi ∼ Bin(ni, pi), for i = 1, . . . , n

An example of this distribution is the fraction of seeds
(pi) that germinate after ni are planted.
In terms of expected values, this model is expressed as
follows:

pi = E
[
Yi
ni

∣∣∣∣ Xi] ,
so that

logit
(
E
[
Yi
ni

∣∣∣∣ Xi]) = logit(pi) = ln
(

pi
1− pi

)
= β·Xi,

Or equivalently:

Pr(Yi = yi | Xi) =
(
ni
yi

)
pyii (1−pi)ni−yi =

(
ni
yi

)(
1

1 + e−β·Xi

)yi (
1− 1

1 + e−β·Xi

)ni−yi

This model can be fit using the same sorts of methods as
the above more basic model.

36.7 Bayesian logistic regression

In a Bayesian statistics context, prior distributions are
normally placed on the regression coefficients, usually in

Comparison of logistic function with a scaled inverse probit func-
tion (i.e. the CDF of the normal distribution), comparing σ(x)
vs. Φ(

√
π
8
x) , which makes the slopes the same at the origin.

This shows the heavier tails of the logistic distribution.

the form of Gaussian distributions. Unfortunately, the
Gaussian distribution is not the conjugate prior of the
likelihood function in logistic regression. As a result, the
posterior distribution is difficult to calculate, even using
standard simulation algorithms (e.g. Gibbs sampling).
There are various possibilities:

• Don't do a proper Bayesian analysis, but simply
compute a maximum a posteriori point estimate of
the parameters. This is common, for example, in
“maximum entropy” classifiers in machine learning.

• Use a more general approximation method such as
the Metropolis–Hastings algorithm.

• Draw a Markov chain Monte Carlo sample from
the exact posterior by using the Independent
Metropolis–Hastings algorithm with heavy-tailed
multivariate candidate distribution found by match-
ing the mode and curvature at the mode of the
normal approximation to the posterior and then
using the Student’s t shape with low degrees of
freedom.[22] This is shown to have excellent conver-
gence properties.

• Use a latent variable model and approximate the lo-
gistic distribution using a more tractable distribu-
tion, e.g. a Student’s t-distribution or a mixture of
normal distributions.

• Do probit regression instead of logistic regression.
This is actually a special case of the previous situ-
ation, using a normal distribution in place of a Stu-
dent’s t, mixture of normals, etc. This will be less
accurate but has the advantage that probit regression
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is extremely common, and a ready-made Bayesian
implementation may already be available.

• Use the Laplace approximation of the posterior
distribution.[23] This approximates the posterior
with a Gaussian distribution. This is not a terribly
good approximation, but it suffices if all that is de-
sired is an estimate of the posterior mean and vari-
ance. In such a case, an approximation scheme such
as variational Bayes can be used.[24]

36.7.1 Gibbs sampling with an approxi-
mating distribution

As shown above, logistic regression is equivalent to a
latent variable model with an error variable distributed
according to a standard logistic distribution. The over-
all distribution of the latent variable Yi∗ is also a logistic
distribution, with the mean equal to β · Xi (i.e. the fixed
quantity added to the error variable). This model con-
siderably simplifies the application of techniques such as
Gibbs sampling. However, sampling the regression coef-
ficients is still difficult, because of the lack of conjugacy
between the normal and logistic distributions. Changing
the prior distribution over the regression coefficients is
of no help, because the logistic distribution is not in the
exponential family and thus has no conjugate prior.
One possibility is to use a more general Markov chain
Monte Carlo technique, such as the Metropolis–Hastings
algorithm, which can sample arbitrary distributions. An-
other possibility, however, is to replace the logistic dis-
tribution with a similar-shaped distribution that is easier
to work with using Gibbs sampling. In fact, the logistic
and normal distributions have a similar shape, and thus
one possibility is simply to have normally distributed er-
rors. Because the normal distribution is conjugate to it-
self, sampling the regression coefficients becomes easy.
In fact, this model is exactly the model used in probit re-
gression.
However, the normal and logistic distributions differ in
that the logistic has heavier tails. As a result, it is more
robust to inaccuracies in the underlying model (which are
inevitable, in that the model is essentially always an ap-
proximation) or to errors in the data. Probit regression
loses some of this robustness.
Another alternative is to use errors distributed as a
Student’s t-distribution. The Student’s t-distribution has
heavy tails, and is easy to sample from because it is the
compound distribution of a normal distribution with vari-
ance distributed as an inverse gamma distribution. In
other words, if a normal distribution is used for the er-
ror variable, and another latent variable, following an in-
verse gamma distribution, is added corresponding to the
variance of this error variable, the marginal distribution
of the error variable will follow a Student’s t distribution.
Because of the various conjugacy relationships, all vari-

ables in this model are easy to sample from.
The Student’s t distribution that best approximates a stan-
dard logistic distribution can be determined by matching
the moments of the two distributions. The Student’s t dis-
tribution has three parameters, and since the skewness of
both distributions is always 0, the first four moments can
all be matched, using the following equations:

µ = 0

ν

ν − 2
s2 =

π2

3
6

ν − 4
=

6

5

This yields the following values:

µ = 0

s =

√
7

9

π2

3

ν = 9

The following graphs compare the standard logistic dis-
tribution with the Student’s t distribution that matches the
first four moments using the above-determined values, as
well as the normal distribution that matches the first two
moments. Note how much closer the Student’s t distri-
bution agrees, especially in the tails. Beyond about two
standard deviations from the mean, the logistic and nor-
mal distributions diverge rapidly, but the logistic and Stu-
dent’s t distributions don't start diverging significantly un-
til more than 5 standard deviations away.
(Another possibility, also amenable to Gibbs sampling, is
to approximate the logistic distribution using a mixture
density of normal distributions.)

36.8 Extensions

There are large numbers of extensions:

• Multinomial logistic regression (or multinomial
logit) handles the case of a multi-way categorical de-
pendent variable (with unordered values, also called
“classification”). Note that the general case of hav-
ing dependent variables with more than two values
is termed polytomous regression.

• Ordered logistic regression (or ordered logit) han-
dles ordinal dependent variables (ordered values).

• Mixed logit is an extension of multinomial logit that
allows for correlations among the choices of the de-
pendent variable.

• An extension of the logistic model to sets of inter-
dependent variables is the conditional random field.
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36.9 Model suitability

A way to measure a model’s suitability is to assess the
model against a set of data that was not used to create
the model.[25] The class of techniques is called cross-
validation. This holdout model assessment method is par-
ticularly valuable when data are collected in different set-
tings (e.g., at different times or places) or when models
are assumed to be generalizable.
To measure the suitability of a binary regression model,
one can classify both the actual value and the predicted
value of each observation as either 0 or 1.[26] The pre-
dicted value of an observation can be set equal to 1 if
the estimated probability that the observation equals 1 is
above 1

2 , and set equal to 0 if the estimated probability
is below 1

2 . Here logistic regression is being used as a
binary classification model. There are four possible com-
bined classifications:

1. prediction of 0 when the holdout sample has a 0
(True Negatives, the number of which is TN)

2. prediction of 0 when the holdout sample has a 1
(False Negatives, the number of which is FN)

3. prediction of 1 when the holdout sample has a 0
(False Positives, the number of which is FP)

4. prediction of 1 when the holdout sample has a 1
(True Positives, the number of which is TP)

These classifications are used to calculate accuracy, pre-
cision (also called positive predictive value), recall (also
called sensitivity), specificity and negative predictive
value:

Accuracy =
TP + TN

TP + FP + FN + TN

Precision = value predictive Positive =
TP

TP + FP

value predictive Negative =
TN

TN + FN

Recall = Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

36.10 See also
• Logistic function

• Discrete choice

• Jarrow–Turnbull model

• Limited dependent variable

• Multinomial logit model

• Ordered logit

• Hosmer–Lemeshow test

• Brier score

• MLPACK - contains a C++ implementation of lo-
gistic regression

• Local case-control sampling
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Chapter 37

Linear discriminant analysis

Not to be confused with latent Dirichlet allocation.

Linear discriminant analysis (LDA) is a generaliza-
tion of Fisher’s linear discriminant, a method used in
statistics, pattern recognition and machine learning to find
a linear combination of features that characterizes or sep-
arates two or more classes of objects or events. The re-
sulting combination may be used as a linear classifier,
or, more commonly, for dimensionality reduction before
later classification.
LDA is closely related to analysis of variance (ANOVA)
and regression analysis, which also attempt to express
one dependent variable as a linear combination of
other features or measurements.[1][2] However, ANOVA
uses categorical independent variables and a continuous
dependent variable, whereas discriminant analysis has
continuous independent variables and a categorical de-
pendent variable (i.e. the class label).[3] Logistic regres-
sion and probit regression are more similar to LDA than
ANOVA is, as they also explain a categorical variable by
the values of continuous independent variables. These
other methods are preferable in applications where it is
not reasonable to assume that the independent variables
are normally distributed, which is a fundamental assump-
tion of the LDA method.
LDA is also closely related to principal component anal-
ysis (PCA) and factor analysis in that they both look for
linear combinations of variables which best explain the
data.[4] LDA explicitly attempts to model the difference
between the classes of data. PCA on the other hand does
not take into account any difference in class, and factor
analysis builds the feature combinations based on differ-
ences rather than similarities. Discriminant analysis is
also different from factor analysis in that it is not an in-
terdependence technique: a distinction between indepen-
dent variables and dependent variables (also called crite-
rion variables) must be made.
LDA works when the measurements made on indepen-
dent variables for each observation are continuous quan-
tities. When dealing with categorical independent vari-
ables, the equivalent technique is discriminant correspon-
dence analysis.[5][6]

37.1 LDA for two classes

Consider a set of observations x⃗ (also called features, at-
tributes, variables or measurements) for each sample of
an object or event with known class y. This set of samples
is called the training set. The classification problem is
then to find a good predictor for the class y of any sample
of the same distribution (not necessarily from the training
set) given only an observation x⃗ .[7]:338

LDA approaches the problem by assuming that the con-
ditional probability density functions p(x⃗|y = 0) and
p(x⃗|y = 1) are both normally distributed with mean and
covariance parameters (µ⃗0,Σ0) and (µ⃗1,Σ1) , respec-
tively. Under this assumption, the Bayes optimal solution
is to predict points as being from the second class if the
log of the likelihood ratios is below some threshold T, so
that;

(x⃗−µ⃗0)
TΣ−1

0 (x⃗−µ⃗0)+ln |Σ0|−(x⃗−µ⃗1)
TΣ−1

1 (x⃗−µ⃗1)−ln |Σ1| < T

Without any further assumptions, the resulting classifier
is referred to as QDA (quadratic discriminant analysis).
LDA instead makes the additional simplifying
homoscedasticity assumption (i.e. that the class co-
variances are identical, so Σ0 = Σ1 = Σ ) and that the
covariances have full rank. In this case, several terms
cancel:

x⃗TΣ−1
0 x⃗ = x⃗TΣ−1

1 x⃗

x⃗TΣi
−1µ⃗i = µ⃗i

TΣi
−1x⃗ because Σi is

Hermitian

and the above decision criterion becomes a threshold on
the dot product

w⃗ · x⃗ > c

for some threshold constant c, where

w⃗ = Σ−1(µ⃗1 − µ⃗0)
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c =
1

2
(T − µ⃗0

TΣ−1
0 µ⃗0 + µ⃗1

TΣ−1
1 µ⃗1)

This means that the criterion of an input x⃗ being in a class
y is purely a function of this linear combination of the
known observations.
It is often useful to see this conclusion in geometrical
terms: the criterion of an input x⃗ being in a class y is
purely a function of projection of multidimensional-space
point x⃗ onto vector w⃗ (thus, we only consider its direc-
tion). In other words, the observation belongs to y if cor-
responding x⃗ is located on a certain side of a hyperplane
perpendicular to w⃗ . The location of the plane is defined
by the threshold c.

37.2 Canonical discriminant anal-
ysis for k classes

Canonical discriminant analysis (CDA) finds axes (k - 1
canonical coordinates, k being the number of classes) that
best separate the categories. These linear functions are
uncorrelated and define, in effect, an optimal k − 1 space
through the n-dimensional cloud of data that best sepa-
rates (the projections in that space of) the k groups. See
“Multiclass LDA” for details below.

37.3 Fisher’s linear discriminant

The terms Fisher’s linear discriminant and LDA are often
used interchangeably, although Fisher’s original article[1]

actually describes a slightly different discriminant, which
does not make some of the assumptions of LDA such as
normally distributed classes or equal class covariances.
Suppose two classes of observations have means µ⃗0, µ⃗1

and covariances Σ0,Σ1 . Then the linear combination of
features w⃗·x⃗will have means w⃗·µ⃗i and variances w⃗TΣiw⃗
for i = 0, 1 . Fisher defined the separation between these
two distributions to be the ratio of the variance between
the classes to the variance within the classes:

S =
σ2

between
σ2

within
=

(w⃗ · µ⃗1 − w⃗ · µ⃗0)
2

w⃗TΣ1w⃗ + w⃗TΣ0w⃗
=

(w⃗ · (µ⃗1 − µ⃗0))
2

w⃗T (Σ0 +Σ1)w⃗

This measure is, in some sense, a measure of the signal-
to-noise ratio for the class labelling. It can be shown that
the maximum separation occurs when

w⃗ ∝ (Σ0 +Σ1)
−1(µ⃗1 − µ⃗0)

When the assumptions of LDA are satisfied, the above
equation is equivalent to LDA.
Be sure to note that the vector w⃗ is the normal to the dis-
criminant hyperplane. As an example, in a two dimen-

sional problem, the line that best divides the two groups
is perpendicular to w⃗ .
Generally, the data points to be discriminated are pro-
jected onto w⃗ ; then the threshold that best separates the
data is chosen from analysis of the one-dimensional dis-
tribution. There is no general rule for the threshold. How-
ever, if projections of points from both classes exhibit ap-
proximately the same distributions, a good choice would
be the hyperplane between projections of the two means,
w⃗ ·µ⃗0 and w⃗ ·µ⃗1 . In this case the parameter c in threshold
condition w⃗ · x⃗ > c can be found explicitly:

c = w⃗ · 1
2
(µ⃗0 + µ⃗1) =

1

2
µ⃗t1Σ

−1µ⃗1 −
1

2
µ⃗t0Σ

−1µ⃗0

Otsu’s Method is related to Fisher’s linear discriminant,
and was created to binarize the histogram of pixels in
a grayscale image by optimally picking the black/white
threshold that minimizes intra-class variance and maxi-
mizes inter-class variance within/between grayscales as-
signed to black and white pixel classes.

37.4 Multiclass LDA

In the case where there are more than two classes, the
analysis used in the derivation of the Fisher discriminant
can be extended to find a subspace which appears to con-
tain all of the class variability. This generalization is due
to C.R. Rao.[8] Suppose that each of C classes has a mean
µi and the same covariance Σ . Then the scatter between
class variability may be defined by the sample covariance
of the class means

Σb =
1

C

C∑
i=1

(µi − µ)(µi − µ)T

where µ is the mean of the class means. The class sepa-
ration in a direction w⃗ in this case will be given by

S =
w⃗TΣbw⃗

w⃗TΣw⃗

This means that when w⃗ is an eigenvector of Σ−1Σb the
separation will be equal to the corresponding eigenvalue.
If Σ−1Σb is diagonalizable, the variability between fea-
tures will be contained in the subspace spanned by the
eigenvectors corresponding to the C − 1 largest eigenval-
ues (since Σb is of rank C − 1 at most). These eigenvec-
tors are primarily used in feature reduction, as in PCA.
The eigenvectors corresponding to the smaller eigenval-
ues will tend to be very sensitive to the exact choice of
training data, and it is often necessary to use regularisa-
tion as described in the next section.
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If classification is required, instead of dimension reduc-
tion, there are a number of alternative techniques avail-
able. For instance, the classes may be partitioned, and
a standard Fisher discriminant or LDA used to classify
each partition. A common example of this is “one against
the rest” where the points from one class are put in one
group, and everything else in the other, and then LDA
applied. This will result in C classifiers, whose results are
combined. Another common method is pairwise classifi-
cation, where a new classifier is created for each pair of
classes (giving C(C − 1)/2 classifiers in total), with the
individual classifiers combined to produce a final classi-
fication.

37.5 Practical use

In practice, the class means and covariances are not
known. They can, however, be estimated from the train-
ing set. Either the maximum likelihood estimate or the
maximum a posteriori estimate may be used in place of
the exact value in the above equations. Although the es-
timates of the covariance may be considered optimal in
some sense, this does not mean that the resulting discrim-
inant obtained by substituting these values is optimal in
any sense, even if the assumption of normally distributed
classes is correct.
Another complication in applying LDA and Fisher’s dis-
criminant to real data occurs when the number of mea-
surements of each sample exceeds the number of sam-
ples in each class.[4] In this case, the covariance estimates
do not have full rank, and so cannot be inverted. There
are a number of ways to deal with this. One is to use a
pseudo inverse instead of the usual matrix inverse in the
above formulae. However, better numeric stability may
be achieved by first projecting the problem onto the sub-
space spanned by Σb .[9] Another strategy to deal with
small sample size is to use a shrinkage estimator of the
covariance matrix, which can be expressed mathemati-
cally as

Σ = (1− λ)Σ + λI

where I is the identity matrix, and λ is the shrink-
age intensity or regularisation parameter. This leads to
the framework of regularized discriminant analysis[10] or
shrinkage discriminant analysis.[11]

Also, in many practical cases linear discriminants are not
suitable. LDA and Fisher’s discriminant can be extended
for use in non-linear classification via the kernel trick.
Here, the original observations are effectively mapped
into a higher dimensional non-linear space. Linear classi-
fication in this non-linear space is then equivalent to non-
linear classification in the original space. The most com-
monly used example of this is the kernel Fisher discrim-
inant.

LDA can be generalized to multiple discriminant analy-
sis, where c becomes a categorical variable with N possi-
ble states, instead of only two. Analogously, if the class-
conditional densities p(x⃗|c = i) are normal with shared
covariances, the sufficient statistic for P (c|x⃗) are the val-
ues of N projections, which are the subspace spanned
by the N means, affine projected by the inverse covari-
ance matrix. These projections can be found by solving
a generalized eigenvalue problem, where the numerator
is the covariance matrix formed by treating the means as
the samples, and the denominator is the shared covari-
ance matrix.

37.6 Applications

In addition to the examples given below, LDA is applied
in positioning and product management.

37.6.1 Bankruptcy prediction

In bankruptcy prediction based on accounting ratios and
other financial variables, linear discriminant analysis was
the first statistical method applied to systematically ex-
plain which firms entered bankruptcy vs. survived. De-
spite limitations including known nonconformance of ac-
counting ratios to the normal distribution assumptions
of LDA, Edward Altman's 1968 model is still a leading
model in practical applications.

37.6.2 Face recognition

In computerised face recognition, each face is repre-
sented by a large number of pixel values. Linear discrim-
inant analysis is primarily used here to reduce the number
of features to a more manageable number before classi-
fication. Each of the new dimensions is a linear combi-
nation of pixel values, which form a template. The linear
combinations obtained using Fisher’s linear discriminant
are called Fisher faces, while those obtained using the re-
lated principal component analysis are called eigenfaces.

37.6.3 Marketing

In marketing, discriminant analysis was once often used
to determine the factors which distinguish different types
of customers and/or products on the basis of surveys or
other forms of collected data. Logistic regression or other
methods are now more commonly used. The use of dis-
criminant analysis in marketing can be described by the
following steps:

1. Formulate the problem and gather data — Identify
the salient attributes consumers use to evaluate prod-
ucts in this category — Use quantitative market-
ing research techniques (such as surveys) to collect
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data from a sample of potential customers concern-
ing their ratings of all the product attributes. The
data collection stage is usually done by marketing
research professionals. Survey questions ask the re-
spondent to rate a product from one to five (or 1 to
7, or 1 to 10) on a range of attributes chosen by
the researcher. Anywhere from five to twenty at-
tributes are chosen. They could include things like:
ease of use, weight, accuracy, durability, colourful-
ness, price, or size. The attributes chosen will vary
depending on the product being studied. The same
question is asked about all the products in the study.
The data for multiple products is codified and input
into a statistical program such as R, SPSS or SAS.
(This step is the same as in Factor analysis).

2. Estimate the Discriminant Function Coefficients
and determine the statistical significance and valid-
ity — Choose the appropriate discriminant analy-
sis method. The direct method involves estimating
the discriminant function so that all the predictors
are assessed simultaneously. The stepwise method
enters the predictors sequentially. The two-group
method should be used when the dependent variable
has two categories or states. The multiple discrim-
inant method is used when the dependent variable
has three or more categorical states. Use Wilks’s
Lambda to test for significance in SPSS or F stat in
SAS. The most common method used to test valid-
ity is to split the sample into an estimation or analy-
sis sample, and a validation or holdout sample. The
estimation sample is used in constructing the dis-
criminant function. The validation sample is used to
construct a classification matrix which contains the
number of correctly classified and incorrectly clas-
sified cases. The percentage of correctly classified
cases is called the hit ratio.

3. Plot the results on a two dimensional map, define
the dimensions, and interpret the results. The sta-
tistical program (or a related module) will map the
results. The map will plot each product (usually in
two-dimensional space). The distance of products
to each other indicate either how different they are.
The dimensions must be labelled by the researcher.
This requires subjective judgement and is often very
challenging. See perceptual mapping.

37.6.4 Biomedical studies

The main application of discriminant analysis in
medicine is the assessment of severity state of a patient
and prognosis of disease outcome. For example, during
retrospective analysis, patients are divided into groups ac-
cording to severity of disease – mild, moderate and severe
form. Then results of clinical and laboratory analyses are
studied in order to reveal variables which are statistically
different in studied groups. Using these variables, dis-

criminant functions are built which help to objectively
classify disease in a future patient into mild, moderate
or severe form.
In biology, similar principles are used in order to clas-
sify and define groups of different biological objects, for
example, to define phage types of Salmonella enteritidis
based on Fourier transform infrared spectra,[12] to detect
animal source of Escherichia coli studying its virulence
factors[13] etc.

37.6.5 Earth Science

This method can be used to separate the alteration zones.
For example, when different data from various zones are
available, discriminate analysis can find the pattern within
the data and classify the them effectively [14]

37.7 See also

• Data mining

• Decision tree learning

• Factor analysis

• Kernel Fisher discriminant analysis

• Logit (for logistic regression)

• Multidimensional scaling

• Multilinear subspace learning

• Pattern recognition

• Perceptron

• Preference regression

• Quadratic classifier
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Chapter 38

Naive Bayes classifier

In machine learning, naive Bayes classifiers are a fam-
ily of simple probabilistic classifiers based on apply-
ing Bayes’ theorem with strong (naive) independence as-
sumptions between the features.
Naive Bayes has been studied extensively since the 1950s.
It was introduced under a different name into the text re-
trieval community in the early 1960s,[1]:488 and remains
a popular (baseline) method for text categorization, the
problem of judging documents as belonging to one cat-
egory or the other (such as spam or legitimate, sports
or politics, etc.) with word frequencies as the features.
With appropriate preprocessing, it is competitive in this
domain with more advanced methods including support
vector machines.[2] It also finds application in automatic
medical diagnosis.[3]

Naive Bayes classifiers are highly scalable, requiring a
number of parameters linear in the number of variables
(features/predictors) in a learning problem. Maximum-
likelihood training can be done by evaluating a closed-
form expression,[1]:718 which takes linear time, rather
than by expensive iterative approximation as used for
many other types of classifiers.
In the statistics and computer science literature, Naive
Bayes models are known under a variety of names, in-
cluding simple Bayes and independence Bayes.[4] All
these names reference the use of Bayes’ theorem in the
classifier’s decision rule, but naive Bayes is not (necessar-
ily) a Bayesian method;[4] Russell and Norvig note that
"[naive Bayes] is sometimes called a Bayesian classi-
fier, a somewhat careless usage that has prompted true
Bayesians to call it the idiot Bayes model.”[1]:482

38.1 Introduction

Naive Bayes is a simple technique for constructing classi-
fiers: models that assign class labels to problem instances,
represented as vectors of feature values, where the class
labels are drawn from some finite set. It is not a single
algorithm for training such classifiers, but a family of al-
gorithms based on a common principle: all naive Bayes
classifiers assume that the value of a particular feature
is independent of the value of any other feature, given

the class variable. For example, a fruit may be consid-
ered to be an apple if it is red, round, and about 3 cm
in diameter. A naive Bayes classifier considers each of
these features to contribute independently to the proba-
bility that this fruit is an apple, regardless of any possible
correlations between the color, roundness and diameter
features.
For some types of probability models, naive Bayes classi-
fiers can be trained very efficiently in a supervised learn-
ing setting. In many practical applications, parameter
estimation for naive Bayes models uses the method of
maximum likelihood; in other words, one can work with
the naive Bayes model without accepting Bayesian prob-
ability or using any Bayesian methods.
Despite their naive design and apparently oversimplified
assumptions, naive Bayes classifiers have worked quite
well in many complex real-world situations. In 2004, an
analysis of the Bayesian classification problem showed
that there are sound theoretical reasons for the apparently
implausible efficacy of naive Bayes classifiers.[5] Still, a
comprehensive comparison with other classification al-
gorithms in 2006 showed that Bayes classification is out-
performed by other approaches, such as boosted trees or
random forests.[6]

An advantage of naive Bayes is that it only requires a small
amount of training data to estimate the parameters nec-
essary for classification.

38.2 Probabilistic model

Abstractly, naive Bayes is a conditional probability
model: given a problem instance to be classified, repre-
sented by a vector x = (x1, . . . , xn) representing some n
features (independent variables), it assigns to this instance
probabilities

p(Ck|x1, . . . , xn)

for each of k possible outcomes or classes.[7]

The problem with the above formulation is that if the
number of features n is large or if a feature can take on
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a large number of values, then basing such a model on
probability tables is infeasible. We therefore reformulate
the model to make it more tractable. Using Bayes’ theo-
rem, the conditional probability can be decomposed as

p(Ck|x) =
p(Ck) p(x|Ck)

p(x) .

In plain English, using Bayesian probability terminology,
the above equation can be written as

posterior = prior × likelihood
evidence .

In practice, there is interest only in the numerator of that
fraction, because the denominator does not depend on C
and the values of the features Fi are given, so that the
denominator is effectively constant. The numerator is
equivalent to the joint probability model

p(Ck, x1, . . . , xn)

which can be rewritten as follows, using the chain rule
for repeated applications of the definition of conditional
probability:

p(Ck, x1, . . . , xn) = p(Ck) p(x1, . . . , xn|Ck)
= p(Ck) p(x1|Ck) p(x2, . . . , xn|Ck, x1)
= p(Ck) p(x1|Ck) p(x2|Ck, x1) p(x3, . . . , xn|Ck, x1, x2)
= p(Ck) p(x1|Ck) p(x2|Ck, x1) . . . p(xn|Ck, x1, x2, x3, . . . , xn−1)

Now the “naive” conditional independence assumptions
come into play: assume that each feature Fi is condition-
ally independent of every other feature Fj for j ̸= i ,
given the category C . This means that

p(xi|Ck, xj) = p(xi|Ck)

p(xi|Ck, xj , xk) = p(xi|Ck)

p(xi|Ck, xj , xk, xl) = p(xi|Ck)

and so on, for i ̸= j, k, l . Thus, the joint model can be
expressed as

p(Ck|x1, . . . , xn) ∝ p(Ck, x1, . . . , xn)
∝ p(Ck) p(x1|Ck) p(x2|Ck) p(x3|Ck) · · ·

∝ p(Ck)
n∏
i=1

p(xi|Ck) .

This means that under the above independence assump-
tions, the conditional distribution over the class variable
C is:

p(Ck|x1, . . . , xn) =
1

Z
p(Ck)

n∏
i=1

p(xi|Ck)

where the evidence Z = p(x) is a scaling factor depen-
dent only on x1, . . . , xn , that is, a constant if the values
of the feature variables are known.

38.2.1 Constructing a classifier from the
probability model

The discussion so far has derived the independent feature
model, that is, the naive Bayes probability model. The
naive Bayes classifier combines this model with a decision
rule. One common rule is to pick the hypothesis that is
most probable; this is known as the maximum a posteri-
ori or MAP decision rule. The corresponding classifier, a
Bayes classifier, is the function that assigns a class label
ŷ = Ck for some k as follows:

ŷ = argmax
k∈{1,...,K}

p(Ck)
n∏
i=1

p(xi|Ck).

38.3 Parameter estimation and
event models

A class’ prior may be calculated by assuming equiproba-
ble classes (i.e., priors = 1 / (number of classes)), or by
calculating an estimate for the class probability from the
training set (i.e., (prior for a given class) = (number of
samples in the class) / (total number of samples)). To esti-
mate the parameters for a feature’s distribution, one must
assume a distribution or generate nonparametric models
for the features from the training set.[8]

The assumptions on distributions of features are called
the event model of the Naive Bayes classifier. For discrete
features like the ones encountered in document classifica-
tion (include spam filtering), multinomial and Bernoulli
distributions are popular. These assumptions lead to two
distinct models, which are often confused.[9][10]

38.3.1 Gaussian naive Bayes

When dealing with continuous data, a typical assumption
is that the continuous values associated with each class
are distributed according to a Gaussian distribution. For
example, suppose the training data contain a continuous
attribute, x . We first segment the data by the class, and
then compute the mean and variance of x in each class.
Let µc be the mean of the values in x associated with
class c, and let σ2

c be the variance of the values in x asso-
ciated with class c. Then, the probability distribution of
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some value given a class, p(x = v|c) , can be computed
by plugging v into the equation for a Normal distribution
parameterized by µc and σ2

c . That is,

p(x = v|c) = 1√
2πσ2

c

e
− (v−µc)2

2σ2
c

Another common technique for handling continuous val-
ues is to use binning to discretize the feature values, to
obtain a new set of Bernoulli-distributed features; some
literature in fact suggests that this is necessary to apply
naive Bayes, but it is not, and the discretization may throw
away discriminative information.[4]

38.3.2 Multinomial naive Bayes

With a multinomial event model, samples (feature vec-
tors) represent the frequencies with which certain events
have been generated by a multinomial (p1, . . . , pn)where
pi is the probability that event i occurs (or K such multi-
nomials in the multiclass case). A feature vector x =
(x1, . . . , xn) is then a histogram, with xi counting the
number of times event i was observed in a particular in-
stance. This is the event model typically used for doc-
ument classification, with events representing the occur-
rence of a word in a single document (see bag of words
assumption). The likelihood of observing a histogram x
is given by

p(x|Ck) =
(
∑
i xi)!∏
i xi!

∏
i

pki
xi

The multinomial naive Bayes classifier becomes a linear
classifier when expressed in log-space:[2]

log p(Ck|x) ∝ log
(
p(Ck)

n∏
i=1

pki
xi

)

= log p(Ck) +
n∑
i=1

xi · log pki

= b+ w⊤
k x

where b = log p(Ck) and wki = log pki .
If a given class and feature value never occur together
in the training data, then the frequency-based probability
estimate will be zero. This is problematic because it will
wipe out all information in the other probabilities when
they are multiplied. Therefore, it is often desirable to in-
corporate a small-sample correction, called pseudocount,
in all probability estimates such that no probability is ever
set to be exactly zero. This way of regularizing naive
Bayes is called Laplace smoothing when the pseudocount
is one, and Lidstone smoothing in the general case.

Rennie et al. discuss problems with the multinomial as-
sumption in the context of document classification and
possible ways to alleviate those problems, including the
use of tf–idf weights instead of raw term frequencies
and document length normalization, to produce a naive
Bayes classifier that is competitive with support vector
machines.[2]

38.3.3 Bernoulli naive Bayes

In the multivariate Bernoulli event model, features are in-
dependent booleans (binary variables) describing inputs.
Like the multinomial model, this model is popular for
document classification tasks,[9] where binary term oc-
currence features are used rather than term frequencies.
If xi is a boolean expressing the occurrence or absence
of the i'th term from the vocabulary, then the likelihood
of a document given a class Ck is given by[9]

p(x|Ck) =
n∏
i=1

pxi

ki(1− pki)
(1−xi)

where pki is the probability of class Ck generating the
term wi . This event model is especially popular for clas-
sifying short texts. It has the benefit of explicitly mod-
elling the absence of terms. Note that a naive Bayes clas-
sifier with a Bernoulli event model is not the same as
a multinomial NB classifier with frequency counts trun-
cated to one.

38.3.4 Semi-supervised parameter estima-
tion

Given a way to train a naive Bayes classifier from labeled
data, it’s possible to construct a semi-supervised training
algorithm that can learn from a combination of labeled
and unlabeled data by running the supervised learning al-
gorithm in a loop:[11]

Given a collection D = L⊎U of labeled sam-
ples L and unlabeled samples U, start by train-
ing a naive Bayes classifier on L.
Until convergence, do:

Predict class probabilities P (C|x)
for all examples x in D .
Re-train the model based on the
probabilities (not the labels) pre-
dicted in the previous step.

Convergence is determined based on improvement to the
model likelihood P (D|θ) , where θ denotes the parame-
ters of the naive Bayes model.
This training algorithm is an instance of the more gen-
eral expectation–maximization algorithm (EM): the pre-
diction step inside the loop is the E-step of EM, while the
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re-training of naive Bayes is the M-step. The algorithm is
formally justified by the assumption that the data are gen-
erated by a mixture model, and the components of this
mixture model are exactly the classes of the classification
problem.[11]

38.4 Discussion

Despite the fact that the far-reaching independence as-
sumptions are often inaccurate, the naive Bayes classifier
has several properties that make it surprisingly useful in
practice. In particular, the decoupling of the class con-
ditional feature distributions means that each distribution
can be independently estimated as a one-dimensional dis-
tribution. This helps alleviate problems stemming from
the curse of dimensionality, such as the need for data
sets that scale exponentially with the number of features.
While naive Bayes often fails to produce a good estimate
for the correct class probabilities,[12] this may not be a re-
quirement for many applications. For example, the naive
Bayes classifier will make the correct MAP decision rule
classification so long as the correct class is more probable
than any other class. This is true regardless of whether the
probability estimate is slightly, or even grossly inaccurate.
In this manner, the overall classifier can be robust enough
to ignore serious deficiencies in its underlying naive prob-
ability model.[3] Other reasons for the observed success
of the naive Bayes classifier are discussed in the litera-
ture cited below.

38.4.1 Relation to logistic regression

In the case of discrete inputs (indicator or frequency fea-
tures for discrete events), naive Bayes classifiers form a
generative-discriminative pair with (multinomial) logistic
regression classifiers: each naive Bayes classifier can be
considered a way of fitting a probability model that op-
timizes the joint likelihood p(C, x) , while logistic re-
gression fits the same probability model to optimize the
conditional p(C|x) .[13]

The link between the two can be seen by observing that
the decision function for naive Bayes (in the binary case)
can be rewritten as “predict class C1 if the odds of
p(C1|x) exceed those of p(C2|x) ". Expressing this in
log-space gives:

log p(C1|x)
p(C2|x)

= log p(C1|x)− log p(C2|x) > 0

The left-hand side of this equation is the log-odds, or
logit, the quantity predicted by the linear model that un-
derlies logistic regression. Since naive Bayes is also a lin-
ear model for the two “discrete” event models, it can be
reparametrised as a linear function b + w⊤x > 0 . Ob-
taining the probabilities is then a matter of applying the

logistic function to b + w⊤x , or in the multiclass case,
the softmax function.
Discriminative classifiers have lower asymptotic error
than generative ones; however, research by Ng and Jordan
has shown that in some practical cases naive Bayes
can outperform logistic regression because it reaches its
asymptotic error faster.[13]

38.5 Examples

38.5.1 Sex classification

Problem: classify whether a given person is a male or a
female based on the measured features. The features in-
clude height, weight, and foot size.

Training

Example training set below.
The classifier created from the training set using a Gaus-
sian distribution assumption would be (given variances
are unbiased sample variances):
Let’s say we have equiprobable classes so P(male)=
P(female) = 0.5. This prior probability distribution might
be based on our knowledge of frequencies in the larger
population, or on frequency in the training set.

Testing

Below is a sample to be classified as a male or female.
We wish to determine which posterior is greater, male
or female. For the classification as male the posterior is
given by

posterior(male) =
P (male) p(height|male) p(weight|male) p(footsize|male)

evidence

For the classification as female the posterior is given by

posterior(female) =
P (female) p(height|female) p(weight|female) p(footsize|female)

evidence

The evidence (also termed normalizing constant) may be
calculated:

evidence = P (male) p(height|male) p(weight|male) p(footsize|male)

+P (female) p(height|female) p(weight|female) p(footsize|female)

However, given the sample the evidence is a constant and
thus scales both posteriors equally. It therefore does not
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affect classification and can be ignored. We now deter-
mine the probability distribution for the sex of the sam-
ple.

P (male) = 0.5

p(height|male) = 1√
2πσ2

exp
(
−(6− µ)2

2σ2

)
≈ 1.5789

where µ = 5.855 and σ2 = 3.5033 · 10−2 are the pa-
rameters of normal distribution which have been previ-
ously determined from the training set. Note that a value
greater than 1 is OK here – it is a probability density
rather than a probability, because height is a continuous
variable.

p(weight|male) = 5.9881 · 10−6

p(foot size|male) = 1.3112 · 10−3

posterior numerator (male) = their product = 6.1984·10−9

P (female) = 0.5

p(height|female) = 2.2346 · 10−1

p(weight|female) = 1.6789 · 10−2

p(foot size|female) = 2.8669 · 10−1

posterior numerator (female) = their product = 5.3778·10−4

Since posterior numerator is greater in the female case,
we predict the sample is female.

38.5.2 Document classification

Here is a worked example of naive Bayesian classifica-
tion to the document classification problem. Consider
the problem of classifying documents by their content,
for example into spam and non-spam e-mails. Imagine
that documents are drawn from a number of classes of
documents which can be modelled as sets of words where
the (independent) probability that the i-th word of a given
document occurs in a document from class C can be writ-
ten as

p(wi|C)

(For this treatment, we simplify things further by assum-
ing that words are randomly distributed in the document
- that is, words are not dependent on the length of the
document, position within the document with relation to
other words, or other document-context.)
Then the probability that a given document D contains all
of the words wi , given a class C, is

p(D|C) =
∏
i

p(wi|C)

The question that we desire to answer is: “what is the
probability that a given document D belongs to a given
class C?" In other words, what is p(C|D) ?
Now by definition

p(D|C) = p(D ∩ C)
p(C)

and

p(C|D) =
p(D ∩ C)
p(D)

Bayes’ theorem manipulates these into a statement of
probability in terms of likelihood.

p(C|D) =
p(C)

p(D)
p(D|C)

Assume for the moment that there are only two mutually
exclusive classes, S and ¬S (e.g. spam and not spam), such
that every element (email) is in either one or the other;

p(D|S) =
∏
i

p(wi|S)

and

p(D|¬S) =
∏
i

p(wi|¬S)

Using the Bayesian result above, we can write:

p(S|D) =
p(S)

p(D)

∏
i

p(wi|S)

p(¬S|D) =
p(¬S)
p(D)

∏
i

p(wi|¬S)

Dividing one by the other gives:

p(S|D)

p(¬S|D)
=

p(S)
∏
i p(wi|S)

p(¬S)
∏
i p(wi|¬S)

Which can be re-factored as:

p(S|D)

p(¬S|D)
=

p(S)

p(¬S)
∏
i

p(wi|S)
p(wi|¬S)

Thus, the probability ratio p(S | D) / p(¬S | D) can be
expressed in terms of a series of likelihood ratios. The
actual probability p(S | D) can be easily computed from
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log (p(S | D) / p(¬S | D)) based on the observation that
p(S | D) + p(¬S | D) = 1.
Taking the logarithm of all these ratios, we have:

ln p(S|D)

p(¬S|D)
= ln p(S)

p(¬S)
+
∑
i

ln p(wi|S)
p(wi|¬S)

(This technique of "log-likelihood ratios" is a common
technique in statistics. In the case of two mutually exclu-
sive alternatives (such as this example), the conversion of
a log-likelihood ratio to a probability takes the form of a
sigmoid curve: see logit for details.)
Finally, the document can be classified as follows. It is
spam if p(S|D) > p(¬S|D) (i.e., ln p(S|D)

p(¬S|D) > 0 ),
otherwise it is not spam.

38.6 See also
• AODE

• Bayesian spam filtering

• Bayesian network

• Random naive Bayes

• Linear classifier

• Logistic regression

• Perceptron

• Take-the-best heuristic
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Chapter 39

Cross-validation (statistics)

Cross-validation, sometimes called rotation estima-
tion,[1][2][3] is a model validation technique for assess-
ing how the results of a statistical analysis will generalize
to an independent data set. It is mainly used in settings
where the goal is prediction, and one wants to estimate
how accurately a predictive model will perform in prac-
tice. In a prediction problem, a model is usually given a
dataset of known data on which training is run (training
dataset), and a dataset of unknown data (or first seen data)
against which the model is tested (testing dataset).[4] The
goal of cross validation is to define a dataset to “test” the
model in the training phase (i.e., the validation dataset),
in order to limit problems like overfitting, give an in-
sight on how the model will generalize to an independent
dataset (i.e., an unknown dataset, for instance from a real
problem), etc.
One round of cross-validation involves partitioning a
sample of data into complementary subsets, performing
the analysis on one subset (called the training set), and
validating the analysis on the other subset (called the val-
idation set or testing set). To reduce variability, multiple
rounds of cross-validation are performed using different
partitions, and the validation results are averaged over the
rounds.
Cross-validation is important in guarding against testing
hypotheses suggested by the data (called "Type III er-
rors"[5]), especially where further samples are hazardous,
costly or impossible to collect.
Furthermore, one of the main reasons for using cross-
validation instead of using the conventional validation
(e.g. partitioning the data set into two sets of 70% for
training and 30% for test) is that the error (e.g. Root
Mean Square Error) on the training set in the conven-
tional validation is not a useful estimator of model per-
formance and thus the error on the test data set does not
properly represent the assessment of model performance.
This may be due to the fact that there is not enough data
available or there is not a good distribution and spread of
data to partition it into separate training and test sets in
the conventional validation method. In these cases, a fair
way to properly estimate model prediction performance is
to use cross-validation as a powerful general technique.[6]

In summary, cross-validation combines (averages) mea-

sures of fit (prediction error) to correct for the optimistic
nature of training error and derive a more accurate esti-
mate of model prediction performance.[6]

39.1 Purpose of cross-validation

Suppose we have a model with one or more unknown
parameters, and a data set to which the model can be
fit (the training data set). The fitting process optimizes
the model parameters to make the model fit the training
data as well as possible. If we then take an independent
sample of validation data from the same population as
the training data, it will generally turn out that the model
does not fit the validation data as well as it fits the training
data. This is called overfitting, and is particularly likely
to happen when the size of the training data set is small,
or when the number of parameters in the model is large.
Cross-validation is a way to predict the fit of a model to a
hypothetical validation set when an explicit validation set
is not available.
Linear regression provides a simple illustration of overfit-
ting. In linear regression we have real response values y1,
..., yn, and n p-dimensional vector covariates x1, ..., xn.
The components of the vectors xᵢ are denoted xᵢ₁, ..., xᵢ⛽.
If we use least squares to fit a function in the form of a
hyperplane y = a + βTx to the data (xᵢ, yᵢ)₁≤ᵢ≤⛼, we could
then assess the fit using the mean squared error (MSE).
The MSE for a given value of the parameters a and β on
the training set (xᵢ, yᵢ)₁≤ᵢ≤⛼ is

1

n

n∑
i=1

(yi−a−βT xi)2 =
1

n

n∑
i=1

(yi−a−β1xi1−· · ·−βpxip)2

It can be shown under mild assumptions that the expected
value of the MSE for the training set is (n − p − 1)/(n
+ p + 1) < 1 times the expected value of the MSE for
the validation set (the expected value is taken over the
distribution of training sets). Thus if we fit the model
and compute the MSE on the training set, we will get an
optimistically biased assessment of how well the model
will fit an independent data set. This biased estimate is
called the in-sample estimate of the fit, whereas the cross-
validation estimate is an out-of-sample estimate.
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Since in linear regression it is possible to directly com-
pute the factor (n − p − 1)/(n + p + 1) by which the
training MSE underestimates the validation MSE, cross-
validation is not practically useful in that setting (how-
ever, cross-validation remains useful in the context of lin-
ear regression in that it can be used to select an optimally
regularized cost function). In most other regression pro-
cedures (e.g. logistic regression), there is no simple for-
mula to make such an adjustment. Cross-validation is,
thus, a generally applicable way to predict the perfor-
mance of a model on a validation set using computation
in place of mathematical analysis.

39.2 Common types of cross-
validation

Two types of cross-validation can be distinguished, ex-
haustive and non-exhaustive cross-validation.

39.2.1 Exhaustive cross-validation

Exhaustive cross-validation methods are cross-validation
methods which learn and test on all possible ways to di-
vide the original sample into a training and a validation
set.

Leave-p-out cross-validation

Leave-p-out cross-validation (LpO CV) involves using p
observations as the validation set and the remaining ob-
servations as the training set. This is repeated on all ways
to cut the original sample on a validation set of p obser-
vations and a training set.
LpO cross-validation requires to learn and validate Cnp
times (where n is the number of observations in the orig-
inal sample). So as soon as n is quite big it becomes im-
possible to calculate. (See Binomial coefficient)

Leave-one-out cross-validation

Leave-one-out cross-validation (LOOCV) is a particular
case of leave-p-out cross-validation with p = 1.
LOO cross-validation doesn't have the calculation prob-
lem of general LpO cross-validation because Cn1 = n .

39.2.2 Non-exhaustive cross-validation

Non-exhaustive cross validation methods do not compute
all ways of splitting the original sample. Those methods
are approximations of leave-p-out cross-validation.

k-fold cross-validation

In k-fold cross-validation, the original sample is randomly
partitioned into k equal sized subsamples. Of the k sub-
samples, a single subsample is retained as the validation
data for testing the model, and the remaining k − 1 sub-
samples are used as training data. The cross-validation
process is then repeated k times (the folds), with each
of the k subsamples used exactly once as the validation
data. The k results from the folds can then be averaged
(or otherwise combined) to produce a single estimation.
The advantage of this method over repeated random sub-
sampling (see below) is that all observations are used for
both training and validation, and each observation is used
for validation exactly once. 10-fold cross-validation is
commonly used,[7] but in general k remains an unfixed
parameter.
When k=n (the number of observations), the k-fold cross-
validation is exactly the leave-one-out cross-validation.
In stratified k-fold cross-validation, the folds are selected
so that the mean response value is approximately equal
in all the folds. In the case of a dichotomous classifica-
tion, this means that each fold contains roughly the same
proportions of the two types of class labels.

2-fold cross-validation

This is the simplest variation of k-fold cross-validation.
Also called holdout method.[8] For each fold, we ran-
domly assign data points to two sets d0 and d1, so that
both sets are equal size (this is usually implemented by
shuffling the data array and then splitting it in two). We
then train on d0 and test on d1, followed by training on
d1 and testing on d0.
This has the advantage that our training and test sets are
both large, and each data point is used for both training
and validation on each fold.

Repeated random sub-sampling validation

This method randomly splits the dataset into training and
validation data. For each such split, the model is fit to
the training data, and predictive accuracy is assessed us-
ing the validation data. The results are then averaged over
the splits. The advantage of this method (over k-fold cross
validation) is that the proportion of the training/validation
split is not dependent on the number of iterations (folds).
The disadvantage of this method is that some observa-
tions may never be selected in the validation subsample,
whereas others may be selected more than once. In other
words, validation subsets may overlap. This method also
exhibits Monte Carlo variation, meaning that the results
will vary if the analysis is repeated with different random
splits.
When the number of random splits goes to infinity, the
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Repeated random sub-sampling validation become arbi-
trary close to the leave-p-out cross-validation.
In a stratified variant of this approach, the random sam-
ples are generated in such a way that the mean response
value (i.e. the dependent variable in the regression) is
equal in the training and testing sets. This is particularly
useful if the responses are dichotomous with an unbal-
anced representation of the two response values in the
data.

39.3 Measures of fit

The goal of cross-validation is to estimate the expected
level of fit of a model to a data set that is independent of
the data that were used to train the model. It can be used
to estimate any quantitative measure of fit that is appro-
priate for the data and model. For example, for binary
classification problems, each case in the validation set is
either predicted correctly or incorrectly. In this situation
the misclassification error rate can be used to summarize
the fit, although other measures like positive predictive
value could also be used. When the value being predicted
is continuously distributed, the mean squared error, root
mean squared error or median absolute deviation could
be used to summarize the errors.

39.4 Applications

Cross-validation can be used to compare the perfor-
mances of different predictive modeling procedures. For
example, suppose we are interested in optical character
recognition, and we are considering using either support
vector machines (SVM) or k nearest neighbors (KNN)
to predict the true character from an image of a hand-
written character. Using cross-validation, we could ob-
jectively compare these two methods in terms of their re-
spective fractions of misclassified characters. If we sim-
ply compared the methods based on their in-sample error
rates, the KNN method would likely appear to perform
better, since it is more flexible and hence more prone to
overfitting compared to the SVM method.
Cross-validation can also be used in variable selection.[9]

Suppose we are using the expression levels of 20 proteins
to predict whether a cancer patient will respond to a drug.
A practical goal would be to determine which subset of
the 20 features should be used to produce the best predic-
tive model. For most modeling procedures, if we com-
pare feature subsets using the in-sample error rates, the
best performance will occur when all 20 features are used.
However under cross-validation, the model with the best
fit will generally include only a subset of the features that
are deemed truly informative.

39.5 Statistical properties

Suppose we choose a measure of fit F, and use cross-
validation to produce an estimate F* of the expected fit
EF of a model to an independent data set drawn from
the same population as the training data. If we imagine
sampling multiple independent training sets following the
same distribution, the resulting values for F* will vary.
The statistical properties of F* result from this variation.
The cross-validation estimator F* is very nearly unbiased
for EF. The reason that it is slightly biased is that the train-
ing set in cross-validation is slightly smaller than the ac-
tual data set (e.g. for LOOCV the training set size is n − 1
when there are n observed cases). In nearly all situations,
the effect of this bias will be conservative in that the esti-
mated fit will be slightly biased in the direction suggesting
a poorer fit. In practice, this bias is rarely a concern.
The variance of F* can be large.[10][11] For this reason,
if two statistical procedures are compared based on the
results of cross-validation, it is important to note that the
procedure with the better estimated performance may not
actually be the better of the two procedures (i.e. it may
not have the better value of EF). Some progress has been
made on constructing confidence intervals around cross-
validation estimates,[10] but this is considered a difficult
problem.

39.6 Computational issues

Most forms of cross-validation are straightforward to im-
plement as long as an implementation of the prediction
method being studied is available. In particular, the pre-
diction method need only be available as a “black box”
– there is no need to have access to the internals of its
implementation. If the prediction method is expensive to
train, cross-validation can be very slow since the training
must be carried out repeatedly. In some cases such as
least squares and kernel regression, cross-validation can
be sped up significantly by pre-computing certain values
that are needed repeatedly in the training, or by using fast
“updating rules” such as the Sherman–Morrison formula.
However one must be careful to preserve the “total blind-
ing” of the validation set from the training procedure, oth-
erwise bias may result. An extreme example of acceler-
ating cross-validation occurs in linear regression, where
the results of cross-validation have a closed-form expres-
sion known as the prediction residual error sum of squares
(PRESS).

39.7 Relationship to other forms of
validation

In “true validation,” or “holdout validation,” a subset of
observations is chosen randomly from the initial sample
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to form a validation or testing set, and the remaining ob-
servations are retained as the training data. Normally,
less than a third of the initial sample is used for valida-
tion data.[12]

39.8 Limitations and misuse

Cross-validation only yields meaningful results if the val-
idation set and training set are drawn from the same pop-
ulation and only if human biases are controlled.
In many applications of predictive modeling, the struc-
ture of the system being studied evolves over time. Both
of these can introduce systematic differences between the
training and validation sets. For example, if a model for
predicting stock values is trained on data for a certain
five-year period, it is unrealistic to treat the subsequent
five-year period as a draw from the same population. As
another example, suppose a model is developed to predict
an individual’s risk for being diagnosed with a particular
disease within the next year. If the model is trained us-
ing data from a study involving only a specific population
group (e.g. young people or males), but is then applied to
the general population, the cross-validation results from
the training set could differ greatly from the actual pre-
dictive performance.
In many applications, models also may be incorrectly
specified and vary as a function of modeler biases and/or
arbitrary choices. When this occurs, there may be an illu-
sion that the system changes in external samples, whereas
the reason is that the model has missed a critical predic-
tor and/or included a confounded predictor. New evi-
dence is that cross-validation by itself is not very predic-
tive of external validity, whereas a form of experimen-
tal validation known as swap sampling that does control
for human bias can be much more predictive of exter-
nal validity.[13] As defined by this large MAQC-II study
across 30,000 models, swap sampling incorporates cross-
validation in the sense that predictions are tested across
independent training and validation samples. Yet, models
are also developed across these independent samples and
by modelers who are blinded to one another. When there
is a mismatch in these models developed across these
swapped training and validation samples as happens quite
frequently, MAQC-II shows that this will be much more
predictive of poor external predictive validity than tradi-
tional cross-validation.
The reason for the success of the swapped sampling is a
built-in control for human biases in model building. In
addition to placing too much faith in predictions that may
vary across modelers and lead to poor external validity
due to these confounding modeler effects, these are some
other ways that cross-validation can be misused:

• By performing an initial analysis to identify the most
informative features using the entire data set – if

feature selection or model tuning is required by the
modeling procedure, this must be repeated on every
training set. Otherwise, predictions will certainly be
upwardly biased.[14] If cross-validation is used to de-
cide which features to use, an inner cross-validation
to carry out the feature selection on every training
set must be performed.[15]

• By allowing some of the training data to also be in-
cluded in the test set – this can happen due to “twin-
ning” in the data set, whereby some exactly identical
or nearly identical samples are present in the data
set. Note that to some extent twinning always takes
place even in perfectly independent training and val-
idation samples. This is because some of the train-
ing sample observations will have nearly identical
values of predictors as validation sample observa-
tions. And some of these will correlate with a target
at better than chance levels in the same direction in
both training and validation when they are actually
driven by confounded predictors with poor external
validity. If such a cross-validated model is selected
from a k-fold set, human confirmation bias will be
at work and determine that such a model has been
validated. This is why traditional cross-validation
needs to be supplemented with controls for human
bias and confounded model specification like swap
sampling and prospective studies.

It should be noted that some statisticians have questioned
the usefulness of validation samples.[16]

39.9 See also

• Boosting (machine learning)

• Bootstrap aggregating (bagging)

• Bootstrapping (statistics)

• Resampling (statistics)
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Chapter 40

Unsupervised learning

In machine learning, the problem of unsupervised
learning is that of trying to find hidden structure in un-
labeled data. Since the examples given to the learner are
unlabeled, there is no error or reward signal to evaluate a
potential solution. This distinguishes unsupervised learn-
ing from supervised learning and reinforcement learning.
Unsupervised learning is closely related to the problem
of density estimation in statistics.[1] However unsuper-
vised learning also encompasses many other techniques
that seek to summarize and explain key features of the
data. Many methods employed in unsupervised learn-
ing are based on data mining methods used to preprocess
data.
Approaches to unsupervised learning include:

• clustering (e.g., k-means, mixture models,
hierarchical clustering),[2]

• Approaches for learning latent variable models such
as

• Expectation–maximization algorithm (EM)
• Method of moments
• Blind signal separation techniques, e.g.,

• Principal component analysis,
• Independent component analysis,
• Non-negative matrix factorization,
• Singular value decomposition.[3]

Among neural network models, the self-organizing map
(SOM) and adaptive resonance theory (ART) are com-
monly used unsupervised learning algorithms. The SOM
is a topographic organization in which nearby locations
in the map represent inputs with similar properties. The
ART model allows the number of clusters to vary with
problem size and lets the user control the degree of sim-
ilarity between members of the same clusters by means
of a user-defined constant called the vigilance parameter.
ART networks are also used for many pattern recognition
tasks, such as automatic target recognition and seismic
signal processing. The first version of ART was “ART1”,
developed by Carpenter and Grossberg (1988).[4]

40.1 Method of moments

One of the approaches in unsupervised learning is the
method of moments. In the method of moments, the un-
known parameters (of interest) in the model are related
to the moments of one or more random variables, and
thus, these unknown parameters can be estimated given
the moments. The moments are usually estimated from
samples in an empirical way. The basic moments are first
and second order moments. For a random vector, the
first order moment is the mean vector, and the second
order moment is the covariance matrix (when the mean
is zero). Higher order moments are usually represented
using tensors which are the generalization of matrices to
higher orders as multi-dimensional arrays.
In particular, the method of moments is shown to be ef-
fective in learning the parameters of latent variable mod-
els.[5] Latent variable models are statistical models where
in addition to the observed variables, a set of latent vari-
ables also exists which is not observed. A highly practical
example of latent variable models in machine learning is
the topic modeling which is a statistical model for gen-
erating the words (observed variables) in the document
based on the topic (latent variable) of the document. In
the topic modeling, the words in the document are gen-
erated according to different statistical parameters when
the topic of the document is changed. It is shown that
method of moments (tensor decomposition techniques)
consistently recover the parameters of a large class of la-
tent variable models under some assumptions.[5]

Expectation–maximization algorithm (EM) is also one of
the most practical methods for learning latent variable
models. But, it can be stuck in local optima, and the
global convergence of the algorithm to the true unknown
parameters of the model is not guaranteed. While, for
the method of moments, the global convergence is guar-
anteed under some conditions.[5]

40.2 See also
• Cluster analysis

• Expectation–maximization algorithm
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• Generative topographic map

• Multilinear subspace learning

• Multivariate analysis

• Radial basis function network
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Cluster analysis

For the supervised learning approach, see Statistical clas-
sification.
Cluster analysis or clustering is the task of grouping

The result of a cluster analysis shown as the coloring of the
squares into three clusters.

a set of objects in such a way that objects in the same
group (called a cluster) are more similar (in some sense
or another) to each other than to those in other groups
(clusters). It is a main task of exploratory data min-
ing, and a common technique for statistical data analysis,
used in many fields, including machine learning, pattern
recognition, image analysis, information retrieval, and
bioinformatics.
Cluster analysis itself is not one specific algorithm, but
the general task to be solved. It can be achieved by var-
ious algorithms that differ significantly in their notion
of what constitutes a cluster and how to efficiently find
them. Popular notions of clusters include groups with
small distances among the cluster members, dense ar-
eas of the data space, intervals or particular statistical
distributions. Clustering can therefore be formulated as
a multi-objective optimization problem. The appropri-
ate clustering algorithm and parameter settings (includ-
ing values such as the distance function to use, a density
threshold or the number of expected clusters) depend on
the individual data set and intended use of the results.
Cluster analysis as such is not an automatic task, but an
iterative process of knowledge discovery or interactive
multi-objective optimization that involves trial and fail-
ure. It will often be necessary to modify data preprocess-

ing and model parameters until the result achieves the de-
sired properties.
Besides the term clustering, there are a number of terms
with similar meanings, including automatic classification,
numerical taxonomy, botryology (from Greek βότρυς
“grape”) and typological analysis. The subtle differences
are often in the usage of the results: while in data min-
ing, the resulting groups are the matter of interest, in au-
tomatic classification the resulting discriminative power
is of interest. This often leads to misunderstandings be-
tween researchers coming from the fields of data mining
and machine learning, since they use the same terms and
often the same algorithms, but have different goals.
Cluster analysis was originated in anthropology by Driver
and Kroeber in 1932 and introduced to psychology by Zu-
bin in 1938 and Robert Tryon in 1939[1][2] and famously
used by Cattell beginning in 1943[3] for trait theory clas-
sification in personality psychology.

41.1 Definition

According to Vladimir Estivill-Castro, the notion of a
“cluster” cannot be precisely defined, which is one of the
reasons why there are so many clustering algorithms.[4]

There is a common denominator: a group of data ob-
jects. However, different researchers employ different
cluster models, and for each of these cluster models again
different algorithms can be given. The notion of a clus-
ter, as found by different algorithms, varies significantly
in its properties. Understanding these “cluster models” is
key to understanding the differences between the various
algorithms. Typical cluster models include:

• Connectivity models: for example hierarchical clus-
tering builds models based on distance connectivity.

• Centroid models: for example the k-means algo-
rithm represents each cluster by a single mean vec-
tor.

• Distribution models: clusters are modeled using sta-
tistical distributions, such as multivariate normal
distributions used by the Expectation-maximization
algorithm.
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• Density models: for example DBSCAN and
OPTICS defines clusters as connected dense regions
in the data space.

• Subspace models: in Biclustering (also known as
Co-clustering or two-mode-clustering), clusters are
modeled with both cluster members and relevant at-
tributes.

• Group models: some algorithms do not provide a
refined model for their results and just provide the
grouping information.

• Graph-based models: a clique, i.e., a subset of nodes
in a graph such that every two nodes in the subset are
connected by an edge can be considered as a proto-
typical form of cluster. Relaxations of the complete
connectivity requirement (a fraction of the edges can
be missing) are known as quasi-cliques, as in HCS
clustering algorithm .

A “clustering” is essentially a set of such clusters, usually
containing all objects in the data set. Additionally, it may
specify the relationship of the clusters to each other, for
example a hierarchy of clusters embedded in each other.
Clusterings can be roughly distinguished as:

• hard clustering: each object belongs to a cluster or
not

• soft clustering (also: fuzzy clustering): each object
belongs to each cluster to a certain degree (e.g. a
likelihood of belonging to the cluster)

There are also finer distinctions possible, for example:

• strict partitioning clustering: here each object be-
longs to exactly one cluster

• strict partitioning clustering with outliers: objects
can also belong to no cluster, and are considered
outliers.

• overlapping clustering (also: alternative clustering,
multi-view clustering): while usually a hard cluster-
ing, objects may belong to more than one cluster.

• hierarchical clustering: objects that belong to a child
cluster also belong to the parent cluster

• subspace clustering: while an overlapping cluster-
ing, within a uniquely defined subspace, clusters are
not expected to overlap.

41.2 Algorithms

Main category: Data clustering algorithms

Clustering algorithms can be categorized based on their
cluster model, as listed above. The following overview
will only list the most prominent examples of clustering
algorithms, as there are possibly over 100 published clus-
tering algorithms. Not all provide models for their clus-
ters and can thus not easily be categorized. An overview
of algorithms explained in Wikipedia can be found in the
list of statistics algorithms.
There is no objectively “correct” clustering algorithm,
but as it was noted, “clustering is in the eye of the
beholder.”[4] The most appropriate clustering algorithm
for a particular problem often needs to be chosen exper-
imentally, unless there is a mathematical reason to prefer
one cluster model over another. It should be noted that
an algorithm that is designed for one kind of model has
no chance on a data set that contains a radically differ-
ent kind of model.[4] For example, k-means cannot find
non-convex clusters.[4]

41.2.1 Connectivity based clustering (hier-
archical clustering)

Main article: Hierarchical clustering

Connectivity based clustering, also known as hierarchical
clustering, is based on the core idea of objects being
more related to nearby objects than to objects farther
away. These algorithms connect “objects” to form “clus-
ters” based on their distance. A cluster can be described
largely by the maximum distance needed to connect parts
of the cluster. At different distances, different clusters
will form, which can be represented using a dendrogram,
which explains where the common name “hierarchical
clustering” comes from: these algorithms do not provide
a single partitioning of the data set, but instead provide
an extensive hierarchy of clusters that merge with each
other at certain distances. In a dendrogram, the y-axis
marks the distance at which the clusters merge, while the
objects are placed along the x-axis such that the clusters
don't mix.
Connectivity based clustering is a whole family of meth-
ods that differ by the way distances are computed. Apart
from the usual choice of distance functions, the user also
needs to decide on the linkage criterion (since a clus-
ter consists of multiple objects, there are multiple candi-
dates to compute the distance to) to use. Popular choices
are known as single-linkage clustering (the minimum of
object distances), complete linkage clustering (the maxi-
mum of object distances) or UPGMA (“Unweighted Pair
Group Method with Arithmetic Mean”, also known as av-
erage linkage clustering). Furthermore, hierarchical clus-
tering can be agglomerative (starting with single elements
and aggregating them into clusters) or divisive (starting
with the complete data set and dividing it into partitions).
These methods will not produce a unique partitioning of
the data set, but a hierarchy from which the user still

https://en.wikipedia.org/wiki/DBSCAN
https://en.wikipedia.org/wiki/OPTICS
https://en.wikipedia.org/wiki/Biclustering
https://en.wikipedia.org/wiki/Clique_(graph_theory)
https://en.wikipedia.org/wiki/Graph_(mathematics)
https://en.wikipedia.org/wiki/HCS_clustering_algorithm
https://en.wikipedia.org/wiki/HCS_clustering_algorithm
https://en.wikipedia.org/wiki/Fuzzy_clustering
https://en.wikipedia.org/wiki/Anomaly_detection
https://en.wikipedia.org/wiki/Subspace_clustering
https://en.wikipedia.org/wiki/Category:Data_clustering_algorithms
https://en.wikipedia.org/wiki/List_of_algorithms#Statistics
https://en.wikipedia.org/wiki/Hierarchical_clustering
https://en.wikipedia.org/wiki/Hierarchical_clustering
https://en.wikipedia.org/wiki/Hierarchical_clustering
https://en.wikipedia.org/wiki/Dendrogram
https://en.wikipedia.org/wiki/Distance_function
https://en.wikipedia.org/wiki/Single-linkage_clustering
https://en.wikipedia.org/wiki/Complete_linkage_clustering
https://en.wikipedia.org/wiki/UPGMA


41.2. ALGORITHMS 275

needs to choose appropriate clusters. They are not very
robust towards outliers, which will either show up as ad-
ditional clusters or even cause other clusters to merge
(known as “chaining phenomenon”, in particular with
single-linkage clustering). In the general case, the com-
plexity is O(n3) , which makes them too slow for large
data sets. For some special cases, optimal efficient meth-
ods (of complexity O(n2) ) are known: SLINK[5] for
single-linkage and CLINK[6] for complete-linkage clus-
tering. In the data mining community these methods are
recognized as a theoretical foundation of cluster analysis,
but often considered obsolete. They did however provide
inspiration for many later methods such as density based
clustering.

• Linkage clustering examples

• Single-linkage on Gaussian data. At 35 clusters, the
biggest cluster starts fragmenting into smaller parts,
while before it was still connected to the second
largest due to the single-link effect.

• Single-linkage on density-based clusters. 20 clusters
extracted, most of which contain single elements,
since linkage clustering does not have a notion of
“noise”.

41.2.2 Centroid-based clustering

Main article: k-means clustering

In centroid-based clustering, clusters are represented by
a central vector, which may not necessarily be a mem-
ber of the data set. When the number of clusters is fixed
to k, k-means clustering gives a formal definition as an
optimization problem: find the k cluster centers and as-
sign the objects to the nearest cluster center, such that the
squared distances from the cluster are minimized.
The optimization problem itself is known to be NP-hard,
and thus the common approach is to search only for ap-
proximate solutions. A particularly well known approxi-
mative method is Lloyd’s algorithm,[7] often actually re-
ferred to as "k-means algorithm". It does however only
find a local optimum, and is commonly run multiple times
with different random initializations. Variations of k-
means often include such optimizations as choosing the
best of multiple runs, but also restricting the centroids to
members of the data set (k-medoids), choosing medians
(k-medians clustering), choosing the initial centers less
randomly (K-means++) or allowing a fuzzy cluster as-
signment (Fuzzy c-means).
Most k-means-type algorithms require the number of
clusters - k - to be specified in advance, which is con-
sidered to be one of the biggest drawbacks of these al-
gorithms. Furthermore, the algorithms prefer clusters of
approximately similar size, as they will always assign an

object to the nearest centroid. This often leads to incor-
rectly cut borders in between of clusters (which is not sur-
prising, as the algorithm optimized cluster centers, not
cluster borders).
K-means has a number of interesting theoretical prop-
erties. On the one hand, it partitions the data space
into a structure known as a Voronoi diagram. On the
other hand, it is conceptually close to nearest neighbor
classification, and as such is popular in machine learn-
ing. Third, it can be seen as a variation of model based
classification, and Lloyd’s algorithm as a variation of the
Expectation-maximization algorithm for this model dis-
cussed below.

• k-Means clustering examples

• K-means separates data into Voronoi-cells, which
assumes equal-sized clusters (not adequate here)

• K-means cannot represent density-based clusters

41.2.3 Distribution-based clustering

The clustering model most closely related to statistics is
based on distribution models. Clusters can then easily be
defined as objects belonging most likely to the same dis-
tribution. A convenient property of this approach is that
this closely resembles the way artificial data sets are gen-
erated: by sampling random objects from a distribution.
While the theoretical foundation of these methods is
excellent, they suffer from one key problem known as
overfitting, unless constraints are put on the model com-
plexity. A more complex model will usually be able to
explain the data better, which makes choosing the appro-
priate model complexity inherently difficult.
One prominent method is known as Gaussian mixture
models (using the expectation-maximization algorithm).
Here, the data set is usually modelled with a fixed (to
avoid overfitting) number of Gaussian distributions that
are initialized randomly and whose parameters are iter-
atively optimized to fit better to the data set. This will
converge to a local optimum, so multiple runs may pro-
duce different results. In order to obtain a hard clustering,
objects are often then assigned to the Gaussian distribu-
tion they most likely belong to; for soft clusterings, this is
not necessary.
Distribution-based clustering produces complex models
for clusters that can capture correlation and dependence
between attributes. However, these algorithms put an ex-
tra burden on the user: for many real data sets, there may
be no concisely defined mathematical model (e.g. assum-
ing Gaussian distributions is a rather strong assumption
on the data).

• Expectation-Maximization (EM) clustering exam-
ples

https://en.wikipedia.org/wiki/Single-linkage_clustering
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/NP-hard
https://en.wikipedia.org/wiki/Lloyd%2527s_algorithm
https://en.wikipedia.org/wiki/Local_optimum
https://en.wikipedia.org/wiki/K-medoids
https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/K-medians_clustering
https://en.wikipedia.org/wiki/K-means++
https://en.wikipedia.org/wiki/Fuzzy_clustering
https://en.wikipedia.org/wiki/Determining_the_number_of_clusters_in_a_data_set
https://en.wikipedia.org/wiki/Determining_the_number_of_clusters_in_a_data_set
https://en.wikipedia.org/wiki/Voronoi_diagram
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Expectation-maximization_algorithm
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Overfitting
https://en.wikipedia.org/wiki/Expectation-maximization_algorithm
https://en.wikipedia.org/wiki/Gaussian_distribution
https://en.wikipedia.org/wiki/Local_optimum
https://en.wikipedia.org/wiki/Correlation_and_dependence


276 CHAPTER 41. CLUSTER ANALYSIS

• On Gaussian-distributed data, EM works well, since
it uses Gaussians for modelling clusters

• Density-based clusters cannot be modeled using
Gaussian distributions

41.2.4 Density-based clustering

In density-based clustering,[8] clusters are defined as areas
of higher density than the remainder of the data set. Ob-
jects in these sparse areas - that are required to separate
clusters - are usually considered to be noise and border
points.
The most popular[9] density based clustering method is
DBSCAN.[10] In contrast to many newer methods, it
features a well-defined cluster model called “density-
reachability”. Similar to linkage based clustering, it is
based on connecting points within certain distance thresh-
olds. However, it only connects points that satisfy a den-
sity criterion, in the original variant defined as a minimum
number of other objects within this radius. A cluster con-
sists of all density-connected objects (which can form a
cluster of an arbitrary shape, in contrast to many other
methods) plus all objects that are within these objects’
range. Another interesting property of DBSCAN is that
its complexity is fairly low - it requires a linear number
of range queries on the database - and that it will dis-
cover essentially the same results (it is deterministic for
core and noise points, but not for border points) in each
run, therefore there is no need to run it multiple times.
OPTICS[11] is a generalization of DBSCAN that removes
the need to choose an appropriate value for the range pa-
rameter ε , and produces a hierarchical result related to
that of linkage clustering. DeLi-Clu,[12] Density-Link-
Clustering combines ideas from single-linkage clustering
and OPTICS, eliminating the ε parameter entirely and of-
fering performance improvements over OPTICS by using
an R-tree index.
The key drawback of DBSCAN and OPTICS is that they
expect some kind of density drop to detect cluster bor-
ders. Moreover, they cannot detect intrinsic cluster struc-
tures which are prevalent in the majority of real life data.
A variation of DBSCAN, EnDBSCAN,[13] efficiently de-
tects such kinds of structures. On data sets with, for ex-
ample, overlapping Gaussian distributions - a common
use case in artificial data - the cluster borders produced
by these algorithms will often look arbitrary, because
the cluster density decreases continuously. On a data set
consisting of mixtures of Gaussians, these algorithms are
nearly always outperformed by methods such as EM clus-
tering that are able to precisely model this kind of data.
Mean-shift is a clustering approach where each object is
moved to the densest area in its vicinity, based on kernel
density estimation. Eventually, objects converge to local
maxima of density. Similar to k-means clustering, these
“density attractors” can serve as representatives for the

data set, but mean-shift can detect arbitrary-shaped clus-
ters similar to DBSCAN. Due to the expensive iterative
procedure and density estimation, mean-shift is usually
slower than DBSCAN or k-Means.

• Density-based clustering examples
• Density-based clustering with DBSCAN.
• DBSCAN assumes clusters of similar density, and

may have problems separating nearby clusters
• OPTICS is a DBSCAN variant that handles different

densities much better

41.2.5 Recent developments

In recent years considerable effort has been put into im-
proving the performance of existing algorithms.[14][15]

Among them are CLARANS (Ng and Han, 1994),[16] and
BIRCH (Zhang et al., 1996).[17] With the recent need to
process larger and larger data sets (also known as big
data), the willingness to trade semantic meaning of the
generated clusters for performance has been increasing.
This led to the development of pre-clustering methods
such as canopy clustering, which can process huge data
sets efficiently, but the resulting “clusters” are merely a
rough pre-partitioning of the data set to then analyze the
partitions with existing slower methods such as k-means
clustering. Various other approaches to clustering have
been tried such as seed based clustering.[18]

For high-dimensional data, many of the existing meth-
ods fail due to the curse of dimensionality, which ren-
ders particular distance functions problematic in high-
dimensional spaces. This led to new clustering algorithms
for high-dimensional data that focus on subspace clus-
tering (where only some attributes are used, and cluster
models include the relevant attributes for the cluster) and
correlation clustering that also looks for arbitrary rotated
(“correlated”) subspace clusters that can be modeled by
giving a correlation of their attributes. Examples for such
clustering algorithms are CLIQUE[19] and SUBCLU.[20]

Ideas from density-based clustering methods (in partic-
ular the DBSCAN/OPTICS family of algorithms) have
been adopted to subspace clustering (HiSC,[21] hierar-
chical subspace clustering and DiSH[22]) and correlation
clustering (HiCO,[23] hierarchical correlation clustering,
4C[24] using “correlation connectivity” and ERiC[25] ex-
ploring hierarchical density-based correlation clusters).
Several different clustering systems based on mutual in-
formation have been proposed. One is Marina Meilă's
variation of information metric;[26] another provides hi-
erarchical clustering.[27] Using genetic algorithms, a wide
range of different fit-functions can be optimized, includ-
ing mutual information.[28] Also message passing algo-
rithms, a recent development in Computer Science and
Statistical Physics, has led to the creation of new types of
clustering algorithms.[29]
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41.2.6 Other methods

• Basic sequential algorithmic scheme (BSAS)

41.3 Evaluation and assessment

Evaluation of clustering results sometimes is referred to
as cluster validation.
There have been several suggestions for a measure of sim-
ilarity between two clusterings. Such a measure can be
used to compare how well different data clustering al-
gorithms perform on a set of data. These measures are
usually tied to the type of criterion being considered in
assessing the quality of a clustering method.

41.3.1 Internal evaluation

When a clustering result is evaluated based on the data
that was clustered itself, this is called internal evaluation.
These methods usually assign the best score to the algo-
rithm that produces clusters with high similarity within a
cluster and low similarity between clusters. One draw-
back of using internal criteria in cluster evaluation is that
high scores on an internal measure do not necessarily re-
sult in effective information retrieval applications.[30] Ad-
ditionally, this evaluation is biased towards algorithms
that use the same cluster model. For example k-Means
clustering naturally optimizes object distances, and a
distance-based internal criterion will likely overrate the
resulting clustering.
Therefore, the internal evaluation measures are best
suited to get some insight into situations where one al-
gorithm performs better than another, but this shall not
imply that one algorithm produces more valid results than
another.[4] Validity as measured by such an index depends
on the claim that this kind of structure exists in the data
set. An algorithm designed for some kind of models has
no chance if the data set contains a radically different set
of models, or if the evaluation measures a radically dif-
ferent criterion.[4] For example, k-means clustering can
only find convex clusters, and many evaluation indexes
assume convex clusters. On a data set with non-convex
clusters neither the use of k-means, nor of an evaluation
criterion that assumes convexity, is sound.
The following methods can be used to assess the quality
of clustering algorithms based on internal criterion:

• Davies–Bouldin index

The Davies–Bouldin index can be calculated by
the following formula:
DB = 1

n

∑n
i=1 maxj ̸=i

(
σi+σj

d(ci,cj)

)
where n is the number of clusters, cx is the
centroid of cluster x , σx is the average dis-

tance of all elements in cluster x to centroid
cx , and d(ci, cj) is the distance between cen-
troids ci and cj . Since algorithms that pro-
duce clusters with low intra-cluster distances
(high intra-cluster similarity) and high inter-
cluster distances (low inter-cluster similarity)
will have a low Davies–Bouldin index, the clus-
tering algorithm that produces a collection of
clusters with the smallest Davies–Bouldin in-
dex is considered the best algorithm based on
this criterion.

• Dunn index

The Dunn index aims to identify dense and
well-separated clusters. It is defined as the ratio
between the minimal inter-cluster distance to
maximal intra-cluster distance. For each clus-
ter partition, the Dunn index can be calculated
by the following formula:[31]

D =
min1≤i<j≤n d(i,j)

max1≤k≤n d′(k)
,

where d(i,j) represents the distance between
clusters i and j, and d '(k) measures the intra-
cluster distance of cluster k. The inter-cluster
distance d(i,j) between two clusters may be
any number of distance measures, such as the
distance between the centroids of the clusters.
Similarly, the intra-cluster distance d '(k) may
be measured in a variety ways, such as the max-
imal distance between any pair of elements in
cluster k. Since internal criterion seek clusters
with high intra-cluster similarity and low inter-
cluster similarity, algorithms that produce clus-
ters with high Dunn index are more desirable.

• Silhouette coefficient

The silhouette coefficient contrasts the average
distance to elements in the same cluster with
the average distance to elements in other clus-
ters. Objects with a high silhouette value are
considered well clustered, objects with a low
value may be outliers. This index works well
with k-means clustering, and is also used to de-
termine the optimal number of clusters.

41.3.2 External evaluation

In external evaluation, clustering results are evaluated
based on data that was not used for clustering, such
as known class labels and external benchmarks. Such
benchmarks consist of a set of pre-classified items, and
these sets are often created by human (experts). Thus, the
benchmark sets can be thought of as a gold standard for
evaluation. These types of evaluation methods measure
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how close the clustering is to the predetermined bench-
mark classes. However, it has recently been discussed
whether this is adequate for real data, or only on syn-
thetic data sets with a factual ground truth, since classes
can contain internal structure, the attributes present may
not allow separation of clusters or the classes may contain
anomalies.[32] Additionally, from a knowledge discovery
point of view, the reproduction of known knowledge may
not necessarily be the intended result.[32]

A number of measures are adapted from variants used
to evaluate classification tasks. In place of counting the
number of times a class was correctly assigned to a sin-
gle data point (known as true positives), such pair count-
ing metrics assess whether each pair of data points that
is truly in the same cluster is predicted to be in the same
cluster.
Some of the measures of quality of a cluster algorithm
using external criterion include:

• Rand measure (William M. Rand 1971)[33]

The Rand index computes how similar the clus-
ters (returned by the clustering algorithm) are
to the benchmark classifications. One can also
view the Rand index as a measure of the per-
centage of correct decisions made by the algo-
rithm. It can be computed using the following
formula:
RI = TP+TN

TP+FP+FN+TN

where TP is the number of true positives, TN
is the number of true negatives,FP is the num-
ber of false positives, and FN is the number
of false negatives. One issue with the Rand in-
dex is that false positives and false negatives are
equally weighted. This may be an undesirable
characteristic for some clustering applications.
The F-measure addresses this concern, as does
the chance-corrected adjusted Rand index.

• F-measure

The F-measure can be used to balance the con-
tribution of false negatives by weighting recall
through a parameter β ≥ 0 . Let precision and
recall be defined as follows:
P = TP

TP+FP

R = TP
TP+FN

whereP is the precision rate andR is the recall
rate. We can calculate the F-measure by using
the following formula:[30]

Fβ = (β2+1)·P ·R
β2·P+R

Notice that when β = 0 , F0 = P . In other
words, recall has no impact on the F-measure

when β = 0 , and increasing β allocates an in-
creasing amount of weight to recall in the final
F-measure.

• Jaccard index

The Jaccard index is used to quantify the simi-
larity between two datasets. The Jaccard index
takes on a value between 0 and 1. An index of
1 means that the two dataset are identical, and
an index of 0 indicates that the datasets have
no common elements. The Jaccard index is de-
fined by the following formula:

J(A,B) = |A∩B|
|A∪B| =

TP
TP+FP+FN

This is simply the number of unique elements
common to both sets divided by the total num-
ber of unique elements in both sets.

• Fowlkes–Mallows index (E. B. Fowlkes & C. L.
Mallows 1983)[34]

The Fowlkes-Mallows index computes the sim-
ilarity between the clusters returned by the
clustering algorithm and the benchmark classi-
fications. The higher the value of the Fowlkes-
Mallows index the more similar the clusters
and the benchmark classifications are. It can
be computed using the following formula:

FM =
√

TP
TP+FP · TP

TP+FN

where TP is the number of true positives, FP
is the number of false positives, and FN is the
number of false negatives. The FM index is
the geometric mean of the precision and recall
P and R , while the F-measure is their har-
monic mean.[35] Moreover, precision and recall
are also known as Wallace’s indices BI and
BII .[36]

• The Mutual Information is an information theo-
retic measure of how much information is shared
between a clustering and a ground-truth classifica-
tion that can detect a non-linear similarity between
two clusterings. Adjusted mutual information is the
corrected-for-chance variant of this that has a re-
duced bias for varying cluster numbers.

• Confusion matrix

A confusion matrix can be used to quickly vi-
sualize the results of a classification (or cluster-
ing) algorithm. It shows how different a cluster
is from the gold standard cluster.
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41.4 Applications

41.5 See also

41.5.1 Specialized types of cluster analysis
Others

Social science
Computer science

World wide web
Business and marketing

Medicine
Biology, computational biology and bioinformatics
Plant and animal ecologycluster analysis is used to

describe and to make spatial and temporal com-
parisons of communities (assemblages) of or-
ganisms in heterogeneous environments; it is
also used in plant systematics to generate artifi-
cial phylogenies or clusters of organisms (indi-
viduals) at the species, genus or higher level that
share a number of attributes

Transcriptomicsclustering is used to build groups
of genes with related expression patterns (also
known as coexpressed genes) as in HCS cluster-
ing algorithm . Often such groups contain func-
tionally related proteins, such as enzymes for a
specific pathway, or genes that are co-regulated.
High throughput experiments using expressed
sequence tags (ESTs) or DNA microarrays can
be a powerful tool for genome annotation, a gen-
eral aspect of genomics.

Sequence analysisclustering is used to group homol-
ogous sequences into gene families. This is a
very important concept in bioinformatics, and
evolutionary biology in general. See evolution
by gene duplication.

High-throughput genotyping platformsclustering al-
gorithms are used to automatically assign geno-
types.

Human genetic clusteringThe similarity of genetic
data is used in clustering to infer population
structures.

Medical imaging

On PET scans, cluster analysis can be used to
differentiate between different types of tissue
and blood in a three-dimensional image. In this
application, actual position does not matter,
but the voxel intensity is considered as a vector,
with a dimension for each image that was taken
over time. This technique allows, for example,
accurate measurement of the rate a radioactive
tracer is delivered to the area of interest,
without a separate sampling of arterial blood,
an intrusive technique that is most common
today.

Analysis of antimicrobial activityCluster analysis
can be used to analyse patterns of antibiotic
resistance, to classify antimicrobial compounds
according to their mechanism of action, to clas-
sify antibiotics according to their antibacterial
activity.

IMRT segmentationClustering can be used to divide
a fluence map into distinct regions for conver-
sion into deliverable fields in MLC-based Radi-
ation Therapy.

Market research

Cluster analysis is widely used in market re-
search when working with multivariate data
from surveys and test panels. Market re-
searchers use cluster analysis to partition
the general population of consumers into
market segments and to better understand
the relationships between different groups of
consumers/potential customers, and for use
in market segmentation, Product positioning,
New product development and Selecting test
markets.

Grouping of shopping itemsClustering can be used
to group all the shopping items available on the
web into a set of unique products. For example,
all the items on eBay can be grouped into unique
products. (eBay doesn't have the concept of a
SKU)

Social network analysis

In the study of social networks, clustering may
be used to recognize communities within large
groups of people.

Search result groupingIn the process of intelligent
grouping of the files and websites, clustering
may be used to create a more relevant set of
search results compared to normal search en-
gines like Google. There are currently a number
of web based clustering tools such as Clusty.

Slippy map optimizationFlickr's map of photos and
other map sites use clustering to reduce the
number of markers on a map. This makes it
both faster and reduces the amount of visual
clutter.

Software evolution

Clustering is useful in software evolution as
it helps to reduce legacy properties in code by
reforming functionality that has become dis-
persed. It is a form of restructuring and hence
is a way of direct preventative maintenance.

Image segmentationClustering can be used to divide
a digital image into distinct regions for border
detection or object recognition.

Evolutionary algorithmsClustering may be used to
identify different niches within the population
of an evolutionary algorithm so that reproduc-
tive opportunity can be distributed more evenly
amongst the evolving species or subspecies.

Recommender systemsRecommender systems are
designed to recommend new items based on a
user’s tastes. They sometimes use clustering
algorithms to predict a user’s preferences based
on the preferences of other users in the user’s
cluster.

Markov chain Monte Carlo methodsClustering is of-
ten utilized to locate and characterize extrema
in the target distribution.

Crime analysis

Cluster analysis can be used to identify areas
where there are greater incidences of particular
types of crime. By identifying these distinct
areas or “hot spots” where a similar crime has
happened over a period of time, it is possible
to manage law enforcement resources more
effectively.

Educational data miningCluster analysis is for ex-
ample used to identify groups of schools or stu-
dents with similar properties.

TypologiesFrom poll data, projects such as those un-
dertaken by the Pew Research Center use clus-
ter analysis to discern typologies of opinions,
habits, and demographics that may be useful in
politics and marketing.

Field robotics

Clustering algorithms are used for robotic sit-
uational awareness to track objects and detect
outliers in sensor data.[37]

Mathematical chemistryTo find structural similar-
ity, etc., for example, 3000 chemical compounds
were clustered in the space of 90 topological in-
dices.[38]

ClimatologyTo find weather regimes or preferred sea
level pressure atmospheric patterns.[39]

Petroleum geologyCluster analysis is used to recon-
struct missing bottom hole core data or missing
log curves in order to evaluate reservoir proper-
ties.

Physical geographyThe clustering of chemical prop-
erties in different sample locations.

•
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Clustering high-dimensional data

• Conceptual clustering

• Consensus clustering

• Constrained clustering

• Data stream clustering

• Sequence clustering

• Spectral clustering

• HCS clustering

41.5.2 Techniques used in cluster analysis

• Artificial neural network (ANN)

• Nearest neighbor search

• Neighbourhood components analysis

• Latent class analysis

41.5.3 Data projection and preprocessing

• Dimension reduction

• Principal component analysis

• Multidimensional scaling

41.5.4 Other

• Cluster-weighted modeling

• Curse of dimensionality

• Determining the number of clusters in a data set

• Parallel coordinates

• Structured data analysis
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Expectation–maximization algorithm

In statistics, an expectation–maximization (EM) algo-
rithm is an iterative method for finding maximum like-
lihood or maximum a posteriori (MAP) estimates of
parameters in statistical models, where the model de-
pends on unobserved latent variables. The EM iteration
alternates between performing an expectation (E) step,
which creates a function for the expectation of the log-
likelihood evaluated using the current estimate for the
parameters, and a maximization (M) step, which com-
putes parameters maximizing the expected log-likelihood
found on the E step. These parameter-estimates are then
used to determine the distribution of the latent variables
in the next E step.

EM clustering of Old Faithful eruption data. The random initial
model (which, due to the different scales of the axes, appears to
be two very flat and wide spheres) is fit to the observed data.
In the first iterations, the model changes substantially, but then
converges to the two modes of the geyser. Visualized using ELKI.

42.1 History

The EM algorithm was explained and given its name in
a classic 1977 paper by Arthur Dempster, Nan Laird,
and Donald Rubin.[1] They pointed out that the method
had been “proposed many times in special circum-
stances” by earlier authors. In particular, a very de-

tailed treatment of the EM method for exponential fam-
ilies was published by Rolf Sundberg in his thesis and
several papers[2][3][4] following his collaboration with Per
Martin-Löf and Anders Martin-Löf.[5][6][7][8][9][10][11]

The Dempster-Laird-Rubin paper in 1977 generalized
the method and sketched a convergence analysis for a
wider class of problems. Regardless of earlier inventions,
the innovative Dempster-Laird-Rubin paper in the Jour-
nal of the Royal Statistical Society received an enthusiastic
discussion at the Royal Statistical Society meeting with
Sundberg calling the paper “brilliant”. The Dempster-
Laird-Rubin paper established the EM method as an im-
portant tool of statistical analysis.
The convergence analysis of the Dempster-Laird-Rubin
paper was flawed and a correct convergence analysis
was published by C.F. Jeff Wu in 1983.[12] Wu’s proof
established the EM method’s convergence outside of
the exponential family, as claimed by Dempster-Laird-
Rubin.[13]

42.2 Introduction

The EM algorithm is used to find (locally) maximum like-
lihood parameters of a statistical model in cases where
the equations cannot be solved directly. Typically these
models involve latent variables in addition to unknown
parameters and known data observations. That is, either
there are missing values among the data, or the model
can be formulated more simply by assuming the exis-
tence of additional unobserved data points. For exam-
ple, a mixture model can be described more simply by
assuming that each observed data point has a correspond-
ing unobserved data point, or latent variable, specifying
the mixture component that each data point belongs to.
Finding a maximum likelihood solution typically requires
taking the derivatives of the likelihood function with re-
spect to all the unknown values — viz. the parameters
and the latent variables — and simultaneously solving the
resulting equations. In statistical models with latent vari-
ables, this usually is not possible. Instead, the result is
typically a set of interlocking equations in which the so-
lution to the parameters requires the values of the latent
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variables and vice versa, but substituting one set of equa-
tions into the other produces an unsolvable equation.
The EM algorithm proceeds from the observation that the
following is a way to solve these two sets of equations nu-
merically. One can simply pick arbitrary values for one
of the two sets of unknowns, use them to estimate the
second set, then use these new values to find a better es-
timate of the first set, and then keep alternating between
the two until the resulting values both converge to fixed
points. It’s not obvious that this will work at all, but in fact
it can be proven that in this particular context it does, and
that the derivative of the likelihood is (arbitrarily close
to) zero at that point, which in turn means that the point
is either a maximum or a saddle point. In general there
may be multiple maxima, and there is no guarantee that
the global maximum will be found. Some likelihoods also
have singularities in them, i.e. nonsensical maxima. For
example, one of the “solutions” that may be found by EM
in a mixture model involves setting one of the compo-
nents to have zero variance and the mean parameter for
the same component to be equal to one of the data points.

42.3 Description

Given a statistical model which generates a set X of ob-
served data, a set of unobserved latent data or missing
values Z , and a vector of unknown parameters θ , along
with a likelihood function L(θ;X,Z) = p(X,Z|θ) , the
maximum likelihood estimate (MLE) of the unknown pa-
rameters is determined by the marginal likelihood of the
observed data

L(θ;X) = p(X|θ) =
∑
Z
p(X,Z|θ)

However, this quantity is often intractable (e.g. if Z is a
sequence of events, so that the number of values grows
exponentially with the sequence length, making the exact
calculation of the sum extremely difficult).
The EM algorithm seeks to find the MLE of the marginal
likelihood by iteratively applying the following two steps:

Expectation step (E step): Calculate the
expected value of the log likelihood function,
with respect to the conditional distribution of
Z givenX under the current estimate of the pa-
rameters θ(t) :

Q(θ|θ(t)) = EZ|X,θ(t) [logL(θ;X,Z)]

Maximization step (M step): Find the pa-
rameter that maximizes this quantity:

θ(t+1) = arg max
θ

Q(θ|θ(t))

Note that in typical models to which EM is applied:

1. The observed data points X may be discrete (tak-
ing values in a finite or countably infinite set) or
continuous (taking values in an uncountably infinite
set). There may in fact be a vector of observations
associated with each data point.

2. The missing values (aka latent variables) Z are
discrete, drawn from a fixed number of values, and
there is one latent variable per observed data point.

3. The parameters are continuous, and are of two
kinds: Parameters that are associated with all data
points, and parameters associated with a particular
value of a latent variable (i.e. associated with all
data points whose corresponding latent variable has
a particular value).

However, it is possible to apply EM to other sorts of mod-
els.
The motivation is as follows. If we know the value of
the parameters θ , we can usually find the value of the
latent variables Z by maximizing the log-likelihood over
all possible values of Z , either simply by iterating over Z
or through an algorithm such as the Viterbi algorithm for
hidden Markov models. Conversely, if we know the value
of the latent variables Z , we can find an estimate of the
parameters θ fairly easily, typically by simply grouping
the observed data points according to the value of the as-
sociated latent variable and averaging the values, or some
function of the values, of the points in each group. This
suggests an iterative algorithm, in the case where both θ
and Z are unknown:

1. First, initialize the parameters θ to some random
values.

2. Compute the best value for Z given these parameter
values.

3. Then, use the just-computed values of Z to compute
a better estimate for the parameters θ . Parame-
ters associated with a particular value of Z will use
only those data points whose associated latent vari-
able has that value.

4. Iterate steps 2 and 3 until convergence.

The algorithm as just described monotonically ap-
proaches a local minimum of the cost function, and is
commonly called hard EM. The k-means algorithm is an
example of this class of algorithms.
However, one can do somewhat better: Rather than mak-
ing a hard choice for Z given the current parameter val-
ues and averaging only over the set of data points asso-
ciated with a particular value of Z , one can instead de-
termine the probability of each possible value of Z for

https://en.wikipedia.org/wiki/Saddle_point
https://en.wikipedia.org/wiki/Mathematical_singularity
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Missing_values
https://en.wikipedia.org/wiki/Missing_values
https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Maximum_likelihood_estimate
https://en.wikipedia.org/wiki/Marginal_likelihood
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Log_likelihood
https://en.wikipedia.org/wiki/Conditional_probability_distribution
https://en.wikipedia.org/wiki/Discrete_random_variable
https://en.wikipedia.org/wiki/Continuous_random_variable
https://en.wikipedia.org/wiki/Missing_values
https://en.wikipedia.org/wiki/Latent_variables
https://en.wikipedia.org/wiki/Discrete_random_variable
https://en.wikipedia.org/wiki/Viterbi_algorithm
https://en.wikipedia.org/wiki/Hidden_Markov_model
https://en.wikipedia.org/wiki/K-means_algorithm


284 CHAPTER 42. EXPECTATION–MAXIMIZATION ALGORITHM

each data point, and then use the probabilities associated
with a particular value of Z to compute a weighted aver-
age over the entire set of data points. The resulting al-
gorithm is commonly called soft EM, and is the type of
algorithm normally associated with EM. The counts used
to compute these weighted averages are called soft counts
(as opposed to the hard counts used in a hard-EM-type
algorithm such as k-means). The probabilities computed
for Z are posterior probabilities and are what is computed
in the E step. The soft counts used to compute new pa-
rameter values are what is computed in the M step.

42.4 Properties

Speaking of an expectation (E) step is a bit of a
misnomer. What is calculated in the first step are the
fixed, data-dependent parameters of the function Q. Once
the parameters of Q are known, it is fully determined and
is maximized in the second (M) step of an EM algorithm.
Although an EM iteration does increase the observed data
(i.e. marginal) likelihood function there is no guarantee
that the sequence converges to a maximum likelihood es-
timator. For multimodal distributions, this means that an
EM algorithm may converge to a local maximum of the
observed data likelihood function, depending on starting
values. There are a variety of heuristic or metaheuristic
approaches for escaping a local maximum such as random
restart (starting with several different random initial esti-
mates θ(t)), or applying simulated annealing methods.
EM is particularly useful when the likelihood is an
exponential family: the E step becomes the sum of ex-
pectations of sufficient statistics, and the M step involves
maximizing a linear function. In such a case, it is usu-
ally possible to derive closed form updates for each step,
using the Sundberg formula (published by Rolf Sundberg
using unpublished results of Per Martin-Löf and Anders
Martin-Löf).[3][4][7][8][9][10][11]

The EM method was modified to compute maximum a
posteriori (MAP) estimates for Bayesian inference in the
original paper by Dempster, Laird, and Rubin.
There are other methods for finding maximum likeli-
hood estimates, such as gradient descent, conjugate gra-
dient or variations of the Gauss–Newton method. Unlike
EM, such methods typically require the evaluation of first
and/or second derivatives of the likelihood function.

42.5 Proof of correctness

Expectation-maximization works to improve Q(θ|θ(t))
rather than directly improving log p(X|θ) . Here we show
that improvements to the former imply improvements to
the latter.[14]

For any Z with non-zero probability p(Z|X,θ) , we can

write

log p(X|θ) = log p(X,Z|θ)− log p(Z|X,θ) .

We take the expectation over values of Z by multiplying
both sides by p(Z|X,θ(t)) and summing (or integrating)
over Z . The left-hand side is the expectation of a con-
stant, so we get:

log p(X|θ) =
∑
Z
p(Z|X,θ(t)) log p(X,Z|θ)−

∑
Z
p(Z|X,θ(t)) log p(Z|X,θ)

= Q(θ|θ(t)) +H(θ|θ(t)) ,

where H(θ|θ(t)) is defined by the negated sum it is re-
placing. This last equation holds for any value of θ in-
cluding θ = θ(t) ,

log p(X|θ(t)) = Q(θ(t)|θ(t))+H(θ(t)|θ(t)) ,

and subtracting this last equation from the previous equa-
tion gives

log p(X|θ)−log p(X|θ(t)) = Q(θ|θ(t))−Q(θ(t)|θ(t))+H(θ|θ(t))−H(θ(t)|θ(t)) ,

However, Gibbs’ inequality tells us that H(θ|θ(t)) ≥
H(θ(t)|θ(t)) , so we can conclude that

log p(X|θ)−log p(X|θ(t)) ≥ Q(θ|θ(t))−Q(θ(t)|θ(t)) .

In words, choosing θ to improve Q(θ|θ(t)) be-
yond Q(θ(t)|θ(t)) will improve log p(X|θ) beyond
log p(X|θ(t)) at least as much.

42.6 Alternative description

Under some circumstances, it is convenient to view
the EM algorithm as two alternating maximization
steps.[15][16] Consider the function:

F (q, θ) = Eq[logL(θ;x,Z)]+H(q) = −DKL
(
q
∥∥pZ|X(·|x; θ)

)
+logL(θ;x)

where q is an arbitrary probability distribution over the
unobserved data z, pZ|X(· |x;θ) is the conditional distri-
bution of the unobserved data given the observed data x,
H is the entropy and DKL is the Kullback–Leibler diver-
gence.
Then the steps in the EM algorithm may be viewed as:
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Expectation step: Choose q to maximize F:

q(t) = * argmaxq F (q, θ(t))

Maximization step: Choose θ to maximize F:

θ(t+1) = * argmaxθ F (q(t), θ)

42.7 Applications

EM is frequently used for data clustering in machine
learning and computer vision. In natural language pro-
cessing, two prominent instances of the algorithm are the
Baum-Welch algorithm and the inside-outside algorithm
for unsupervised induction of probabilistic context-free
grammars.
In psychometrics, EM is almost indispensable for estimat-
ing item parameters and latent abilities of item response
theory models.
With the ability to deal with missing data and observe
unidentified variables, EM is becoming a useful tool to
price and manage risk of a portfolio.[ref?]
The EM algorithm (and its faster variant Ordered subset
expectation maximization) is also widely used in medical
image reconstruction, especially in positron emission to-
mography and single photon emission computed tomog-
raphy. See below for other faster variants of EM.

42.8 Filtering and smoothing EM
algorithms

A Kalman filter is typically used for on-line state esti-
mation and a minimum-variance smoother may be em-
ployed for off-line or batch state estimation. However,
these minimum-variance solutions require estimates of
the state-space model parameters. EM algorithms can
be used for solving joint state and parameter estimation
problems.
Filtering and smoothing EM algorithms arise by repeating
the following two-step procedure:

E-step Operate a Kalman filter or a minimum-variance
smoother designed with current parameter estimates
to obtain updated state estimates.

M-step Use the filtered or smoothed state estimates
within maximum-likelihood calculations to obtain
updated parameter estimates.

Suppose that a Kalman filter or minimum-variance
smoother operates on noisy measurements of a single-
input-single-output system. An updated measurement
noise variance estimate can be obtained from the
maximum likelihood calculation

σ̂2
v =

1

N

N∑
k=1

(zk − x̂k)
2

where x̂k are scalar output estimates calculated by a filter
or a smoother from N scalar measurements zk . Simi-
larly, for a first-order auto-regressive process, an updated
process noise variance estimate can be calculated by

σ̂2
w =

1

N

N∑
k=1

(x̂k+1 − F̂ x̂k)
2

where x̂k and x̂k+1 are scalar state estimates calculated
by a filter or a smoother. The updated model coefficient
estimate is obtained via

F̂ =

∑N
k=1(x̂k+1 − F̂ x̂k)∑N

k=1 x̂
2
k

The convergence of parameter estimates such as those
above are well studied.[17][18][19]

42.9 Variants

A number of methods have been proposed to acceler-
ate the sometimes slow convergence of the EM algo-
rithm, such as those using conjugate gradient and mod-
ified Newton–Raphson techniques.[20] Additionally EM
can be used with constrained estimation techniques.
Expectation conditional maximization (ECM) re-
places each M step with a sequence of conditional maxi-
mization (CM) steps in which each parameter θi is maxi-
mized individually, conditionally on the other parameters
remaining fixed.[21]

This idea is further extended in generalized expecta-
tionmaximization (GEM) algorithm, in which one only
seeks an increase in the objective function F for both the
E step and M step under the alternative description.[15]

GEM is further developed in a distributed environment
and shows promising results.[22]

It is also possible to consider the EM algorithm as
a subclass of the MM (Majorize/Minimize or Mi-
norize/Maximize, depending on context) algorithm,[23]

and therefore use any machinery developed in the more
general case.

42.9.1 α-EM algorithm

The Q-function used in the EM algorithm is based on the
log likelihood. Therefore, it is regarded as the log-EM al-
gorithm. The use of the log likelihood can be generalized
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to that of the α-log likelihood ratio. Then, the α-log like-
lihood ratio of the observed data can be exactly expressed
as equality by using the Q-function of the α-log likelihood
ratio and the α-divergence. Obtaining this Q-function is
a generalized E step. Its maximization is a generalized M
step. This pair is called the α-EM algorithm [24] which
contains the log-EM algorithm as its subclass. Thus, the
α-EM algorithm by Yasuo Matsuyama is an exact gen-
eralization of the log-EM algorithm. No computation of
gradient or Hessian matrix is needed. The α-EM shows
faster convergence than the log-EM algorithm by choos-
ing an appropriate α. The α-EM algorithm leads to a
faster version of the Hidden Markov model estimation al-
gorithm α-HMM. [25]

42.10 Relation to variational Bayes
methods

EM is a partially non-Bayesian, maximum likelihood
method. Its final result gives a probability distribution
over the latent variables (in the Bayesian style) together
with a point estimate for θ (either a maximum likeli-
hood estimate or a posterior mode). We may want a fully
Bayesian version of this, giving a probability distribution
over θ as well as the latent variables. In fact the Bayesian
approach to inference is simply to treat θ as another la-
tent variable. In this paradigm, the distinction between
the E and M steps disappears. If we use the factorized
Q approximation as described above (variational Bayes),
we may iterate over each latent variable (now including
θ) and optimize them one at a time. There are now k
steps per iteration, where k is the number of latent vari-
ables. For graphical models this is easy to do as each
variable’s new Q depends only on its Markov blanket, so
local message passing can be used for efficient inference.

42.11 Geometric interpretation

For more details on this topic, see Information geometry.

In information geometry, the E step and the M step
are interpreted as projections under dual affine connec-
tions, called the e-connection and the m-connection; the
Kullback–Leibler divergence can also be understood in
these terms.

42.12 Examples

42.12.1 Gaussian mixture

Let x = (x1, x2, . . . , xn) be a sample of n independent
observations from a mixture of two multivariate normal
distributions of dimension d , and let z = (z1, z2, . . . , zn)

An animation demonstrating the EM algorithm fitting a two com-
ponent Gaussian mixture model to the Old Faithful dataset. The
algorithm steps through from a random initialization to conver-
gence.

be the latent variables that determine the component from
which the observation originates.[16]

Xi|(Zi = 1) ∼ Nd(µ1,Σ1) and Xi|(Zi =
2) ∼ Nd(µ2,Σ2)

where

P(Zi = 1) = τ1 and P(Zi = 2) = τ2 =
1− τ1

The aim is to estimate the unknown parameters repre-
senting the “mixing” value between the Gaussians and the
means and covariances of each:

θ =
(
τ ,µ1,µ2,Σ1,Σ2

)
where the incomplete-data likelihood function is

L(θ; x) =
n∏
i=1

2∑
j=1

τj f(xi;µj ,Σj)

and the complete-data likelihood function is

L(θ; x, z) = P (x, z|θ) =
n∏
i=1

2∑
j=1

I(zi = j) f(xi;µj ,Σj)τj

or

L(θ; x, z) = exp


n∑
i=1

2∑
j=1

I(zi = j)
[

log τj − 1
2 log |Σj | − 1

2 (xi − µj)
⊤Σ−1

j (xi − µj)− d
2 log(2π)

] .
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where I is an indicator function and f is the probability
density function of a multivariate normal.
To see the last equality, note that for each i all indicators
I(zi = j) are equal to zero, except for one which is equal
to one. The inner sum thus reduces to a single term.

E step

Given our current estimate of the parameters θ(t), the con-
ditional distribution of the Zi is determined by Bayes the-
orem to be the proportional height of the normal density
weighted by τ:

T
(t)
j,i := P(Zi = j|Xi = xi; θ(t)) =

τ
(t)
j f(xi;µ(t)

j ,Σ
(t)
j )

τ
(t)
1 f(xi;µ(t)

1 ,Σ
(t)
1 ) + τ

(t)
2 f(xi;µ(t)

2 ,Σ
(t)
2 )

These are called the “membership probabilities” which
are normally considered the output of the E step (although
this is not the Q function of below).
Note that this E step corresponds with the following func-
tion for Q:

Q(θ|θ(t)) = E[logL(θ; x,Z)]

= E[log
n∏
i=1

L(θ; xi, zi)]

= E[
n∑
i=1

logL(θ; xi, zi)]

=
n∑
i=1

E[logL(θ; xi, zi)]

=
n∑
i=1

2∑
j=1

T
(t)
j,i

[
log τj − 1

2 log |Σj | − 1
2 (xi − µj)

⊤Σ−1
j (xi − µj)− d

2 log(2π)
]

This does not need to be calculated, because in the M
step we only require the terms depending on τ when we
maximize for τ, or only the terms depending on μ if we
maximize for μ.

M step

The fact that Q(θ|θ(t)) is quadratic in form means that
determining the maximizing values of θ is relatively
straightforward. Note that τ, (μ1,Σ1) and (μ2,Σ2) may
all be maximized independently since they all appear in
separate linear terms.
To begin, consider τ, which has the constraint τ1 + τ2=1:

τ (t+1) = arg max
τ

Q(θ|θ(t))

= arg max
τ

{[
n∑
i=1

T
(t)
1,i

]
log τ1 +

[
n∑
i=1

T
(t)
2,i

]
log τ2

}

This has the same form as the MLE for the binomial dis-
tribution, so

τ
(t+1)
j =

∑n
i=1 T

(t)
j,i∑n

i=1(T
(t)
1,i + T

(t)
2,i )

=
1

n

n∑
i=1

T
(t)
j,i

For the next estimates of (μ1,σ1):

(µ
(t+1)
1 ,Σ

(t+1)
1 ) = arg max

µ1,Σ1

Q(θ|θ(t))

= arg max
µ1,Σ1

n∑
i=1

T
(t)
1,i

{
− 1

2 log |Σ1| − 1
2 (xi − µ1)

⊤Σ−1
1 (xi − µ1)

}
This has the same form as a weighted MLE for a normal
distribution, so

µ
(t+1)
1 =

∑n
i=1 T

(t)
1,i xi∑n

i=1 T
(t)
1,i

and Σ
(t+1)
1 =∑n

i=1 T
(t)
1,i (xi−µ

(t+1)
1 )(xi−µ

(t+1)
1 )⊤∑n

i=1 T
(t)
1,i

and, by symmetry

µ
(t+1)
2 =

∑n
i=1 T

(t)
2,i xi∑n

i=1 T
(t)
2,i

and Σ
(t+1)
2 =∑n

i=1 T
(t)
2,i (xi−µ

(t+1)
2 )(xi−µ

(t+1)
2 )⊤∑n

i=1 T
(t)
2,i

.

Termination

Conclude the iterative process if logL(θt; x,Z) ≤
logL(θ(t−1); x,Z) + ϵ for ϵ below some preset thresh-
old.

Generalization

The algorithm illustrated above can be generalized for
mixtures of more than two multivariate normal distribu-
tions.

42.12.2 Truncated and censored regres-
sion

The EM algorithm has been implemented in the case
where there is an underlying linear regression model ex-
plaining the variation of some quantity, but where the val-
ues actually observed are censored or truncated versions
of those represented in the model.[26] Special cases of this
model include censored or truncated observations from a
single normal distribution.[26]
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42.13 Alternatives to EM

EM typically converges to a local optimum--not neces-
sarily the global optimum--and there is no bound on the
convergence rate in general. It is possible that it can be
arbitrarily poor in high dimensions and there can be an ex-
ponential number of local optima. Hence, there is a need
for alternative techniques for guaranteed learning, espe-
cially in the high-dimensional setting. There are alterna-
tives to EM with better guarantees in terms of consistency
which are known as moment-based approaches or the so-
called “spectral techniques”. Moment-based approaches
to learning the parameters of a probabilistic model are
of increasing interest recently since they enjoy guaran-
tees such as global convergence under certain conditions
unlike EM which is often plagued by the issue of get-
ting stuck in local optima. Algorithms with guarantees
for learning can be derived for a number of important
models such as mixture models, HMMs etc. For these
spectral methods, there are no spurious local optima and
the true parameters can be consistently estimated under
some regularity conditions.

42.14 See also

• Density estimation

• Total absorption spectroscopy

• The EM algorithm can be viewed as a special case
of the majorize-minimization (MM) algorithm.[27]

42.15 Further reading

• Robert Hogg, Joseph McKean and Allen Craig. In-
troduction to Mathematical Statistics. pp. 359–364.
Upper Saddle River, NJ: Pearson Prentice Hall,
2005.

• The on-line textbook: Information Theory, In-
ference, and Learning Algorithms, by David J.C.
MacKay includes simple examples of the EM algo-
rithm such as clustering using the soft k-means al-
gorithm, and emphasizes the variational view of the
EM algorithm, as described in Chapter 33.7 of ver-
sion 7.2 (fourth edition).

• Dellaert, Frank. “The Expectation Maximization
Algorithm”. CiteSeerX: 10 .1 .1 .9 .9735, gives an
easier explanation of EM algorithm in terms of
lowerbound maximization.

• Bishop, Christopher M. (2006). Pattern Recogni-
tion and Machine Learning. Springer. ISBN 0-387-
31073-8.

• M. R. Gupta and Y. Chen (2010). Theory and Use
of the EM Algorithm. doi:10.1561/2000000034. A
well-written short book on EM, including detailed
derivation of EM for GMMs, HMMs, and Dirichlet.

• Bilmes, Jeff. “A Gentle Tutorial of the EM Al-
gorithm and its Application to Parameter Estima-
tion for Gaussian Mixture and Hidden Markov Mod-
els”. CiteSeerX: 10 .1 .1 .28 .613, includes a sim-
plified derivation of the EM equations for Gaus-
sian Mixtures and Gaussian Mixture Hidden Markov
Models.

• Variational Algorithms for Approximate Bayesian
Inference, by M. J. Beal includes comparisons of
EM to Variational Bayesian EM and derivations
of several models including Variational Bayesian
HMMs (chapters).

• The Expectation Maximization Algorithm: A short
tutorial, A self-contained derivation of the EM Al-
gorithm by Sean Borman.

• The EM Algorithm, by Xiaojin Zhu.

• EM algorithm and variants: an informal tutorial by
Alexis Roche. A concise and very clear description
of EM and many interesting variants.

• Einicke, G.A. (2012). Smoothing, Filtering and Pre-
diction: Estimating the Past, Present and Future. Ri-
jeka, Croatia: Intech. ISBN 978-953-307-752-9.
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42.17 External links
• Various 1D, 2D and 3D demonstrations of EM to-

gether with Mixture Modeling are provided as part
of the paired SOCR activities and applets. These
applets and activities show empirically the proper-
ties of the EM algorithm for parameter estimation
in diverse settings.

• k-MLE: A fast algorithm for learning statistical mix-
ture models

• Class hierarchy in C++ (GPL) including Gaussian
Mixtures

• Fast and clean C implementation of the Expectation
Maximization (EM) algorithm for estimating
Gaussian Mixture Models (GMMs).
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Chapter 43

k-means clustering

k-means clustering is a method of vector quantiza-
tion, originally from signal processing, that is popular for
cluster analysis in data mining. k-means clustering aims
to partition n observations into k clusters in which each
observation belongs to the cluster with the nearest mean,
serving as a prototype of the cluster. This results in a
partitioning of the data space into Voronoi cells.
The problem is computationally difficult (NP-hard); how-
ever, there are efficient heuristic algorithms that are com-
monly employed and converge quickly to a local op-
timum. These are usually similar to the expectation-
maximization algorithm for mixtures of Gaussian distri-
butions via an iterative refinement approach employed by
both algorithms. Additionally, they both use cluster cen-
ters to model the data; however, k-means clustering tends
to find clusters of comparable spatial extent, while the
expectation-maximization mechanism allows clusters to
have different shapes.
The algorithm has nothing to do with and should not
be confused with k-nearest neighbor, another popular
machine learning technique.

43.1 Description

Given a set of observations (x1, x2, …, xn), where each
observation is a d-dimensional real vector, k-means clus-
tering aims to partition the n observations into k (≤ n) sets
S = {S1, S2, …, Sk} so as to minimize the within-cluster
sum of squares (WCSS). In other words, its objective is
to find:

arg min
S

∑k
i=1

∑
x∈Si

∥x− µi∥
2

where μi is the mean of points in Si.

43.2 History

The term "k-means” was first used by James MacQueen
in 1967,[1] though the idea goes back to Hugo Steinhaus
in 1957.[2] The standard algorithm was first proposed by

Stuart Lloyd in 1957 as a technique for pulse-code mod-
ulation, though it wasn't published outside of Bell Labs
until 1982.[3] In 1965, E.W.Forgy published essentially
the same method, which is why it is sometimes referred
to as Lloyd-Forgy.[4] A more efficient version was pro-
posed and published in Fortran by Hartigan and Wong in
1975/1979.[5][6]

43.3 Algorithms

43.3.1 Standard algorithm

The most common algorithm uses an iterative refinement
technique. Due to its ubiquity it is often called the k-
means algorithm; it is also referred to as Lloyd’s algo-
rithm, particularly in the computer science community.
Given an initial set of k means m1

(1),…,mk(1) (see be-
low), the algorithm proceeds by alternating between two
steps:[7]

Assignment step: Assign each observation to
the cluster whose mean yields the least within-
cluster sum of squares (WCSS). Since the sum
of squares is the squared Euclidean distance,
this is intuitively the “nearest” mean.[8] (Math-
ematically, this means partitioning the obser-
vations according to the Voronoi diagram gen-
erated by the means).

S
(t)
i =

{
xp :

∥∥xp − m
(t)
i

∥∥2 ≤∥∥xp −m
(t)
j

∥∥2 ∀j, 1 ≤ j ≤ k
}
,

where each xp is assigned to exactly
one S(t) , even if it could be as-
signed to two or more of them.

Update step: Calculate the new means to be
the centroids of the observations in the new
clusters.

m
(t+1)
i = 1

|S(t)
i |

∑
xj∈S(t)

i

xj

Since the arithmetic mean is a least-
squares estimator, this also min-
imizes the within-cluster sum of
squares (WCSS) objective.
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The algorithm has converged when the assignments no
longer change. Since both steps optimize the WCSS ob-
jective, and there only exists a finite number of such par-
titionings, the algorithm must converge to a (local) opti-
mum. There is no guarantee that the global optimum is
found using this algorithm.
The algorithm is often presented as assigning objects to
the nearest cluster by distance. The standard algorithm
aims at minimizing the WCSS objective, and thus assigns
by “least sum of squares”, which is exactly equivalent to
assigning by the smallest Euclidean distance. Using a dif-
ferent distance function other than (squared) Euclidean
distance may stop the algorithm from converging. Vari-
ous modifications of k-means such as spherical k-means
and k-medoids have been proposed to allow using other
distance measures.

Initialization methods

Commonly used initialization methods are Forgy and
Random Partition.[9] The Forgy method randomly
chooses k observations from the data set and uses these
as the initial means. The Random Partition method first
randomly assigns a cluster to each observation and then
proceeds to the update step, thus computing the initial
mean to be the centroid of the cluster’s randomly as-
signed points. The Forgy method tends to spread the
initial means out, while Random Partition places all of
them close to the center of the data set. According to
Hamerly et al.,[9] the Random Partition method is gen-
erally preferable for algorithms such as the k-harmonic
means and fuzzy k-means. For expectation maximiza-
tion and standard k-means algorithms, the Forgy method
of initialization is preferable.

• Demonstration of the standard algorithm

• 1. k initial “means” (in this case k=3) are randomly
generated within the data domain (shown in color).

• 2. k clusters are created by associating every ob-
servation with the nearest mean. The partitions
here represent the Voronoi diagram generated by the
means.

• 3. The centroid of each of the k clusters becomes
the new mean.

• 4. Steps 2 and 3 are repeated until convergence has
been reached.

As it is a heuristic algorithm, there is no guarantee that it
will converge to the global optimum, and the result may
depend on the initial clusters. As the algorithm is usu-
ally very fast, it is common to run it multiple times with
different starting conditions. However, in the worst case,
k-means can be very slow to converge: in particular it has
been shown that there exist certain point sets, even in 2 di-
mensions, on which k-means takes exponential time, that

is 2Ω(n), to converge.[10] These point sets do not seem to
arise in practice: this is corroborated by the fact that the
smoothed running time of k-means is polynomial.[11]

The “assignment” step is also referred to as expectation
step, the “update step” as maximization step, making
this algorithm a variant of the generalized expectation-
maximization algorithm.

43.3.2 Complexity

Regarding computational complexity, finding the optimal
solution to the k-means clustering problem for observa-
tions in d dimensions is:

• NP-hard in general Euclidean space d even for 2
clusters[12][13]

• NP-hard for a general number of clusters k even in
the plane[14]

• If k and d (the dimension) are fixed, the problem can
be exactly solved in time O(ndk+1 logn) , where n
is the number of entities to be clustered[15]

Thus, a variety of heuristic algorithms such as Lloyds al-
gorithm given above are generally used.
The running time of Lloyds algorithm is often given as
O(nkdi) , where n is the number of d-dimensional vec-
tors, k the number of clusters and i the number of itera-
tions needed until convergence. On data that does have
a clustering structure, the number of iterations until con-
vergence is often small, and results only improve slightly
after the first dozen iterations. Lloyds algorithm is there-
fore often considered to be of “linear” complexity in prac-
tice.
Following are some recent insights into this algorithm
complexity behaviour.

• Lloyd’s k-means algorithm has polynomial
smoothed running time. It is shown that[11]

for arbitrary set of n points in [0, 1]d , if each point
is independently perturbed by a normal distribution
with mean 0 and variance σ2 , then the expected
running time of k -means algorithm is bounded by
O(n34k34d8log4(n)/σ6) , which is a polynomial
in n , k , d and 1/σ .

• Better bounds are proved for simple cases. For
example,[16] showed that the running time of k-
means algorithm is bounded by O(dn4M2) for n
points in an integer lattice {1, . . . ,M}d .

43.3.3 Variations

• Jenks natural breaks optimization: k-means applied
to univariate data
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• k-medians clustering uses the median in each di-
mension instead of the mean, and this way mini-
mizes L1 norm (Taxicab geometry).

• k-medoids (also: Partitioning Around Medoids,
PAM) uses the medoid instead of the mean, and this
way minimizes the sum of distances for arbitrary
distance functions.

• Fuzzy C-Means Clustering is a soft version of K-
means, where each data point has a fuzzy degree of
belonging to each cluster.

• Gaussian mixture models trained with expectation-
maximization algorithm (EM algorithm) maintains
probabilistic assignments to clusters, instead of de-
terministic assignments, and multivariate Gaussian
distributions instead of means.

• k-means++ chooses initial centers in a way that gives
a provable upper bound on the WCCS objective.

• The filtering algorithm uses kd-trees to speed up
each k-means step.[17]

• Some methods attempt to speed up each k-means
step using coresets[18] or the triangle inequality.[19]

• Escape local optima by swapping points between
clusters.[6]

• The Spherical k-means clustering algorithm is suit-
able for directional data.[20]

• The Minkowski metric weighted k-means deals
with irrelevant features by assigning cluster specific
weights to each feature[21]

43.4 Discussion

A typical example of the k-means convergence to a local mini-
mum. In this example, the result of k-means clustering (the right
figure) contradicts the obvious cluster structure of the data set.
The small circles are the data points, the four ray stars are the
centroids (means). The initial configuration is on the left figure.
The algorithm converges after five iterations presented on the fig-
ures, from the left to the right. The illustration was prepared with
the Mirkes Java applet.[22]

The two key features of k-means which make it efficient
are often regarded as its biggest drawbacks:

• Euclidean distance is used as a metric and variance
is used as a measure of cluster scatter.
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k-means clustering result for the Iris flower data set and actual
species visualized using ELKI. Cluster means are marked using
larger, semi-transparent symbols.
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Different cluster analysis results on "mouse" data set:

k-means clustering and EM clustering on an artificial dataset
(“mouse”). The tendency of k-means to produce equi-sized clus-
ters leads to bad results, while EM benefits from the Gaussian
distribution present in the data set

• The number of clusters k is an input parameter: an
inappropriate choice of k may yield poor results.
That is why, when performing k-means, it is im-
portant to run diagnostic checks for determining the
number of clusters in the data set.

• Convergence to a local minimum may produce
counterintuitive (“wrong”) results (see example in
Fig.).

A key limitation of k-means is its cluster model. The con-
cept is based on spherical clusters that are separable in a
way so that the mean value converges towards the cluster
center. The clusters are expected to be of similar size,
so that the assignment to the nearest cluster center is the
correct assignment. When for example applying k-means
with a value of k = 3 onto the well-known Iris flower data
set, the result often fails to separate the three Iris species
contained in the data set. With k = 2 , the two visible
clusters (one containing two species) will be discovered,
whereas with k = 3 one of the two clusters will be split
into two even parts. In fact, k = 2 is more appropriate
for this data set, despite the data set containing 3 classes.
As with any other clustering algorithm, the k-means re-
sult relies on the data set to satisfy the assumptions made
by the clustering algorithms. It works well on some data
sets, while failing on others.
The result of k-means can also be seen as the Voronoi cells
of the cluster means. Since data is split halfway between
cluster means, this can lead to suboptimal splits as can be
seen in the “mouse” example. The Gaussian models used
by the Expectation-maximization algorithm (which can
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be seen as a generalization of k-means) are more flexible
here by having both variances and covariances. The EM
result is thus able to accommodate clusters of variable size
much better than k-means as well as correlated clusters
(not in this example).

43.5 Applications

k-means clustering in particular when using heuristics
such as Lloyd’s algorithm is rather easy to implement
and apply even on large data sets. As such, it has been
successfully used in various topics, including market seg-
mentation, computer vision, geostatistics,[23] astronomy
and agriculture. It often is used as a preprocessing step
for other algorithms, for example to find a starting con-
figuration.

43.5.1 Vector quantization

Main article: Vector quantization
k-means originates from signal processing, and still finds

Two-channel (for illustration purposes -- red and green only)
color image.

use in this domain. For example in computer graphics,
color quantization is the task of reducing the color palette
of an image to a fixed number of colors k. The k-means
algorithm can easily be used for this task and produces
competitive results. Other uses of vector quantization
include non-random sampling, as k-means can easily be
used to choose k different but prototypical objects from
a large data set for further analysis.

Vector quantization of colors present in the image above into
Voronoi cells using k-means.

43.5.2 Cluster analysis

Main article: Cluster analysis

In cluster analysis, the k-means algorithm can be used to
partition the input data set into k partitions (clusters).
However, the pure k-means algorithm is not very flexi-
ble, and as such of limited use (except for when vector
quantization as above is actually the desired use case!).
In particular, the parameter k is known to be hard to
choose (as discussed above) when not given by external
constraints. Another limitation of the algorithm is that
it cannot be used with arbitrary distance functions or on
non-numerical data. For these use cases, many other al-
gorithms have been developed since.

43.5.3 Feature learning

k-means clustering has been used as a feature learning
(or dictionary learning) step, in either (semi-)supervised
learning or unsupervised learning.[24] The basic approach
is first to train a k-means clustering representation, us-
ing the input training data (which need not be labelled).
Then, to project any input datum into the new feature
space, we have a choice of “encoding” functions, but we
can use for example the thresholded matrix-product of
the datum with the centroid locations, the distance from
the datum to each centroid, or simply an indicator func-
tion for the nearest centroid,[24][25] or some smooth trans-
formation of the distance.[26] Alternatively, by transform-
ing the sample-cluster distance through a Gaussian RBF,
one effectively obtains the hidden layer of a radial basis
function network.[27]

This use of k-means has been successfully combined
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with simple, linear classifiers for semi-supervised learn-
ing in NLP (specifically for named entity recognition)[28]

and in computer vision. On an object recognition
task, it was found to exhibit comparable performance
with more sophisticated feature learning approaches such
as autoencoders and restricted Boltzmann machines.[26]

However, it generally requires more data than the sophis-
ticated methods, for equivalent performance, because
each data point only contributes to one “feature” rather
than multiple.[24]

43.6 Relation to other statistical
machine learning algorithms

k-means clustering, and its associated expectation-
maximization algorithm, is a special case of a Gaussian
mixture model, specifically, the limit of taking all co-
variances as diagonal, equal, and small. It is often easy
to generalize a k-means problem into a Gaussian mix-
ture model.[29] Another generalization of the k-means al-
gorithm is the K-SVD algorithm, which estimates data
points as a sparse linear combination of “codebook vec-
tors”. K-means corresponds to the special case of using
a single codebook vector, with a weight of 1.[30]

43.6.1 Mean shift clustering

Basic mean shift clustering algorithms maintain a set of
data points the same size as the input data set. Initially,
this set is copied from the input set. Then this set is itera-
tively replaced by the mean of those points in the set that
are within a given distance of that point. By contrast, k-
means restricts this updated set to k points usually much
less than the number of points in the input data set, and
replaces each point in this set by the mean of all points
in the input set that are closer to that point than any other
(e.g. within the Voronoi partition of each updating point).
A mean shift algorithm that is similar then to k-means,
called likelihood mean shift, replaces the set of points un-
dergoing replacement by the mean of all points in the in-
put set that are within a given distance of the changing
set.[31] One of the advantages of mean shift over k-means
is that there is no need to choose the number of clusters,
because mean shift is likely to find only a few clusters if
indeed only a small number exist. However, mean shift
can be much slower than k-means, and still requires se-
lection of a bandwidth parameter. Mean shift has soft
variants much as k-means does.

43.6.2 Principal component analysis
(PCA)

It was asserted in[32][33] that the relaxed solution of k-
means clustering, specified by the cluster indicators, is

given by the PCA (principal component analysis) prin-
cipal components, and the PCA subspace spanned by
the principal directions is identical to the cluster cen-
troid subspace. However, that PCA is a useful relax-
ation of k-means clustering was not a new result (see, for
example,[34]), and it is straightforward to uncover coun-
terexamples to the statement that the cluster centroid sub-
space is spanned by the principal directions.[35]

43.6.3 Independent component analysis
(ICA)

It has been shown in [36] that under sparsity assumptions
and when input data is pre-processed with the whitening
transformation k-means produces the solution to the lin-
ear Independent component analysis task. This aids in ex-
plaining the successful application of k-means to feature
learning.

43.6.4 Bilateral filtering

k-means implicitly assumes that the ordering of the input
data set does not matter. The bilateral filter is similar to
K-means and mean shift in that it maintains a set of data
points that are iteratively replaced by means. However,
the bilateral filter restricts the calculation of the (kernel
weighted) mean to include only points that are close in the
ordering of the input data.[31] This makes it applicable to
problems such as image denoising, where the spatial ar-
rangement of pixels in an image is of critical importance.

43.7 Similar problems

The set of squared error minimizing cluster functions also
includes the k-medoids algorithm, an approach which
forces the center point of each cluster to be one of the
actual points, i.e., it uses medoids in place of centroids.

43.8 Software Implementations

43.8.1 Free

• CrimeStat implements two spatial k-means algo-
rithms, one of which allows the user to define the
starting locations.

• ELKI contains k-means (with Lloyd and MacQueen
iteration, along with different initializations such
as k-means++ initialization) and various more ad-
vanced clustering algorithms.

• Julia contains a k-means implementation in the
Clustering package.[37]

• Mahout contains a MapReduce based k-means.
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• MLPACK contains a C++ implementation of k-
means.

• Octave contains k-means.

• OpenCV contains a k-means implementation.

• R contains three k-means variations.[1][3][6]

• SciPy and scikit-learn contain multiple k-means im-
plementations.

• Spark MLlib implements a distributed k-means al-
gorithm.

• Torch contains an unsup package that provides k-
means clustering.

• Weka contains k-means and x-means.

43.8.2 Commercial

• Grapheme

• MATLAB

• Mathematica

• SAS

• Stata

43.9 See also
• Canopy clustering algorithm

• Centroidal Voronoi tessellation

• k q-flats

• Linde–Buzo–Gray algorithm

• Nearest centroid classifier

• Self-organizing map

• Silhouette clustering

• Head/tail Breaks
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Chapter 44

Hierarchical clustering

In data mining and statistics, hierarchical clustering
(also called hierarchical cluster analysis or HCA) is
a method of cluster analysis which seeks to build a
hierarchy of clusters. Strategies for hierarchical cluster-
ing generally fall into two types: [1]

• Agglomerative: This is a “bottom up” approach:
each observation starts in its own cluster, and pairs
of clusters are merged as one moves up the hierar-
chy.

• Divisive: This is a “top down” approach: all obser-
vations start in one cluster, and splits are performed
recursively as one moves down the hierarchy.

In general, the merges and splits are determined in a
greedy manner. The results of hierarchical clustering are
usually presented in a dendrogram.
In the general case, the complexity of agglomerative clus-
tering is O(n3) , which makes them too slow for large
data sets. Divisive clustering with an exhaustive search is
O(2n) , which is even worse. However, for some special
cases, optimal efficient agglomerative methods (of com-
plexity O(n2) ) are known: SLINK[2] for single-linkage
and CLINK[3] for complete-linkage clustering.

44.1 Cluster dissimilarity

In order to decide which clusters should be combined (for
agglomerative), or where a cluster should be split (for di-
visive), a measure of dissimilarity between sets of obser-
vations is required. In most methods of hierarchical clus-
tering, this is achieved by use of an appropriate metric (a
measure of distance between pairs of observations), and a
linkage criterion which specifies the dissimilarity of sets
as a function of the pairwise distances of observations in
the sets.

44.1.1 Metric

Further information: metric (mathematics)

The choice of an appropriate metric will influence the
shape of the clusters, as some elements may be close to
one another according to one distance and farther away
according to another. For example, in a 2-dimensional
space, the distance between the point (1,0) and the ori-
gin (0,0) is always 1 according to the usual norms, but
the distance between the point (1,1) and the origin (0,0)
can be 2 under Manhattan distance, √

2 under Euclidean
distance, or 1 under maximum distance.
Some commonly used metrics for hierarchical clustering
are:[4]

For text or other non-numeric data, metrics such as the
Hamming distance or Levenshtein distance are often
used.
A review of cluster analysis in health psychology research
found that the most common distance measure in pub-
lished studies in that research area is the Euclidean dis-
tance or the squared Euclidean distance.

44.1.2 Linkage criteria

The linkage criterion determines the distance between
sets of observations as a function of the pairwise distances
between observations.
Some commonly used linkage criteria between two sets
of observations A and B are:[5][6]

where d is the chosen metric. Other linkage criteria in-
clude:

• The sum of all intra-cluster variance.

• The decrease in variance for the cluster being
merged (Ward’s criterion).[7]

• The probability that candidate clusters spawn from
the same distribution function (V-linkage).

• The product of in-degree and out-degree on a k-
nearest-neighbor graph (graph degree linkage).[8]

• The increment of some cluster descriptor (i.e., a
quantity defined for measuring the quality of a clus-
ter) after merging two clusters.[9][10][11]
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44.2 Discussion

Hierarchical clustering has the distinct advantage that any
valid measure of distance can be used. In fact, the obser-
vations themselves are not required: all that is used is a
matrix of distances.

44.3 Example for Agglomerative
Clustering

For example, suppose this data is to be clustered, and the
Euclidean distance is the distance metric.
Cutting the tree at a given height will give a partitioning
clustering at a selected precision. In this example, cutting
after the second row of the dendrogram will yield clusters
{a} {b c} {d e} {f}. Cutting after the third row will yield
clusters {a} {b c} {d e f}, which is a coarser clustering,
with a smaller number but larger clusters.

a

b

c

d

e
f

Raw data

The hierarchical clustering dendrogram would be as such:
This method builds the hierarchy from the individual ele-
ments by progressively merging clusters. In our example,
we have six elements {a} {b} {c} {d} {e} and {f}. The
first step is to determine which elements to merge in a
cluster. Usually, we want to take the two closest elements,
according to the chosen distance.
Optionally, one can also construct a distance matrix at
this stage, where the number in the i-th row j-th column
is the distance between the i-th and j-th elements. Then,
as clustering progresses, rows and columns are merged as
the clusters are merged and the distances updated. This is
a common way to implement this type of clustering, and
has the benefit of caching distances between clusters. A
simple agglomerative clustering algorithm is described in

a b c d e

bc de

def

bcdef

abcdef

f

Traditional representation

the single-linkage clustering page; it can easily be adapted
to different types of linkage (see below).
Suppose we have merged the two closest elements b and
c, we now have the following clusters {a}, {b, c}, {d},
{e} and {f}, and want to merge them further. To do that,
we need to take the distance between {a} and {b c}, and
therefore define the distance between two clusters. Usu-
ally the distance between two clusters A and B is one of
the following:

• The maximum distance between elements of each
cluster (also called complete-linkage clustering):

max{ d(x, y) : x ∈ A, y ∈ B }.

• The minimum distance between elements of each
cluster (also called single-linkage clustering):

min{ d(x, y) : x ∈ A, y ∈ B }.

• The mean distance between elements of each cluster
(also called average linkage clustering, used e.g. in
UPGMA):

1

|A| · |B|
∑
x∈A

∑
y∈B

d(x, y).

• The sum of all intra-cluster variance.

• The increase in variance for the cluster being merged
(Ward’s method<ref name="[7])

• The probability that candidate clusters spawn from
the same distribution function (V-linkage).
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Each agglomeration occurs at a greater distance between
clusters than the previous agglomeration, and one can de-
cide to stop clustering either when the clusters are too far
apart to be merged (distance criterion) or when there is a
sufficiently small number of clusters (number criterion).

44.4 Software

44.4.1 Open Source Frameworks

• R has several functions for hierarchical clustering:
see CRAN Task View: Cluster Analysis & Finite
Mixture Models for more information.

• Cluster 3.0 provides a nice Graphical User Interface
to access to different clustering routines and is avail-
able for Windows, Mac OS X, Linux, Unix.

• ELKI includes multiple hierarchical clustering algo-
rithms, various linkage strategies and also includes
the efficient SLINK[2] algorithm, flexible cluster ex-
traction from dendrograms and various other cluster
analysis algorithms.

• Octave, the GNU analog to MATLAB implements
hierarchical clustering in linkage function

• Orange, a free data mining software suite, module
orngClustering for scripting in Python, or cluster
analysis through visual programming.

• scikit-learn implements a hierarchical clustering.

• Weka includes hierarchical cluster analysis.

• fastCluster efficiently implements the seven most
widely used clustering schemes.

• SCaViS computing environment in Java that imple-
ments this algorithm.

44.4.2 Standalone implementations

• CrimeStat implements two hierarchical clustering
routines, a nearest neighbor (Nnh) and a risk-
adjusted(Rnnh).

• figue is a JavaScript package that implements some
agglomerative clustering functions (single-linkage,
complete-linkage, average-linkage) and functions to
visualize clustering output (e.g. dendrograms).

• hcluster is a Python implementation, based on
NumPy, which supports hierarchical clustering and
plotting.

• Hierarchical Agglomerative Clustering imple-
mented as C# visual studio project that includes real
text files processing, building of document-term
matrix with stop words filtering and stemming.

• MultiDendrograms An open source Java application
for variable-group agglomerative hierarchical clus-
tering, with graphical user interface.

• Graph Agglomerative Clustering (GAC) toolbox
implemented several graph-based agglomerative
clustering algorithms.

• Hierarchical Clustering Explorer provides tools for
interactive exploration of multidimensional data.

44.4.3 Commercial

• MATLAB includes hierarchical cluster analysis.

• SAS includes hierarchical cluster analysis.

• Mathematica includes a Hierarchical Clustering
Package.

• NCSS (statistical software) includes hierarchical
cluster analysis.

• SPSS includes hierarchical cluster analysis.

• Qlucore Omics Explorer includes hierarchical clus-
ter analysis.

• Stata includes hierarchical cluster analysis.

44.5 See also

• Statistical distance

• Brown clustering

• Cluster analysis

• CURE data clustering algorithm

• Dendrogram

• Determining the number of clusters in a data set

• Hierarchical clustering of networks

• Nearest-neighbor chain algorithm

• Numerical taxonomy

• OPTICS algorithm

• Nearest neighbor search

• Locality-sensitive hashing
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Chapter 45

Instance-based learning

In machine learning, instance-based learning (some-
times called memory-based learning[1]) is a family of
learning algorithms that, instead of performing explicit
generalization, compares new problem instances with in-
stances seen in training, which have been stored in mem-
ory. Instance-based learning is a kind of lazy learning.
It is called instance-based because it constructs hypothe-
ses directly from the training instances themselves.[2] This
means that the hypothesis complexity can grow with the
data:[2] in the worst case, a hypothesis is a list of n training
items and the computational complexity of classifying a
single new instance is O(n). One advantage that instance-
based learning has over other methods of machine learn-
ing is its ability to adapt its model to previously unseen
data: instance-based learners may simply store a new in-
stance or throw an old instance away.
Examples of instance-based learning algorithm are the
k-nearest neighbor algorithm, kernel machines and RBF
networks.[3]:ch. 8 These store (a subset of) their training
set; when predicting a value/class for a new instance, they
compute distances or similarities between this instance
and the training instances to make a decision.
To battle the memory complexity of storing all training
instances, as well as the risk of overfitting to noise in
the training set, instance reduction algorithms have been
proposed.[4]

Gagliardi[5] applies this family of classifiers in medi-
cal field as second-opinion diagnostic tools and as tools
for the knowledge extraction phase in the process of
knowledge discovery in databases. One of these classi-
fiers (called Prototype exemplar learning classifier (PEL-
C) is able to extract a mixture of abstracted prototypical
cases (that are syndromes) and selected atypical clinical
cases.

45.1 See also

• Analogical modeling
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Chapter 46

k-nearest neighbors algorithm

In pattern recognition, the k-Nearest Neighbors algo-
rithm (or k-NN for short) is a non-parametric method
used for classification and regression.[1] In both cases, the
input consists of the k closest training examples in the
feature space. The output depends on whether k-NN is
used for classification or regression:

• In k-NN classification, the output is a
class membership. An object is clas-
sified by a majority vote of its neigh-
bors, with the object being assigned to
the class most common among its k near-
est neighbors (k is a positive integer, typ-
ically small). If k = 1, then the object is
simply assigned to the class of that single
nearest neighbor.

• In k-NN regression, the output is the prop-
erty value for the object. This value is
the average of the values of its k nearest
neighbors.

k-NN is a type of instance-based learning, or lazy learn-
ing, where the function is only approximated locally and
all computation is deferred until classification. The k-NN
algorithm is among the simplest of all machine learning
algorithms.
Both for classification and regression, it can be useful to
assign weight to the contributions of the neighbors, so that
the nearer neighbors contribute more to the average than
the more distant ones. For example, a common weighting
scheme consists in giving each neighbor a weight of 1/d,
where d is the distance to the neighbor.[2]

The neighbors are taken from a set of objects for which
the class (for k-NN classification) or the object prop-
erty value (for k-NN regression) is known. This can be
thought of as the training set for the algorithm, though no
explicit training step is required.
A shortcoming of the k-NN algorithm is that it is sensi-
tive to the local structure of the data. The algorithm has
nothing to do with and is not to be confused with k-means,
another popular machine learning technique.

46.1 Algorithm

?

Example of k-NN classification. The test sample (green circle)
should be classified either to the first class of blue squares or to
the second class of red triangles. If k = 3 (solid line circle) it
is assigned to the second class because there are 2 triangles and
only 1 square inside the inner circle. If k = 5 (dashed line circle)
it is assigned to the first class (3 squares vs. 2 triangles inside the
outer circle).

The training examples are vectors in a multidimensional
feature space, each with a class label. The training phase
of the algorithm consists only of storing the feature vec-
tors and class labels of the training samples.
In the classification phase, k is a user-defined constant,
and an unlabeled vector (a query or test point) is classified
by assigning the label which is most frequent among the
k training samples nearest to that query point.
A commonly used distance metric for continuous vari-
ables is Euclidean distance. For discrete variables, such
as for text classification, another metric can be used, such
as the overlap metric (or Hamming distance). In the
context of gene expression microarray data, for exam-
ple, k-NN has also been employed with correlation co-
efficients such as Pearson and Spearman.[3] Often, the
classification accuracy of k-NN can be improved signifi-
cantly if the distance metric is learned with specialized
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algorithms such as Large Margin Nearest Neighbor or
Neighbourhood components analysis.
A drawback of the basic “majority voting” classification
occurs when the class distribution is skewed. That is,
examples of a more frequent class tend to dominate the
prediction of the new example, because they tend to be
common among the k nearest neighbors due to their large
number.[4] One way to overcome this problem is to weight
the classification, taking into account the distance from
the test point to each of its k nearest neighbors. The class
(or value, in regression problems) of each of the k nearest
points is multiplied by a weight proportional to the inverse
of the distance from that point to the test point. Another
way to overcome skew is by abstraction in data repre-
sentation. For example in a self-organizing map (SOM),
each node is a representative (a center) of a cluster of
similar points, regardless of their density in the original
training data. K-NN can then be applied to the SOM.

46.2 Parameter selection

The best choice of k depends upon the data; gener-
ally, larger values of k reduce the effect of noise on the
classification,[5] but make boundaries between classes less
distinct. A good k can be selected by various heuristic
techniques (see hyperparameter optimization). The spe-
cial case where the class is predicted to be the class of
the closest training sample (i.e. when k = 1) is called the
nearest neighbor algorithm.
The accuracy of the k-NN algorithm can be severely de-
graded by the presence of noisy or irrelevant features, or
if the feature scales are not consistent with their impor-
tance. Much research effort has been put into selecting or
scaling features to improve classification. A particularly
popular approach is the use of evolutionary algorithms to
optimize feature scaling.[6] Another popular approach is
to scale features by the mutual information of the training
data with the training classes.
In binary (two class) classification problems, it is helpful
to choose k to be an odd number as this avoids tied votes.
One popular way of choosing the empirically optimal k in
this setting is via bootstrap method.[7]

46.3 Properties

k-NN is a special case of a variable-bandwidth, kernel
density “balloon” estimator with a uniform kernel.[8] [9]

The naive version of the algorithm is easy to implement
by computing the distances from the test example to all
stored examples, but it is computationally intensive for
large training sets. Using an appropriate nearest neighbor
search algorithm makes k-NN computationally tractable
even for large data sets. Many nearest neighbor search

algorithms have been proposed over the years; these gen-
erally seek to reduce the number of distance evaluations
actually performed.
k-NN has some strong consistency results. As the amount
of data approaches infinity, the algorithm is guaranteed to
yield an error rate no worse than twice the Bayes error rate
(the minimum achievable error rate given the distribution
of the data).[10] k-NN is guaranteed to approach the Bayes
error rate for some value of k (where k increases as a
function of the number of data points). Various improve-
ments to k-NN are possible by using proximity graphs.[11]

46.4 Metric Learning

The K-nearest neighbor classification performance can
often be significantly improved through (supervised)
metric learning. Popular algorithms are Neighbourhood
components analysis and Large margin nearest neighbor.
Supervised metric learning algorithms use the label infor-
mation to learn a new metric or pseudo-metric.

46.5 Feature extraction

When the input data to an algorithm is too large to be
processed and it is suspected to be notoriously redundant
(e.g. the same measurement in both feet and meters)
then the input data will be transformed into a reduced
representation set of features (also named features vec-
tor). Transforming the input data into the set of features
is called feature extraction. If the features extracted are
carefully chosen it is expected that the features set will ex-
tract the relevant information from the input data in order
to perform the desired task using this reduced represen-
tation instead of the full size input. Feature extraction is
performed on raw data prior to applying k-NN algorithm
on the transformed data in feature space.
An example of a typical computer vision computation
pipeline for face recognition using k-NN including fea-
ture extraction and dimension reduction pre-processing
steps (usually implemented with OpenCV):

1. Haar face detection

2. Mean-shift tracking analysis

3. PCA or Fisher LDA projection into feature space,
followed by k-NN classification

46.6 Dimension reduction

For high-dimensional data (e.g., with number of dimen-
sions more than 10) dimension reduction is usually per-
formed prior to applying the k-NN algorithm in order to
avoid the effects of the curse of dimensionality. [12]
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The curse of dimensionality in the k-NN context basically
means that Euclidean distance is unhelpful in high di-
mensions because all vectors are almost equidistant to the
search query vector (imagine multiple points lying more
or less on a circle with the query point at the center; the
distance from the query to all data points in the search
space is almost the same).
Feature extraction and dimension reduction can be com-
bined in one step using principal component anal-
ysis (PCA), linear discriminant analysis (LDA), or
canonical correlation analysis (CCA) techniques as a
pre-processing step, followed by clustering by k-NN on
feature vectors in reduced-dimension space. In machine
learning this process is also called low-dimensional
embedding.[13]

For very-high-dimensional datasets (e.g. when perform-
ing a similarity search on live video streams, DNA
data or high-dimensional time series) running a fast ap-
proximate k-NN search using locality sensitive hashing,
“random projections”,[14] “sketches” [15] or other high-
dimensional similarity search techniques from VLDB
toolbox might be the only feasible option.

46.7 Decision boundary

Nearest neighbor rules in effect implicitly compute the
decision boundary. It is also possible to compute the de-
cision boundary explicitly, and to do so efficiently, so that
the computational complexity is a function of the bound-
ary complexity.[16]

46.8 Data reduction

Data reduction is one of the most important problems for
work with huge data sets. Usually, only some of the data
points are needed for accurate classification. Those data
are called the prototypes and can be found as follows:

1. Select the class-outliers, that is, training data that are
classified incorrectly by k-NN (for a given k)

2. Separate the rest of the data into two sets: (i) the
prototypes that are used for the classification deci-
sions and (ii) the absorbed points that can be cor-
rectly classified by k-NN using prototypes. The ab-
sorbed points can then be removed from the training
set.

46.8.1 Selection of class-outliers

A training example surrounded by examples of other
classes is called a class outlier. Causes of class outliers
include:

• random error

• insufficient training examples of this class (an iso-
lated example appears instead of a cluster)

• missing important features (the classes are separated
in other dimensions which we do not know)

• too many training examples of other classes (unbal-
anced classes) that create a “hostile” background for
the given small class

Class outliers with k-NN produce noise. They can be
detected and separated for future analysis. Given two
natural numbers, k>r>0, a training example is called a
(k,r)NN class-outlier if its k nearest neighbors include
more than r examples of other classes.

46.8.2 CNN for data reduction

Condensed nearest neighbor (CNN, the Hart algorithm)
is an algorithm designed to reduce the data set for k-
NN classification.[17] It selects the set of prototypes U
from the training data, such that 1NN with U can clas-
sify the examples almost as accurately as 1NN does with
the whole data set.

Calculation of the border ratio.

Three types of points: prototypes, class-outliers, and absorbed
points.

Given a training set X, CNN works iteratively:
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1. Scan all elements of X, looking for an element x
whose nearest prototype from U has a different label
than x.

2. Remove x from X and add it to U

3. Repeat the scan until no more prototypes are added
to U.

Use U instead of X for classification. The examples that
are not prototypes are called “absorbed” points.
It is efficient to scan the training examples in order of
decreasing border ratio.[18] The border ratio of a training
example x is defined as

a(x) = ||x'-y|| / ||x-y||

where ||x-y|| is the distance to the closest example y having
a different color than x, and ||x'-y|| is the distance from y
to its closest example x' with the same label as x.
The border ratio is in the interval [0,1] because ||x'-y||
never exceeds ||x-y||. This ordering gives preference to
the borders of the classes for inclusion in the set of proto-
typesU. A point of a different label than x is called exter-
nal to x. The calculation of the border ratio is illustrated
by the figure on the right. The data points are labeled by
colors: the initial point is x and its label is red. External
points are blue and green. The closest to x external point
is y. The closest to y red point is x' . The border ratio
a(x)=||x'-y||/||x-y|| is the attribute of the initial point x.
Below is an illustration of CNN in a series of figures.
There are three classes (red, green and blue). Fig. 1:
initially there are 60 points in each class. Fig. 2 shows
the 1NN classification map: each pixel is classified by
1NN using all the data. Fig. 3 shows the 5NN classifi-
cation map. White areas correspond to the unclassified
regions, where 5NN voting is tied (for example, if there
are two green, two red and one blue points among 5 near-
est neighbors). Fig. 4 shows the reduced data set. The
crosses are the class-outliers selected by the (3,2)NN rule
(all the three nearest neighbors of these instances belong
to other classes); the squares are the prototypes, and the
empty circles are the absorbed points. The left bottom
corner shows the numbers of the class-outliers, proto-
types and absorbed points for all three classes. The num-
ber of prototypes varies from 15% to 20% for different
classes in this example. Fig. 5 shows that the 1NN clas-
sification map with the prototypes is very similar to that
with the initial data set. The figures were produced using
the Mirkes applet.[18]

• CNN model reduction for k-NN classifiers

• Fig. 1. The dataset.

• Fig. 2. The 1NN classification map.

• Fig. 3. The 5NN classification map.

• Fig. 4. The CNN reduced dataset.

• Fig. 5. The 1NN classification map based on the
CNN extracted prototypes.

46.9 k-NN regression

In k-NN regression, the k-NN algorithm is used for es-
timating continuous variables. One such algorithm uses
a weighted average of the k nearest neighbors, weighted
by the inverse of their distance. This algorithm works as
follows:

1. Compute the Euclidean or Mahalanobis distance
from the query example to the labeled examples.

2. Order the labeled examples by increasing distance.

3. Find a heuristically optimal number k of nearest
neighbors, based on RMSE. This is done using cross
validation.

4. Calculate an inverse distance weighted average with
the k-nearest multivariate neighbors.

46.10 Validation of results

A confusion matrix or “matching matrix” is often used
as a tool to validate the accuracy of k-NN classification.
More robust statistical methods such as likelihood-ratio
test can also be applied.

46.11 See also
• Instance-based learning

• Nearest neighbor search

• Statistical classification

• Cluster analysis

• Data mining

• Nearest centroid classifier

• Pattern recognition

• Curse of dimensionality

• Dimension reduction

• Principal Component Analysis

• Locality Sensitive Hashing

• MinHash

• Cluster hypothesis

• Closest pair of points problem

https://en.wikipedia.org/wiki/Mahalanobis_distance
https://en.wikipedia.org/wiki/RMSE
https://en.wikipedia.org/wiki/Confusion_matrix
https://en.wikipedia.org/wiki/Likelihood-ratio_test
https://en.wikipedia.org/wiki/Likelihood-ratio_test
https://en.wikipedia.org/wiki/Instance-based_learning
https://en.wikipedia.org/wiki/Nearest_neighbor_search
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Nearest_centroid_classifier
https://en.wikipedia.org/wiki/Pattern_recognition
https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://en.wikipedia.org/wiki/Dimension_reduction
https://en.wikipedia.org/wiki/Principal_Component_Analysis
https://en.wikipedia.org/wiki/Locality_Sensitive_Hashing
https://en.wikipedia.org/wiki/MinHash
https://en.wikipedia.org/wiki/Cluster_hypothesis
https://en.wikipedia.org/wiki/Closest_pair_of_points_problem


306 CHAPTER 46. K-NEAREST NEIGHBORS ALGORITHM

46.12 References
[1] Altman, N. S. (1992). “An introduction to ker-

nel and nearest-neighbor nonparametric regres-
sion”. The American Statistician 46 (3): 175–185.
doi:10.1080/00031305.1992.10475879.

[2] This scheme is a generalization of linear interpolation.

[3] Jaskowiak, P. A.; Campello, R. J. G. B. “Comparing
Correlation Coefficients as Dissimilarity Measures
for Cancer Classification in Gene Expression Data”.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.
208.993''. Brazilian Symposium on Bioinformatics (BSB
2011). pp. 1–8. Retrieved 16 October 2014.

[4] D. Coomans; D.L. Massart (1982). “Alternative k-nearest
neighbour rules in supervised pattern recognition : Part
1. k-Nearest neighbour classification by using alterna-
tive voting rules”. Analytica Chimica Acta 136: 15–27.
doi:10.1016/S0003-2670(01)95359-0.

[5] Everitt, B. S., Landau, S., Leese, M. and Stahl, D. (2011)
Miscellaneous Clustering Methods, in Cluster Analysis,
5th Edition, John Wiley & Sons, Ltd, Chichester, UK.

[6] Nigsch F, Bender A, van Buuren B, Tissen J, Nigsch E,
Mitchell JB (2006). “Melting point prediction employing
k-nearest neighbor algorithms and genetic parameter op-
timization”. Journal of Chemical Information and Mod-
eling 46 (6): 2412–2422. doi:10.1021/ci060149f. PMID
17125183.

[7] Hall P, Park BU, Samworth RJ (2008). “Choice of neigh-
bor order in nearest-neighbor classification”. Annals of
Statistics 36 (5): 2135–2152. doi:10.1214/07-AOS537.

[8] D. G. Terrell; D. W. Scott (1992). “Variable kernel den-
sity estimation”. Annals of Statistics 20 (3): 1236–1265.
doi:10.1214/aos/1176348768.

[9] Mills, Peter. “Efficient statistical classification of satellite
measurements”. International Journal of Remote Sensing.

[10] Cover TM, Hart PE (1967). “Nearest neighbor pattern
classification”. IEEE Transactions on Information Theory
13 (1): 21–27. doi:10.1109/TIT.1967.1053964.

[11] Toussaint GT (April 2005). “Geometric proximity graphs
for improving nearest neighbor methods in instance-based
learning and data mining”. International Journal of Com-
putational Geometry and Applications 15 (2): 101–150.
doi:10.1142/S0218195905001622.

[12] Beyer, Kevin, et al.. 'When is “nearest neighbor” mean-
ingful?. Database Theory—ICDT’99, 217-235|year 1999

[13] Shaw, Blake, and Tony Jebara. 'Structure preserving em-
bedding. Proceedings of the 26th Annual International
Conference on Machine Learning. ACM,2009

[14] Bingham, Ella, and Heikki Mannila. Random projection
in dimensionality reduction: applications to image and
text data. Proceedings of the seventh ACM SIGKDD in-
ternational conference on Knowledge discovery and data
mining. ACM | year 2001

[15] Shasha, D High Performance Discovery in Time Se-
ries.Berlin: Springer, 2004, ISBN 0-387-00857-8

[16] Bremner D, Demaine E, Erickson J, Iacono J, Langerman
S, Morin P, Toussaint G (2005). “Output-sensitive al-
gorithms for computing nearest-neighbor decision bound-
aries”. Discrete and Computational Geometry 33 (4): 593–
604. doi:10.1007/s00454-004-1152-0.

[17] P. E. Hart, The Condensed Nearest Neighbor Rule. IEEE
Transactions on Information Theory 18 (1968) 515–516.
doi: 10.1109/TIT.1968.1054155

[18] E. M. Mirkes, KNN and Potential Energy: applet. Uni-
versity of Leicester, 2011.

46.13 Further reading
• When Is “Nearest Neighbor” Meaningful?

• Belur V. Dasarathy, ed. (1991). Nearest Neighbor
(NN) Norms: NN Pattern Classification Techniques.
ISBN 0-8186-8930-7.

• Shakhnarovish, Darrell, and Indyk, ed. (2005).
Nearest-Neighbor Methods in Learning and Vision.
MIT Press. ISBN 0-262-19547-X.

• Mäkelä H Pekkarinen A (2004-07-26). “Estima-
tion of forest stand volumes by Landsat TM im-
agery and stand-level field-inventory data”. Forest
Ecology and Management 196 (2–3): 245–255.
doi:10.1016/j.foreco.2004.02.049.

• Fast k nearest neighbor search using GPU. In Pro-
ceedings of the CVPR Workshop on Computer Vi-
sion on GPU, Anchorage, Alaska, USA, June 2008.
V. Garcia and E. Debreuve and M. Barlaud.

• Scholarpedia article on k-NN

• google-all-pairs-similarity-search

https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1080%252F00031305.1992.10475879
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.208.993
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.208.993
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.208.993
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.208.993%2527%2527
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.208.993%2527%2527
https://en.wikipedia.org/wiki/Analytica_Chimica_Acta
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1016%252FS0003-2670%252801%252995359-0
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1021%252Fci060149f
https://en.wikipedia.org/wiki/PubMed_Identifier
https://www.ncbi.nlm.nih.gov/pubmed/17125183
https://en.wikipedia.org/wiki/Annals_of_Statistics
https://en.wikipedia.org/wiki/Annals_of_Statistics
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1214%252F07-AOS537
https://en.wikipedia.org/wiki/Annals_of_Statistics
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1214%252Faos%252F1176348768
https://en.wikipedia.org/wiki/Thomas_M._Cover
https://en.wikipedia.org/wiki/Peter_E._Hart
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1109%252FTIT.1967.1053964
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1142%252FS0218195905001622
https://en.wikipedia.org/wiki/Special:BookSources/0387008578
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1007%252Fs00454-004-1152-0
https://en.wikipedia.org/wiki/Peter_E._Hart
http://www.math.le.ac.uk/people/ag153/homepage/KNN/KNN3.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.1422
https://en.wikipedia.org/wiki/Belur_V._Dasarathy
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-8186-8930-7
https://en.wikipedia.org/wiki/MIT_Press
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-262-19547-X
https://en.wikipedia.org/wiki/Forest_Ecology_and_Management
https://en.wikipedia.org/wiki/Forest_Ecology_and_Management
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1016%252Fj.foreco.2004.02.049
https://en.wikipedia.org/wiki/GPU
http://www.scholarpedia.org/article/K-nearest_neighbor
https://code.google.com/p/google-all-pairs-similarity-search/


Chapter 47

Principal component analysis

PCA of a multivariate Gaussian distribution centered at (1,3)
with a standard deviation of 3 in roughly the (0.878, 0.478) di-
rection and of 1 in the orthogonal direction. The vectors shown
are the eigenvectors of the covariance matrix scaled by the square
root of the corresponding eigenvalue, and shifted so their tails are
at the mean.

Principal component analysis (PCA) is a statistical
procedure that uses an orthogonal transformation to con-
vert a set of observations of possibly correlated vari-
ables into a set of values of linearly uncorrelated variables
called principal components. The number of principal
components is less than or equal to the number of origi-
nal variables. This transformation is defined in such a way
that the first principal component has the largest possible
variance (that is, accounts for as much of the variability
in the data as possible), and each succeeding component
in turn has the highest variance possible under the con-
straint that it is orthogonal to the preceding components.
The resulting vectors are an uncorrelated orthogonal ba-
sis set. The principal components are orthogonal because
they are the eigenvectors of the covariance matrix, which
is symmetric. PCA is sensitive to the relative scaling of
the original variables.
Depending on the field of application, it is also named
the discrete Karhunen–Loève transform (KLT) in sig-
nal processing, the Hotelling transform in multivariate
quality control, proper orthogonal decomposition (POD)

in mechanical engineering, singular value decomposition
(SVD) of X (Golub and Van Loan, 1983), eigenvalue de-
composition (EVD) ofXTX in linear algebra, factor anal-
ysis (for a discussion of the differences between PCA
and factor analysis see Ch. 7 of[1]), Eckart–Young the-
orem (Harman, 1960), or Schmidt–Mirsky theorem in
psychometrics, empirical orthogonal functions (EOF) in
meteorological science, empirical eigenfunction decom-
position (Sirovich, 1987), empirical component analy-
sis (Lorenz, 1956), quasiharmonic modes (Brooks et al.,
1988), spectral decomposition in noise and vibration, and
empirical modal analysis in structural dynamics.
PCA was invented in 1901 by Karl Pearson,[2] as an ana-
logue of the principal axis theorem in mechanics; it was
later independently developed (and named) by Harold
Hotelling in the 1930s.[3] The method is mostly used as a
tool in exploratory data analysis and for making predictive
models. PCA can be done by eigenvalue decomposition
of a data covariance (or correlation) matrix or singular
value decomposition of a data matrix, usually after mean
centering (and normalizing or using Z-scores) the data
matrix for each attribute.[4] The results of a PCA are
usually discussed in terms of component scores, some-
times called factor scores (the transformed variable val-
ues corresponding to a particular data point), and loadings
(the weight by which each standardized original variable
should be multiplied to get the component score).[5]

PCA is the simplest of the true eigenvector-based multi-
variate analyses. Often, its operation can be thought of
as revealing the internal structure of the data in a way
that best explains the variance in the data. If a multivari-
ate dataset is visualised as a set of coordinates in a high-
dimensional data space (1 axis per variable), PCA can
supply the user with a lower-dimensional picture, a pro-
jection or “shadow” of this object when viewed from its
(in some sense; see below) most informative viewpoint.
This is done by using only the first few principal compo-
nents so that the dimensionality of the transformed data
is reduced.
PCA is closely related to factor analysis. Factor analysis
typically incorporates more domain specific assumptions
about the underlying structure and solves eigenvectors of
a slightly different matrix.
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PCA is also related to canonical correlation analysis
(CCA). CCA defines coordinate systems that optimally
describe the cross-covariance between two datasets while
PCA defines a new orthogonal coordinate system that op-
timally describes variance in a single dataset.[6][7]

47.1 Intuition

PCA can be thought of as fitting an n-dimensional
ellipsoid to the data, where each axis of the ellipsoid rep-
resents a principal component. If some axis of the ellipse
is small, then the variance along that axis is also small,
and by omitting that axis and its corresponding princi-
pal component from our representation of the dataset, we
lose only a commensurately small amount of information.
To find the axes of the ellipse, we must first subtract the
mean of each variable from the dataset to center the data
around the origin. Then, we compute the covariance ma-
trix of the data, and calculate the eigenvalues and corre-
sponding eigenvectors of this covariance matrix. Then,
we must orthogonalize the set of eigenvectors, and nor-
malize each to become unit vectors. Once this is done,
each of the mutually orthogonal, unit eigenvectors can be
interpreted as an axis of the ellipsoid fitted to the data.
The proportion of the variance that each eigenvector rep-
resents can be calculated by dividing the eigenvalue cor-
responding to that eigenvector by the sum of all eigenval-
ues.
It is important to note that this procedure is sensitive to
the scaling of the data, and that there is no consensus as
to how to best scale the data to obtain optimal results.

47.2 Details

PCA is mathematically defined[1] as an orthogonal
linear transformation that transforms the data to a new
coordinate system such that the greatest variance by some
projection of the data comes to lie on the first coordinate
(called the first principal component), the second greatest
variance on the second coordinate, and so on.
Consider a data matrix, X, with column-wise zero
empirical mean (the sample mean of each column has
been shifted to zero), where each of the n rows repre-
sents a different repetition of the experiment, and each
of the p columns gives a particular kind of datum (say,
the results from a particular sensor).
Mathematically, the transformation is defined by a set
of p-dimensional vectors of weights or loadings w(k) =
(w1, . . . , wp)(k) that map each row vector x(i) of X
to a new vector of principal component scores t(i) =
(t1, . . . , tp)(i) , given by

tk(i) = x(i) · w(k)

in such a way that the individual variables of t consid-
ered over the data set successively inherit the maximum
possible variance from x, with each loading vectorw con-
strained to be a unit vector.

47.2.1 First component

The first loading vector w₍₁₎ thus has to satisfy

w(1) = arg max
∥w∥=1

{∑
i

(t1)
2
(i)

}
= arg max

∥w∥=1

{∑
i

(
x(i) · w

)2}
Equivalently, writing this in matrix form gives

w(1) = arg max
∥w∥=1

{∥Xw∥2} = arg max
∥w∥=1

{
wTXTXw

}
Since w₍₁₎ has been defined to be a unit vector, it equiva-
lently also satisfies

w(1) = arg max
{wTXTXw

wTw

}
The quantity to be maximised can be recognised as a
Rayleigh quotient. A standard result for a symmetric ma-
trix such as XTX is that the quotient’s maximum possible
value is the largest eigenvalue of the matrix, which occurs
when w is the corresponding eigenvector.
With w₍₁₎ found, the first component of a data vector x₍i₎
can then be given as a score t₁₍i₎ = x₍i₎ ⋅ w₍₁₎ in the trans-
formed co-ordinates, or as the corresponding vector in
the original variables, {x₍i₎ ⋅ w₍₁₎} w₍₁₎.

47.2.2 Further components

The kth component can be found by subtracting the first
k − 1 principal components from X:

X̂k = X−
k−1∑
s=1

Xw(s)wT
(s)

and then finding the loading vector which extracts the
maximum variance from this new data matrix

w(k) = arg max
∥w∥=1

{
∥X̂kw∥2

}
= arg max

{
wT X̂T

k X̂kw
wTw

}
It turns out that this gives the remaining eigenvectors of
XTX, with the maximum values for the quantity in brack-
ets given by their corresponding eigenvalues.
The kth principal component of a data vector x₍i₎ can
therefore be given as a score tk₍i₎ = x₍i₎ ⋅ w₍k₎ in the trans-
formed co-ordinates, or as the corresponding vector in the
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space of the original variables, {x₍i₎ ⋅ w₍k₎} w₍k₎, where
w₍k₎ is the kth eigenvector of XTX.
The full principal components decomposition of X can
therefore be given as

T = XW

whereW is a p-by-p matrix whose columns are the eigen-
vectors of XTX

47.2.3 Covariances

XTX itself can be recognised as proportional to the em-
pirical sample covariance matrix of the dataset X.
The sample covariance Q between two of the different
principal components over the dataset is given by:

Q(PC(j),PC(k)) ∝ (Xw(j))
T · (Xw(k))

= wT(j)XTXw(k)

= wT(j)λ(k)w(k)

= λ(k)wT(j)w(k)

where the eigenvalue property of w₍k₎ has been used to
move from line 2 to line 3. However eigenvectorsw₍j₎ and
w₍k₎ corresponding to eigenvalues of a symmetric matrix
are orthogonal (if the eigenvalues are different), or can be
orthogonalised (if the vectors happen to share an equal
repeated value). The product in the final line is there-
fore zero; there is no sample covariance between differ-
ent principal components over the dataset.
Another way to characterise the principal components
transformation is therefore as the transformation to co-
ordinates which diagonalise the empirical sample covari-
ance matrix.
In matrix form, the empirical covariance matrix for the
original variables can be written

Q ∝ XTX =W�WT

The empirical covariance matrix between the principal
components becomes

WTQW ∝WTW�WTW = �

whereΛ is the diagonal matrix of eigenvalues λ₍k₎ ofXTX
(λ₍⛹₎ being equal to the sum of the squares over the dataset
associated with each component k: λ₍k₎ = Σi tk2₍i₎ = Σi
(x₍i₎ ⋅ w₍k₎)2)

47.2.4 Dimensionality reduction

The faithful transformation T = X W maps a data vector
x₍i₎ from an original space of p variables to a new space of
p variables which are uncorrelated over the dataset. How-
ever, not all the principal components need to be kept.
Keeping only the first L principal components, produced
by using only the first L loading vectors, gives the trun-
cated transformation

TL = XWL

where the matrix TL now has n rows but only L columns.
In other words, PCA learns a linear transformation t =
WTx, x ∈ Rp, t ∈ RL, where the columns of p × L ma-
trix W form an orthogonal basis for the L features (the
components of representation t) that are decorrelated.[8]

By construction, of all the transformed data matrices
with only L columns, this score matrix maximises the
variance in the original data that has been preserved,
while minimising the total squared reconstruction error
∥TWT − TLWT

L∥22 or ∥X− XL∥22 .

A principal components analysis scatterplot of Y-STR haplotypes
calculated from repeat-count values for 37 Y-chromosomal STR
markers from 354 individuals.
PCA has successfully found linear combinations of the differ-
ent markers, that separate out different clusters corresponding to
different lines of individuals’ Y-chromosomal genetic descent.

Such dimensionality reduction can be a very useful step
for visualising and processing high-dimensional datasets,
while still retaining as much of the variance in the dataset
as possible. For example, selecting L = 2 and keeping
only the first two principal components finds the two-
dimensional plane through the high-dimensional dataset
in which the data is most spread out, so if the data contains
clusters these too may be most spread out, and therefore
most visible to be plotted out in a two-dimensional dia-
gram; whereas if two directions through the data (or two
of the original variables) are chosen at random, the clus-
ters may be much less spread apart from each other, and
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may in fact be much more likely to substantially overlay
each other, making them indistinguishable.
Similarly, in regression analysis, the larger the number of
explanatory variables allowed, the greater is the chance
of overfitting the model, producing conclusions that fail
to generalise to other datasets. One approach, especially
when there are strong correlations between different pos-
sible explanatory variables, is to reduce them to a few
principal components and then run the regression against
them, a method called principal component regression.
Dimensionality reduction may also be appropriate when
the variables in a dataset are noisy. If each column of
the dataset contains independent identically distributed
Gaussian noise, then the columns of T will also contain
similarly identically distributed Gaussian noise (such a
distribution is invariant under the effects of the matrix
W, which can be thought of as a high-dimensional rota-
tion of the co-ordinate axes). However, with more of the
total variance concentrated in the first few principal com-
ponents compared to the same noise variance, the pro-
portionate effect of the noise is less—the first few com-
ponents achieve a higher signal-to-noise ratio. PCA thus
can have the effect of concentrating much of the signal
into the first few principal components, which can use-
fully be captured by dimensionality reduction; while the
later principal components may be dominated by noise,
and so disposed of without great loss.

47.2.5 Singular value decomposition

The principal components transformation can also be as-
sociated with another matrix factorisation, the singular
value decomposition (SVD) of X,

X = U�WT

Here Σ is a n-by-p rectangular diagonal matrix of posi-
tive numbers σ₍k₎, called the singular values of X; U is
an n-by-n matrix, the columns of which are orthogonal
unit vectors of length n called the left singular vectors of
X; and W is a p-by-p whose columns are orthogonal unit
vectors of length p and called the right singular vectors of
X.
In terms of this factorisation, the matrixXTX can be writ-
ten

XTX =W�UTU�WT

=W�2WT

Comparison with the eigenvector factorisation of XTX
establishes that the right singular vectors W of X are
equivalent to the eigenvectors of XTX, while the singu-
lar values σ₍k₎ of X are equal to the square roots of the
eigenvalues λ₍k₎ of XTX.

Using the singular value decomposition the score matrix
T can be written

T = XW
= U�WTW
= U�

so each column of T is given by one of the left singu-
lar vectors of X multiplied by the corresponding singular
value. This form is also the polar decomposition of T.
Efficient algorithms exist to calculate the SVD of X with-
out having to form the matrix XTX, so computing the
SVD is now the standard way to calculate a principal com-
ponents analysis from a data matrix, unless only a handful
of components are required.
As with the eigen-decomposition, a truncated n × L score
matrix TL can be obtained by considering only the first L
largest singular values and their singular vectors:

TL = UL�L = XWL

The truncation of a matrix M or T using a truncated sin-
gular value decomposition in this way produces a trun-
cated matrix that is the nearest possible matrix of rank
L to the original matrix, in the sense of the difference
between the two having the smallest possible Frobenius
norm, a result known as the Eckart–Young theorem
[1936].

47.3 Further considerations

Given a set of points in Euclidean space, the first princi-
pal component corresponds to a line that passes through
the multidimensional mean and minimizes the sum of
squares of the distances of the points from the line. The
second principal component corresponds to the same
concept after all correlation with the first principal com-
ponent has been subtracted from the points. The singular
values (in Σ) are the square roots of the eigenvalues of
the matrix XTX. Each eigenvalue is proportional to the
portion of the “variance” (more correctly of the sum of
the squared distances of the points from their multidi-
mensional mean) that is correlated with each eigenvec-
tor. The sum of all the eigenvalues is equal to the sum
of the squared distances of the points from their multidi-
mensional mean. PCA essentially rotates the set of points
around their mean in order to align with the principal
components. This moves as much of the variance as pos-
sible (using an orthogonal transformation) into the first
few dimensions. The values in the remaining dimensions,
therefore, tend to be small and may be dropped with min-
imal loss of information (see below). PCA is often used
in this manner for dimensionality reduction. PCA has the
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distinction of being the optimal orthogonal transforma-
tion for keeping the subspace that has largest “variance”
(as defined above). This advantage, however, comes at
the price of greater computational requirements if com-
pared, for example and when applicable, to the discrete
cosine transform, and in particular to the DCT-II which
is simply known as the “DCT”. Nonlinear dimensional-
ity reduction techniques tend to be more computationally
demanding than PCA.
PCA is sensitive to the scaling of the variables. If we
have just two variables and they have the same sample
variance and are positively correlated, then the PCA will
entail a rotation by 45° and the “loadings” for the two
variables with respect to the principal component will be
equal. But if we multiply all values of the first variable
by 100, then the first principal component will be almost
the same as that variable, with a small contribution from
the other variable, whereas the second component will
be almost aligned with the second original variable. This
means that whenever the different variables have differ-
ent units (like temperature and mass), PCA is a somewhat
arbitrary method of analysis. (Different results would be
obtained if one used Fahrenheit rather than Celsius for
example.) Note that Pearson’s original paper was entitled
“On Lines and Planes of Closest Fit to Systems of Points
in Space” – “in space” implies physical Euclidean space
where such concerns do not arise. One way of making
the PCA less arbitrary is to use variables scaled so as to
have unit variance, by standardizing the data and hence
use the autocorrelation matrix instead of the autocovari-
ance matrix as a basis for PCA. However, this compresses
(or expands) the fluctuations in all dimensions of the sig-
nal space to unit variance.
Mean subtraction (a.k.a. “mean centering”) is neces-
sary for performing PCA to ensure that the first principal
component describes the direction of maximum variance.
If mean subtraction is not performed, the first principal
component might instead correspond more or less to the
mean of the data. A mean of zero is needed for finding
a basis that minimizes the mean square error of the ap-
proximation of the data.[9]

PCA is equivalent to empirical orthogonal functions
(EOF), a name which is used in meteorology.
An autoencoder neural network with a linear hidden layer
is similar to PCA. Upon convergence, the weight vectors
of the K neurons in the hidden layer will form a basis for
the space spanned by the first K principal components.
Unlike PCA, this technique will not necessarily produce
orthogonal vectors.
PCA is a popular primary technique in pattern recog-
nition. It is not, however, optimized for class
separability.[10] An alternative is the linear discriminant
analysis, which does take this into account.

47.4 Table of symbols and abbrevi-
ations

47.5 Properties and limitations of
PCA

47.5.1 Properties[11]

Property 1: For any integer q, 1 ≤ q ≤ p, con-
sider the orthogonal linear transformation

y = B′x

where y is a q-element vector and B′ is a (q ×
p) matrix, and let �y = B′�B be the variance-
covariance matrix for y . Then the trace of �y
, denoted tr(�y) , is maximized by taking B =
Aq , where Aq consists of the first q columns
of A (B′ is the transposition of B) .

Property 2: Consider again the orthonormal
transformation

y = B′x

with x,B,A and �y defined as before. Then
tr(�y) is minimized by taking B = A∗

q , where
A∗
q consists of the last q columns of A .

The statistical implication of this property is that the last
few PCs are not simply unstructured left-overs after re-
moving the important PCs. Because these last PCs have
variances as small as possible they are useful in their own
right. They can help to detect unsuspected near-constant
linear relationships between the elements of x, and they
may also be useful in regression, in selecting a subset of
variables from x, and in outlier detection.

Property 3: (Spectral Decomposition of Σ)

� = λ1α1α
′
1 + · · ·+ λpαpα

′
p

Before we look at its usage, we first look at diagonal ele-
ments,

Var(xj) =
P∑
k=1

λkα
2
kj

Then, perhaps the main statistical implication of the re-
sult is that not only can we decompose the combined vari-
ances of all the elements of x into decreasing contribu-
tions due to each PC, but we can also decompose the
whole covariance matrix into contributions λkαkα′

k from
each PC. Although not strictly decreasing, the elements
of λkαkα′

k will tend to become smaller as k increases,
as λkαkα′

k decreases for increasing k , whereas the ele-
ments of αk tend to stay 'about the same size'because of
the normalization constraints: α′

kαk = 1, k = 1, · · · , p
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47.5.2 Limitations

As noted above, the results of PCA depend on the scaling
of the variables. A scale-invariant form of PCA has been
developed.[12]

The applicability of PCA is limited by certain
assumptions[13] made in its derivation.

47.5.3 PCA and information theory

The claim that the PCA used for dimensionality reduction
preserves most of the information of the data is mislead-
ing. Indeed, without any assumption on the signal model,
PCA cannot help to reduce the amount of information
lost during dimensionality reduction, where information
was measured using Shannon entropy.[14]

Under the assumption that

x = s+ n

i.e., that the data vector x is the sum of the desired
information-bearing signal s and a noise signal n one can
show that PCA can be optimal for dimensionality reduc-
tion also from an information-theoretic point-of-view.
In particular, Linsker showed that if s is Gaussian and n
is Gaussian noise with a covariance matrix proportional
to the identity matrix, the PCA maximizes the mutual
information I(y; s) between the desired information s and
the dimensionality-reduced output y =WT

Lx .[15]

If the noise is still Gaussian and has a covariance matrix
proportional to the identity matrix (i.e., the components
of the vector n are iid), but the information-bearing signal
s is non-Gaussian (which is a common scenario), PCA at
least minimizes an upper bound on the information loss,
which is defined as[16][17]

I(x; s)− I(y; s).

The optimality of PCA is also preserved if the noise n is
iid and at least more Gaussian (in terms of the Kullback–
Leibler divergence) than the information-bearing signal
s .[18] In general, even if the above signal model holds,
PCA loses its information-theoretic optimality as soon as
the noise n becomes dependent.

47.6 Computing PCA using the co-
variance method

The following is a detailed description of PCA using the
covariance method (see also here) as opposed to the cor-
relation method.[19] But note that it is better to use the
singular value decomposition (using standard software).

The goal is to transform a given data setX of dimension p
to an alternative data setY of smaller dimension L. Equiv-
alently, we are seeking to find the matrix Y, where Y is
the Karhunen–Loève transform (KLT) of matrix X:

Y = KLT{X}

47.6.1 Organize the data set

Suppose you have data comprising a set of observations
of p variables, and you want to reduce the data so that
each observation can be described with only L variables,
L < p. Suppose further, that the data are arranged as a
set of n data vectors x1 . . . xn with each xi representing
a single grouped observation of the p variables.

• Write x1 . . . xn as row vectors, each of which has p
columns.

• Place the row vectors into a single matrix X of di-
mensions n × p.

47.6.2 Calculate the empirical mean

• Find the empirical mean along each dimension j =
1, ..., p.

• Place the calculated mean values into an empirical
mean vector u of dimensions p × 1.

u[j] =
1

n

n∑
i=1

X[i, j]

47.6.3 Calculate the deviations from the
mean

Mean subtraction is an integral part of the solution to-
wards finding a principal component basis that minimizes
the mean square error of approximating the data.[20]

Hence we proceed by centering the data as follows:

• Subtract the empirical mean vector u from each row
of the data matrix X.

• Store mean-subtracted data in the n × p matrix B.

B = X− huT
where h is an n × 1 column vector
of all 1s:

h[i] = 1 fori = 1, . . . , n
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47.6.4 Find the covariance matrix

• Find the p × p empirical covariance matrix C from
the outer product of matrix B with itself:

C =
1

n− 1
B∗ · B

where ∗ is the conjugate transpose operator.
Note that if B consists entirely of real num-
bers, which is the case in many applications,
the “conjugate transpose” is the same as the
regular transpose.

• Please note that outer products apply to vectors. For
tensor cases we should apply tensor products, but the
covariance matrix in PCA is a sum of outer products
between its sample vectors; indeed, it could be rep-
resented as B*.B. See the covariance matrix sections
on the discussion page for more information.

• The reasoning behind using N − 1 instead of N to
calculate the covariance is Bessel’s correction

47.6.5 Find the eigenvectors and eigenval-
ues of the covariance matrix

• Compute the matrix V of eigenvectors which
diagonalizes the covariance matrix C:

V−1CV = D

where D is the diagonal matrix of eigenvalues
of C. This step will typically involve the use
of a computer-based algorithm for comput-
ing eigenvectors and eigenvalues. These algo-
rithms are readily available as sub-components
of most matrix algebra systems, such as R,
MATLAB,[21][22] Mathematica,[23] SciPy, IDL
(Interactive Data Language), or GNU Octave
as well as OpenCV.

• Matrix D will take the form of an p × p diagonal
matrix, where

D[k, l] = λk fork = l

is the jth eigenvalue of the covariance matrix
C, and

D[k, l] = 0 fork ̸= l.

• Matrix V, also of dimension p × p, contains p col-
umn vectors, each of length p, which represent the
p eigenvectors of the covariance matrix C.

• The eigenvalues and eigenvectors are ordered and
paired. The jth eigenvalue corresponds to the jth
eigenvector.

47.6.6 Rearrange the eigenvectors and
eigenvalues

• Sort the columns of the eigenvector matrix V and
eigenvalue matrix D in order of decreasing eigen-
value.

• Make sure to maintain the correct pairings between
the columns in each matrix.

47.6.7 Compute the cumulative energy
content for each eigenvector

• The eigenvalues represent the distribution of the
source data’s energy among each of the eigenvec-
tors, where the eigenvectors form a basis for the
data. The cumulative energy content g for the jth
eigenvector is the sum of the energy content across
all of the eigenvalues from 1 through j:

g[j] =∑j
k=1D[k, k] for j =

1, . . . , p

47.6.8 Select a subset of the eigenvectors as
basis vectors

• Save the first L columns of V as the p × L matrixW:

W [k, l] = V [k, l] for k = 1, . . . , p l = 1, . . . , L

where

1 ≤ L ≤ p.

• Use the vector g as a guide in choosing an appropri-
ate value for L. The goal is to choose a value of L as
small as possible while achieving a reasonably high
value of g on a percentage basis. For example, you
may want to choose L so that the cumulative energy
g is above a certain threshold, like 90 percent. In
this case, choose the smallest value of L such that

g[L]

g[p]
≥ 0.9
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47.6.9 Convert the source data to z-scores
(optional)

• Create an p × 1 empirical standard deviation vector s
from the square root of each element along the main
diagonal of the diagonalized covariance matrix C.
(Note, that scaling operations do not commute with
the KLT thus we must scale by the variances of the
already-decorrelated vector, which is the diagonal of
C) :

s = {s[j]} = {
√
C[j, j]} forj = 1, . . . , p

• Calculate the n × p z-score matrix:

Z =
B

h · sT

• Note: While this step is useful for various applica-
tions as it normalizes the data set with respect to its
variance, it is not integral part of PCA/KLT

47.6.10 Project the z-scores of the data
onto the new basis

• The projected vectors are the columns of the matrix

T = Z ·W = KLT{X}.

• The rows of matrix T represent the Karhunen–
Loeve transforms (KLT) of the data vectors in the
rows of matrix X.

47.7 Derivation of PCA using the
covariance method

LetX be a d-dimensional random vector expressed as col-
umn vector. Without loss of generality, assume X has
zero mean.
We want to find (∗) a d × d orthonormal transformation
matrix P so that PX has a diagonal covariant matrix (i.e.
PX is a random vector with all its distinct components
pairwise uncorrelated).
A quick computation assuming P were unitary yields:

var(PX) = E[PX (PX)†]

= E[PX X†P †]

= P E[XX†]P †

= P var(X)P−1

Hence (∗) holds if and only if var(X) were diagonalis-
able by P .
This is very constructive, as var(X) is guaranteed to be a
non-negative definite matrix and thus is guaranteed to be
diagonalisable by some unitary matrix.

47.7.1 Iterative computation

In practical implementations especially with high dimen-
sional data (large p), the covariance method is rarely used
because it is not efficient. One way to compute the first
principal component efficiently[24] is shown in the follow-
ing pseudo-code, for a data matrix X with zero mean,
without ever computing its covariance matrix.
r = a random vector of length p do c times: s = 0 (a
vector of length p) for each row x ∈ X s = s + (x · r)x
r = s

|s| return r
This algorithm is simply an efficient way of calculating
XTX r, normalizing, and placing the result back in r
(power iteration). It avoids the np2 operations of calcu-
lating the covariance matrix. r will typically get close to
the first principal component of X within a small number
of iterations, c. (The magnitude of s will be larger after
each iteration. Convergence can be detected when it in-
creases by an amount too small for the precision of the
machine.)
Subsequent principal components can be computed by
subtracting component r from X (see Gram–Schmidt)
and then repeating this algorithm to find the next principal
component. However this simple approach is not numeri-
cally stable if more than a small number of principal com-
ponents are required, because imprecisions in the calcu-
lations will additively affect the estimates of subsequent
principal components. More advanced methods build on
this basic idea, as with the closely related Lanczos algo-
rithm.
One way to compute the eigenvalue that corresponds with
each principal component is to measure the difference
in mean-squared-distance between the rows and the cen-
troid, before and after subtracting out the principal com-
ponent. The eigenvalue that corresponds with the com-
ponent that was removed is equal to this difference.

47.7.2 The NIPALS method

Main article: Non-linear iterative partial least squares

For very-high-dimensional datasets, such as those
generated in the *omics sciences (e.g., genomics,
metabolomics) it is usually only necessary to compute
the first few PCs. The non-linear iterative partial least
squares (NIPALS) algorithm calculates t1 and w1

T from
X. The outer product, t1w1

T can then be subtracted from
X leaving the residual matrix E1. This can be then used
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to calculate subsequent PCs.[25] This results in a dramatic
reduction in computational time since calculation of the
covariance matrix is avoided.
However, for large data matrices, or matrices that have a
high degree of column collinearity, NIPALS suffers from
loss of orthogonality due to machine precision limitations
accumulated in each iteration step.[26] A Gram–Schmidt
(GS) re-orthogonalization algorithm is applied to both the
scores and the loadings at each iteration step to eliminate
this loss of orthogonality.[27]

47.7.3 Online/sequential estimation

In an “online” or “streaming” situation with data arriving
piece by piece rather than being stored in a single batch, it
is useful to make an estimate of the PCA projection that
can be updated sequentially. This can be done efficiently,
but requires different algorithms.[28]

47.8 PCA and qualitative variables

In PCA, it is common that we want to introduce qual-
itative variables as supplementary elements. For exam-
ple, many quantitative variables have been measured on
plants. For these plants, some qualitative variables are
available as, for example, the species to which the plant
belongs. These data were subjected to PCA for quantita-
tive variables. When analyzing the results, it is natural to
connect the principal components to the qualitative vari-
able species. For this, the following results are produced.

• Identification, on the factorial planes, of the different
species e.g. using different colors.

• Representation, on the factorial planes, of the cen-
ters of gravity of plants belonging to the same
species.

• For each center of gravity and each axis, p-value to
judge the significance of the difference between the
center of gravity and origin.

These results are what is called introducing a qualitative
variable as supplementary element. This procedure is de-
tailed in and Husson, Lê & Pagès 2009 and Pagès 2013.
Few software offer this option in an “automatic” way.
This is the case of SPAD that historically, following the
work of Ludovic Lebart, was the first to propose this op-
tion, and the R package FactoMineR.

47.9 Applications

47.9.1 Neuroscience

A variant of principal components analysis is used in
neuroscience to identify the specific properties of a stim-
ulus that increase a neuron's probability of generating an
action potential.[29] This technique is known as spike-
triggered covariance analysis. In a typical application an
experimenter presents a white noise process as a stimulus
(usually either as a sensory input to a test subject, or as
a current injected directly into the neuron) and records
a train of action potentials, or spikes, produced by the
neuron as a result. Presumably, certain features of the
stimulus make the neuron more likely to spike. In order
to extract these features, the experimenter calculates the
covariance matrix of the spike-triggered ensemble, the set
of all stimuli (defined and discretized over a finite time
window, typically on the order of 100 ms) that immedi-
ately preceded a spike. The eigenvectors of the differ-
ence between the spike-triggered covariance matrix and
the covariance matrix of the prior stimulus ensemble (the
set of all stimuli, defined over the same length time win-
dow) then indicate the directions in the space of stimuli
along which the variance of the spike-triggered ensemble
differed the most from that of the prior stimulus ensem-
ble. Specifically, the eigenvectors with the largest posi-
tive eigenvalues correspond to the directions along which
the variance of the spike-triggered ensemble showed the
largest positive change compared to the variance of the
prior. Since these were the directions in which varying
the stimulus led to a spike, they are often good approxi-
mations of the sought after relevant stimulus features.
In neuroscience, PCA is also used to discern the identity
of a neuron from the shape of its action potential. Spike
sorting is an important procedure because extracellular
recording techniques often pick up signals from more
than one neuron. In spike sorting, one first uses PCA to
reduce the dimensionality of the space of action potential
waveforms, and then performs clustering analysis to asso-
ciate specific action potentials with individual neurons.

47.10 Relation between PCA and
K-means clustering

It was asserted in [30][31] that the relaxed solution of k-
means clustering, specified by the cluster indicators, is
given by the PCA (principal component analysis) prin-
cipal components, and the PCA subspace spanned by
the principal directions is identical to the cluster cen-
troid subspace. However, that PCA is a useful relax-
ation of k-means clustering was not a new result (see, for
example,[32]), and it is straightforward to uncover coun-
terexamples to the statement that the cluster centroid sub-
space is spanned by the principal directions.[33]
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47.11 Relation between PCA and
factor analysis[34]

Principal component analysis creates variables that are
linear combinations of the original variables. The new
variables have the property that the variables are all or-
thogonal. The principal components can be used to find
clusters in a set of data. PCA is a variance-focused ap-
proach seeking to reproduce the total variable variance,
in which components reflect both common and unique
variance of the variable. PCA is generally preferred for
purposes of data reduction (i.e., translating variable space
into optimal factor space) but not when the goal is to de-
tect the latent construct or factors.
Factor analysis is similar to principal component anal-
ysis, in that factor analysis also involves linear combi-
nations of variables. Different from PCA, factor anal-
ysis is a correlation-focused approach seeking to repro-
duce the inter-correlations among variables, in which the
factors “represent the common variance of variables, ex-
cluding unique variance[35]" . Factor analysis is generally
used when the research purpose is detecting data struc-
ture (i.e., latent constructs or factors) or causal modeling.

47.12 Correspondence analysis

Correspondence analysis (CA) was developed by Jean-
Paul Benzécri[36] and is conceptually similar to PCA, but
scales the data (which should be non-negative) so that
rows and columns are treated equivalently. It is tradi-
tionally applied to contingency tables. CA decomposes
the chi-squared statistic associated to this table into or-
thogonal factors.[37] Because CA is a descriptive tech-
nique, it can be applied to tables for which the chi-squared
statistic is appropriate or not. Several variants of CA
are available including detrended correspondence analy-
sis and canonical correspondence analysis. One special
extension is multiple correspondence analysis, which may
be seen as the counterpart of principal component analy-
sis for categorical data.[38]

47.13 Generalizations

47.13.1 Nonlinear generalizations

Most of the modern methods for nonlinear dimensional-
ity reduction find their theoretical and algorithmic roots
in PCA or K-means. Pearson’s original idea was to take
a straight line (or plane) which will be “the best fit” to a
set of data points. Principal curves and manifolds[42]

give the natural geometric framework for PCA general-
ization and extend the geometric interpretation of PCA
by explicitly constructing an embedded manifold for data
approximation, and by encoding using standard geomet-

Linear PCA versus nonlinear Principal Manifolds[39] for
visualization of breast cancer microarray data: a) Configuration
of nodes and 2D Principal Surface in the 3D PCA linear mani-
fold. The dataset is curved and cannot be mapped adequately on
a 2D principal plane; b) The distribution in the internal 2D non-
linear principal surface coordinates (ELMap2D) together with
an estimation of the density of points; c) The same as b), but for
the linear 2D PCAmanifold (PCA2D). The “basal” breast cancer
subtype is visualized more adequately with ELMap2D and some
features of the distribution become better resolved in compari-
son to PCA2D. Principal manifolds are produced by the elastic
maps algorithm. Data are available for public competition.[40]

Software is available for free non-commercial use.[41]

ric projection onto the manifold, as it is illustrated by Fig.
See also the elastic map algorithm and principal geodesic
analysis. Another popular generalization is kernel PCA,
which corresponds to PCA performed in a reproducing
kernel Hilbert space associated with a positive definite
kernel.

47.13.2 Multilinear generalizations

In multilinear subspace learning,[43] PCA is generalized
to multilinear PCA (MPCA) that extracts features di-
rectly from tensor representations. MPCA is solved by
performing PCA in each mode of the tensor iteratively.
MPCA has been applied to face recognition, gait recog-
nition, etc. MPCA is further extended to uncorrelated
MPCA, non-negative MPCA and robust MPCA.

47.13.3 Higher order

N-way principal component analysis may be performed
with models such as Tucker decomposition, PARAFAC,
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multiple factor analysis, co-inertia analysis, STATIS, and
DISTATIS.

47.13.4 Robustness – weighted PCA

While PCA finds the mathematically optimal method (as
in minimizing the squared error), it is sensitive to outliers
in the data that produce large errors PCA tries to avoid.
It therefore is common practice to remove outliers be-
fore computing PCA. However, in some contexts, outliers
can be difficult to identify. For example in data mining
algorithms like correlation clustering, the assignment of
points to clusters and outliers is not known beforehand.
A recently proposed generalization of PCA[44] based on
a weighted PCA increases robustness by assigning dif-
ferent weights to data objects based on their estimated
relevancy.

47.13.5 Robust PCA via Decomposition in
Low Rank and Sparse Matrices

Robust principal component analysis (RPCA) is a modi-
fication of the widely used statistical procedure Principal
component analysis (PCA) which works well with respect
to grossly corrupted observations.

47.13.6 Sparse PCA

A particular disadvantage of PCA is that the principal
components are usually linear combinations of all input
variables. Sparse PCA overcomes this disadvantage by
finding linear combinations that contain just a few input
variables.

47.14 Software/source code
• An Open Source Code and Tutorial in MATLAB

and C++.

• FactoMineR – Probably the more complete library
of functions for exploratory data analysis.

• XLSTAT - Principal Compent Analysis is a part of
XLSTAT core module[45]

• Mathematica – Implements principal compo-
nent analysis with the PrincipalComponents
command[46] using both covariance and correlation
methods.

• DataMelt - A Java free program that implements
several classes to build PCA analysis and to calcu-
late eccentricity of random distributions.

• NAG Library – Principal components analysis is
implemented via the g03aa routine (available in both
the Fortran[47] and the C[48] versions of the Library).

• SIMCA – Commercial software package available
to perform PCA analysis.[49]

• CORICO - Commercial software, offers principal
components analysis coupled with Iconographie des
correlations.

• MATLAB Statistics Toolbox – The functions prin-
comp and pca (R2012b) give the principal compo-
nents, while the function pcares gives the residuals
and reconstructed matrix for a low-rank PCA ap-
proximation. An example MATLAB implementa-
tion of PCA is available.[50]

• Oracle Database 12c – Implemented via
DBMS_DATA_MINING.SVDS_SCORING_MODE
by specifying setting value SVDS_SCORING_PCA
[51]

• GNU Octave – Free software computational en-
vironment mostly compatible with MATLAB, the
function princomp[52] gives the principal compo-
nent.

• R – Free statistical package, the functions
princomp[53] and prcomp[54] can be used for
principal component analysis; prcomp uses singular
value decomposition which generally gives better
numerical accuracy. Some packages that implement
PCA in R, include, but are not limited to: ade4,
vegan, ExPosition, and FactoMineR[55]

• SAS, PROC FACTOR – Offers principal compo-
nents analysis.[56]

• MLPACK – Provides an implementation of princi-
pal component analysis in C++.

• XLMiner – The principal components tab can be
used for principal component analysis.

• Stata – The pca command provides principal com-
ponents analysis.[57]

• Cornell Spectrum Imager – Open-source toolset
built on ImageJ, enables PCA analysis for 3D
datacubes.[58]

• imDEV – Free Excel addon to calculate principal
components using R package[59][60]

• ViSta: The Visual Statistics System – Free software
that provides principal components analysis, simple
and multiple correspondence analysis.[61]

• Spectramap – Software to create a biplot using prin-
cipal components analysis, correspondence analysis
or spectral map analysis.[62]

• FinMath – .NET numerical library containing an
implementation of PCA.[63]
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• Unscrambler X – Multivariate analysis software en-
abling Principal Component Analysis (PCA) with
PCA Projection.{[64]}

• OpenCV[65]

• NMath – Proprietary numerical library containing
PCA for the .NET Framework.

• IDL – The principal components can be calculated
using the function pcomp.[66]

• Weka – Computes principal components.[67]

• Qlucore – Commercial software for analyzing mul-
tivariate data with instant response using PCA[68]

• Orange (software) – Supports PCA through its Lin-
ear Projection widget.

• EIGENSOFT – Provides a version of PCA adapted
for population genetics analysis.[69]

• Partek Genomics Suite – Statistical software able to
perform PCA.[70]

• libpca C++ library – Offers PCA and corresponding
transformations.

• Origin – Contains PCA in its Pro version.

• Scikit-learn – Python library for machine learn-
ing which contains PCA, Probabilistic PCA, Kernel
PCA, Sparse PCA and other techniques in the de-
composition module.[71]

• Knime[72]- A java based nodal arrenging software
for Analysis, in this the nodes called PCA, PCA
compute, PCA Apply, PCA inverse make it easily.

• Julia – Supports PCA with the pca function in the
MultivariateStats package [73]

• Netflix Surus – Provides a Java implementation of
robust PCA with wrappers for Pig.

• Insightomics - Run principal component analysis di-
rectly on your browser.

47.15 See also
• Correspondence analysis (for contingency tables)

• Multiple correspondence analysis (for qualitative
variables)

• Factor analysis of mixed data (for quantitative and
qualitative variables)

• Canonical correlation

• CUR matrix approximation (can replace of low-
rank SVD approximation)

• Detrended correspondence analysis

• Dynamic mode decomposition

• Eigenface

• Exploratory factor analysis (Wikiversity)

• Factorial code

• Functional principal component analysis

• Geometric data analysis

• Independent component analysis

• Kernel PCA

• Low-rank approximation

• Matrix decomposition

• Non-negative matrix factorization

• Nonlinear dimensionality reduction

• Oja’s rule

• Point distribution model (PCA applied to morphom-
etry and computer vision)

• Principal component analysis (Wikibooks)

• Principal component regression

• Singular spectrum analysis

• Singular value decomposition

• Sparse PCA

• Transform coding

• Weighted least squares
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Dimensionality reduction

For dimensional reduction in physics, see Dimensional
reduction.

In machine learning and statistics, dimensionality
reduction or dimension reduction is the process
of reducing the number of random variables under
consideration,[1] and can be divided into feature selection
and feature extraction.[2]

48.1 Feature selection

Main article: Feature selection

Feature selection approaches try to find a subset of the
original variables (also called features or attributes). Two
strategies are filter (e.g. information gain) and wrapper
(e.g. search guided by the accuracy) approaches. See also
combinatorial optimization problems.
In some cases, data analysis such as regression or
classification can be done in the reduced space more ac-
curately than in the original space.

48.2 Feature extraction

Main article: Feature extraction

Feature extraction transforms the data in the high-
dimensional space to a space of fewer dimensions. The
data transformation may be linear, as in principal com-
ponent analysis (PCA), but many nonlinear dimensional-
ity reduction techniques also exist.[3][4] For multidimen-
sional data, tensor representation can be used in dimen-
sionality reduction through multilinear subspace learn-
ing.[5]

The main linear technique for dimensionality reduction,
principal component analysis, performs a linear mapping
of the data to a lower-dimensional space in such a way that
the variance of the data in the low-dimensional represen-
tation is maximized. In practice, the correlation matrix of
the data is constructed and the eigenvectors on this matrix

are computed. The eigenvectors that correspond to the
largest eigenvalues (the principal components) can now
be used to reconstruct a large fraction of the variance of
the original data. Moreover, the first few eigenvectors can
often be interpreted in terms of the large-scale physical
behavior of the system. The original space (with dimen-
sion of the number of points) has been reduced (with data
loss, but hopefully retaining the most important variance)
to the space spanned by a few eigenvectors.
Principal component analysis can be employed in a non-
linear way by means of the kernel trick. The resulting
technique is capable of constructing nonlinear mappings
that maximize the variance in the data. The resulting
technique is entitled kernel PCA. Other prominent non-
linear techniques include manifold learning techniques
such as Isomap, locally linear embedding (LLE), Hes-
sian LLE, Laplacian eigenmaps, and LTSA. These tech-
niques construct a low-dimensional data representation
using a cost function that retains local properties of the
data, and can be viewed as defining a graph-based ker-
nel for Kernel PCA. More recently, techniques have been
proposed that, instead of defining a fixed kernel, try to
learn the kernel using semidefinite programming. The
most prominent example of such a technique is maximum
variance unfolding (MVU). The central idea of MVU is
to exactly preserve all pairwise distances between near-
est neighbors (in the inner product space), while maxi-
mizing the distances between points that are not nearest
neighbors. A dimensionality reduction technique that is
sometimes used in neuroscience is maximally informative
dimensions, which finds a lower-dimensional representa-
tion of a dataset such that as much information as possible
about the original data is preserved.
An alternative approach to neighborhood preservation is
through the minimization of a cost function that mea-
sures differences between distances in the input and out-
put spaces. Important examples of such techniques in-
clude classical multidimensional scaling (which is iden-
tical to PCA), Isomap (which uses geodesic distances in
the data space), diffusion maps (which uses diffusion dis-
tances in the data space), t-SNE (which minimizes the di-
vergence between distributions over pairs of points), and
curvilinear component analysis.
A different approach to nonlinear dimensionality reduc-
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tion is through the use of autoencoders, a special kind of
feed-forward neural networks with a bottle-neck hidden
layer.[6] The training of deep encoders is typically per-
formed using a greedy layer-wise pre-training (e.g., using
a stack of restricted Boltzmann machines) that is followed
by a finetuning stage based on backpropagation.

48.3 Dimension reduction

For high-dimensional datasets (i.e. with number of di-
mensions more than 10), dimension reduction is usually
performed prior to applying a K-nearest neighbors algo-
rithm(k-NN) in order to avoid the effects of the curse of
dimensionality. [7]

Feature extraction and dimension reduction can be com-
bined in one step using principal component anal-
ysis (PCA), linear discriminant analysis (LDA), or
canonical correlation analysis (CCA) techniques as a
pre-processing step followed by clustering by K-NN on
feature vectors in reduced-dimension space. In machine
learning this process is also called low-dimensional
embedding.[8]

For very-high-dimensional datasets (e.g. when perform-
ing similarity search on live video streams, DNA data
or high-dimensional Time series) running a fast ap-
proximate K-NN search using locality sensitive hash-
ing, “random projections”,[9] “sketches” [10] or other high-
dimensional similarity search techniques from the VLDB
toolbox might be the only feasible option.

48.4 See also
• Nearest neighbor search

• MinHash

• Information gain in decision trees

• Semidefinite embedding

• Multifactor dimensionality reduction

• Multilinear subspace learning

• Multilinear PCA

• Singular value decomposition

• Latent semantic analysis

• Semantic mapping

• Topological data analysis

• Locality sensitive hashing

• Sufficient dimension reduction

• Data transformation (statistics)

• Weighted correlation network analysis
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Greedy algorithm

36−20=16 20

16−10=6 20 10

6−5=1 20 10 5

1−1=0 20 10 5 1

Greedy algorithms determine minimum number of coins to give
while making change. These are the steps a human would take to
emulate a greedy algorithm to represent 36 cents using only coins
with values {1, 5, 10, 20}. The coin of the highest value, less than
the remaining change owed, is the local optimum. (Note that in
general the change-making problem requires dynamic program-
ming or integer programming to find an optimal solution; how-
ever, most currency systems, including the Euro and US Dollar,
are special cases where the greedy strategy does find an optimal
solution.)

A greedy algorithm is an algorithm that follows the
problem solving heuristic of making the locally optimal
choice at each stage[1] with the hope of finding a global
optimum. In many problems, a greedy strategy does not
in general produce an optimal solution, but nonetheless a
greedy heuristic may yield locally optimal solutions that
approximate a global optimal solution in a reasonable
time.
For example, a greedy strategy for the traveling salesman
problem (which is of a high computational complexity) is
the following heuristic: “At each stage visit an unvisited
city nearest to the current city”. This heuristic need not
find a best solution, but terminates in a reasonable num-
ber of steps; finding an optimal solution typically requires
unreasonably many steps. In mathematical optimization,
greedy algorithms solve combinatorial problems having
the properties of matroids.

49.1 Specifics

In general, greedy algorithms have five components:

1. A candidate set, from which a solution is created

2. A selection function, which chooses the best candi-
date to be added to the solution

3. A feasibility function, that is used to determine if a
candidate can be used to contribute to a solution

4. An objective function, which assigns a value to a so-
lution, or a partial solution, and

5. A solution function, which will indicate when we
have discovered a complete solution

Greedy algorithms produce good solutions on some
mathematical problems, but not on others. Most prob-
lems for which they work will have two properties:

Greedy choice property We can make whatever choice
seems best at the moment and then solve the sub-
problems that arise later. The choice made by a
greedy algorithm may depend on choices made so
far, but not on future choices or all the solutions
to the subproblem. It iteratively makes one greedy
choice after another, reducing each given problem
into a smaller one. In other words, a greedy algo-
rithm never reconsiders its choices. This is the main
difference from dynamic programming, which is ex-
haustive and is guaranteed to find the solution.

After every stage, dynamic programming makes deci-
sions based on all the decisions made in the previous
stage, and may reconsider the previous stage’s algorith-
mic path to solution.

Optimal substructure “A problem exhibits optimal
substructure if an optimal solution to the problem
contains optimal solutions to the sub-problems.”[2]
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49.1.1 Cases of failure

Examples on how a greedy algorithm may fail to achieve
the optimal solution.

A

M

m

Starting at A, a greedy algorithm will find the local max-
imum at “m”, oblivious of the global maximum at “M”.

With a goal of reaching the largest-sum, at each step,
the greedy algorithm will choose what appears to be the
optimal immediate choice, so it will choose 12 instead of
3 at the second step, and will not reach the best solution,
which contains 99.

For many other problems, greedy algorithms fail to pro-
duce the optimal solution, and may even produce the
unique worst possible solution. One example is the
traveling salesman problem mentioned above: for each
number of cities, there is an assignment of distances be-
tween the cities for which the nearest neighbor heuristic
produces the unique worst possible tour.[3]

49.2 Types

Greedy algorithms can be characterized as being 'short
sighted', and also as 'non-recoverable'. They are ideal only
for problems which have 'optimal substructure'. Despite
this, for many simple problems (e.g. giving change), the

best suited algorithms are greedy algorithms. It is impor-
tant, however, to note that the greedy algorithm can be
used as a selection algorithm to prioritize options within
a search, or branch and bound algorithm. There are a few
variations to the greedy algorithm:

• Pure greedy algorithms
• Orthogonal greedy algorithms
• Relaxed greedy algorithms

49.3 Applications

Greedy algorithms mostly (but not always) fail to find the
globally optimal solution, because they usually do not op-
erate exhaustively on all the data. They can make com-
mitments to certain choices too early which prevent them
from finding the best overall solution later. For example,
all known greedy coloring algorithms for the graph color-
ing problem and all other NP-complete problems do not
consistently find optimum solutions. Nevertheless, they
are useful because they are quick to think up and often
give good approximations to the optimum.
If a greedy algorithm can be proven to yield the global
optimum for a given problem class, it typically becomes
the method of choice because it is faster than other opti-
mization methods like dynamic programming. Examples
of such greedy algorithms are Kruskal’s algorithm and
Prim’s algorithm for finding minimum spanning trees,
and the algorithm for finding optimum Huffman trees.
The theory of matroids, and the more general theory of
greedoids, provide whole classes of such algorithms.
Greedy algorithms appear in network routing as well. Us-
ing greedy routing, a message is forwarded to the neigh-
boring node which is “closest” to the destination. The
notion of a node’s location (and hence “closeness”) may
be determined by its physical location, as in geographic
routing used by ad hoc networks. Location may also be
an entirely artificial construct as in small world routing
and distributed hash table.

49.4 Examples
• The activity selection problem is characteristic to

this class of problems, where the goal is to pick the
maximum number of activities that do not clash with
each other.

• In the Macintosh computer game Crystal Quest the
objective is to collect crystals, in a fashion similar
to the travelling salesman problem. The game has
a demo mode, where the game uses a greedy algo-
rithm to go to every crystal. The artificial intelli-
gence does not account for obstacles, so the demo
mode often ends quickly.

https://en.wikipedia.org/wiki/Traveling_salesman_problem
https://en.wikipedia.org/wiki/Greedy_coloring
https://en.wikipedia.org/wiki/Graph_coloring_problem
https://en.wikipedia.org/wiki/Graph_coloring_problem
https://en.wikipedia.org/wiki/NP-complete
https://en.wikipedia.org/wiki/Dynamic_programming
https://en.wikipedia.org/wiki/Kruskal%2527s_algorithm
https://en.wikipedia.org/wiki/Prim%2527s_algorithm
https://en.wikipedia.org/wiki/Minimum_spanning_tree
https://en.wikipedia.org/wiki/Huffman_tree
https://en.wikipedia.org/wiki/Matroid
https://en.wikipedia.org/wiki/Greedoid
https://en.wikipedia.org/wiki/Routing
https://en.wikipedia.org/wiki/Geographic_routing
https://en.wikipedia.org/wiki/Geographic_routing
https://en.wikipedia.org/wiki/Ad_hoc_network
https://en.wikipedia.org/wiki/Small_world_routing
https://en.wikipedia.org/wiki/Distributed_hash_table
https://en.wikipedia.org/wiki/Activity_selection_problem
https://en.wikipedia.org/wiki/Macintosh_computer
https://en.wikipedia.org/wiki/Crystal_Quest
https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Artificial_intelligence


326 CHAPTER 49. GREEDY ALGORITHM

• The matching pursuit is an example of greedy algo-
rithm applied on signal approximation.

• A greedy algorithm finds the optimal solution to
Malfatti’s problem of finding three disjoint circles
within a given triangle that maximize the total area
of the circles; it is conjectured that the same greedy
algorithm is optimal for any number of circles.

• A greedy algorithm is used to construct a Huffman
tree during Huffman coding where it finds an opti-
mal solution.

• In decision tree learning, greedy algorithms are
commonly used, however they are not guaranteed
to find the optimal solution.

49.5 See also
• Epsilon-greedy strategy
• Greedy algorithm for Egyptian fractions
• Greedy source
• Matroid

49.6 Notes
[1] Black, Paul E. (2 February 2005). “greedy algorithm”.

Dictionary of Algorithms and Data Structures. U.S. Na-
tional Institute of Standards and Technology (NIST). Re-
trieved 17 August 2012.

[2] Introduction to Algorithms (Cormen, Leiserson, Rivest,
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Chapter 50

Reinforcement learning

For reinforcement learning in psychology, see
Reinforcement.

Reinforcement learning is an area of machine learn-
ing inspired by behaviorist psychology, concerned with
how software agents ought to take actions in an environ-
ment so as to maximize some notion of cumulative re-
ward. The problem, due to its generality, is studied in
many other disciplines, such as game theory, control the-
ory, operations research, information theory, simulation-
based optimization, multi-agent systems, swarm intelli-
gence, statistics, and genetic algorithms. In the opera-
tions research and control literature, the field where rein-
forcement learning methods are studied is called approxi-
mate dynamic programming. The problem has been stud-
ied in the theory of optimal control, though most stud-
ies are concerned with the existence of optimal solutions
and their characterization, and not with the learning or
approximation aspects. In economics and game theory,
reinforcement learning may be used to explain how equi-
librium may arise under bounded rationality.
In machine learning, the environment is typically formu-
lated as a Markov decision process (MDP) as many re-
inforcement learning algorithms for this context utilize
dynamic programming techniques. The main difference
between the classical techniques and reinforcement learn-
ing algorithms is that the latter do not need knowledge
about the MDP and they target large MDPs where exact
methods become infeasible.
Reinforcement learning differs from standard supervised
learning in that correct input/output pairs are never pre-
sented, nor sub-optimal actions explicitly corrected. Fur-
ther, there is a focus on on-line performance, which
involves finding a balance between exploration (of un-
charted territory) and exploitation (of current knowl-
edge). The exploration vs. exploitation trade-off in re-
inforcement learning has been most thoroughly studied
through the multi-armed bandit problem and in finite
MDPs.

50.1 Introduction

The basic reinforcement learning model consists of:

1. a set of environment states S ;

2. a set of actions A ;

3. rules of transitioning between states;

4. rules that determine the scalar immediate reward of
a transition; and

5. rules that describe what the agent observes.

The rules are often stochastic. The observation typically
involves the scalar immediate reward associated with the
last transition. In many works, the agent is also assumed
to observe the current environmental state, in which case
we talk about full observability, whereas in the opposing
case we talk about partial observability. Sometimes the
set of actions available to the agent is restricted (e.g., you
cannot spend more money than what you possess).
A reinforcement learning agent interacts with its environ-
ment in discrete time steps. At each time t , the agent
receives an observation ot , which typically includes the
reward rt . It then chooses an action at from the set of ac-
tions available, which is subsequently sent to the environ-
ment. The environment moves to a new state st+1 and the
reward rt+1 associated with the transition (st, at, st+1)
is determined. The goal of a reinforcement learning agent
is to collect as much reward as possible. The agent can
choose any action as a function of the history and it can
even randomize its action selection.
When the agent’s performance is compared to that of an
agent which acts optimally from the beginning, the dif-
ference in performance gives rise to the notion of regret.
Note that in order to act near optimally, the agent must
reason about the long term consequences of its actions:
In order to maximize my future income I had better go
to school now, although the immediate monetary reward
associated with this might be negative.
Thus, reinforcement learning is particularly well suited to
problems which include a long-term versus short-term re-
ward trade-off. It has been applied successfully to various
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problems, including robot control, elevator scheduling,
telecommunications, backgammon and checkers (Sutton
and Barto 1998, Chapter 11).
Two components make reinforcement learning power-
ful: The use of samples to optimize performance and the
use of function approximation to deal with large environ-
ments. Thanks to these two key components, reinforce-
ment learning can be used in large environments in any
of the following situations:

• A model of the environment is known, but an ana-
lytic solution is not available;

• Only a simulation model of the environment is given
(the subject of simulation-based optimization);[1]

• The only way to collect information about the envi-
ronment is by interacting with it.

The first two of these problems could be considered plan-
ning problems (since some form of the model is avail-
able), while the last one could be considered as a gen-
uine learning problem. However, under a reinforcement
learning methodology both planning problems would be
converted to machine learning problems.

50.2 Exploration

The reinforcement learning problem as described re-
quires clever exploration mechanisms. Randomly select-
ing actions, without reference to an estimated probability
distribution, is known to give rise to very poor perfor-
mance. The case of (small) finite MDPs is relatively well
understood by now. However, due to the lack of algo-
rithms that would provably scale well with the number
of states (or scale to problems with infinite state spaces),
in practice people resort to simple exploration methods.
One such method is ϵ -greedy, when the agent chooses the
action that it believes has the best long-term effect with
probability 1 − ϵ , and it chooses an action uniformly at
random, otherwise. Here, 0 < ϵ < 1 is a tuning pa-
rameter, which is sometimes changed, either according
to a fixed schedule (making the agent explore less as time
goes by), or adaptively based on some heuristics (Tokic
& Palm, 2011).

50.3 Algorithms for control learn-
ing

Even if the issue of exploration is disregarded and even
if the state was observable (which we assume from now
on), the problem remains to find out which actions are
good based on past experience.

50.3.1 Criterion of optimality

For simplicity, assume for a moment that the problem
studied is episodic, an episode ending when some ter-
minal state is reached. Assume further that no matter
what course of actions the agent takes, termination is
inevitable. Under some additional mild regularity con-
ditions the expectation of the total reward is then well-
defined, for any policy and any initial distribution over
the states. Here, a policy refers to a mapping that assigns
some probability distribution over the actions to all pos-
sible histories.
Given a fixed initial distribution µ , we can thus assign the
expected return ρπ to policy π :

ρπ = E[R|π],

where the random variable R denotes the return and is
defined by

R =
N−1∑
t=0

rt+1,

where rt+1 is the reward received after the t -th transition,
the initial state is sampled at random from µ and actions
are selected by policy π . Here, N denotes the (random)
time when a terminal state is reached, i.e., the time when
the episode terminates.
In the case of non-episodic problems the return is often
discounted,

R =
∞∑
t=0

γtrt+1,

giving rise to the total expected discounted reward crite-
rion. Here 0 ≤ γ ≤ 1 is the so-called discount-factor.
Since the undiscounted return is a special case of the dis-
counted return, from now on we will assume discounting.
Although this looks innocent enough, discounting is in
fact problematic if one cares about online performance.
This is because discounting makes the initial time steps
more important. Since a learning agent is likely to make
mistakes during the first few steps after its “life” starts, no
uninformed learning algorithm can achieve near-optimal
performance under discounting even if the class of en-
vironments is restricted to that of finite MDPs. (This
does not mean though that, given enough time, a learn-
ing agent cannot figure how to act near-optimally, if time
was restarted.)
The problem then is to specify an algorithm that can be
used to find a policy with maximum expected return.
From the theory of MDPs it is known that, without loss
of generality, the search can be restricted to the set of the
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so-called stationary policies. A policy is called station-
ary if the action-distribution returned by it depends only
on the last state visited (which is part of the observation
history of the agent, by our simplifying assumption). In
fact, the search can be further restricted to deterministic
stationary policies. A deterministic stationary policy is
one which deterministically selects actions based on the
current state. Since any such policy can be identified with
a mapping from the set of states to the set of actions, these
policies can be identified with such mappings with no loss
of generality.

50.3.2 Brute force

The brute force approach entails the following two steps:

1. For each possible policy, sample returns while fol-
lowing it

2. Choose the policy with the largest expected return

One problem with this is that the number of policies can
be extremely large, or even infinite. Another is that vari-
ance of the returns might be large, in which case a large
number of samples will be required to accurately estimate
the return of each policy.
These problems can be ameliorated if we assume some
structure and perhaps allow samples generated from one
policy to influence the estimates made for another. The
two main approaches for achieving this are value function
estimation and direct policy search.

50.3.3 Value function approaches

Value function approaches attempt to find a policy that
maximizes the return by maintaining a set of estimates
of expected returns for some policy (usually either the
“current” or the optimal one).
These methods rely on the theory of MDPs, where op-
timality is defined in a sense which is stronger than the
above one: A policy is called optimal if it achieves the
best expected return from any initial state (i.e., initial dis-
tributions play no role in this definition). Again, one can
always find an optimal policy amongst stationary policies.
To define optimality in a formal manner, define the value
of a policy π by

V π(s) = E[R|s, π],

whereR stands for the random return associated with fol-
lowing π from the initial state s . Define V ∗(s) as the
maximum possible value of V π(s) , where π is allowed
to change:

V ∗(s) = sup
π
V π(s).

A policy which achieves these optimal values in each state
is called optimal. Clearly, a policy optimal in this strong
sense is also optimal in the sense that it maximizes the
expected return ρπ , since ρπ = E[V π(S)] , where S is
a state randomly sampled from the distribution µ .
Although state-values suffice to define optimality, it will
prove to be useful to define action-values. Given a state s
, an action a and a policy π , the action-value of the pair
(s, a) under π is defined by

Qπ(s, a) = E[R|s, a, π],

where, now, R stands for the random return associated
with first taking action a in state s and following π , there-
after.
It is well-known from the theory of MDPs that if someone
gives us Q for an optimal policy, we can always choose
optimal actions (and thus act optimally) by simply choos-
ing the action with the highest value at each state. The
action-value function of such an optimal policy is called
the optimal action-value function and is denoted by Q∗ .
In summary, the knowledge of the optimal action-value
function alone suffices to know how to act optimally.
Assuming full knowledge of the MDP, there are two ba-
sic approaches to compute the optimal action-value func-
tion, value iteration and policy iteration. Both algorithms
compute a sequence of functions Qk ( k = 0, 1, 2, . . . ,
) which converge to Q∗ . Computing these functions
involves computing expectations over the whole state-
space, which is impractical for all, but the smallest (finite)
MDPs, never mind the case when the MDP is unknown.
In reinforcement learning methods the expectations are
approximated by averaging over samples and one uses
function approximation techniques to cope with the need
to represent value functions over large state-action spaces.

Monte Carlo methods

The simplest Monte Carlo methods can be used in an
algorithm that mimics policy iteration. Policy iteration
consists of two steps: policy evaluation and policy im-
provement. The Monte Carlo methods are used in the
policy evaluation step. In this step, given a stationary,
deterministic policy π , the goal is to compute the func-
tion values Qπ(s, a) (or a good approximation to them)
for all state-action pairs (s, a) . Assume (for simplic-
ity) that the MDP is finite and in fact a table representing
the action-values fits into the memory. Further, assume
that the problem is episodic and after each episode a new
one starts from some random initial state. Then, the esti-
mate of the value of a given state-action pair (s, a) can be
computed by simply averaging the sampled returns which
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originated from (s, a) over time. Given enough time, this
procedure can thus construct a precise estimate Q of the
action-value function Qπ . This finishes the description
of the policy evaluation step. In the policy improvement
step, as it is done in the standard policy iteration algo-
rithm, the next policy is obtained by computing a greedy
policy with respect to Q : Given a state s , this new pol-
icy returns an action that maximizes Q(s, ·) . In practice
one often avoids computing and storing the new policy,
but uses lazy evaluation to defer the computation of the
maximizing actions to when they are actually needed.
A few problems with this procedure are as follows:

• The procedure may waste too much time on evalu-
ating a suboptimal policy;

• It uses samples inefficiently in that a long trajectory
is used to improve the estimate only of the single
state-action pair that started the trajectory;

• When the returns along the trajectories have high
variance, convergence will be slow;

• It works in episodic problems only;

• It works in small, finite MDPs only.

Temporal difference methods

The first issue is easily corrected by allowing the proce-
dure to change the policy (at all, or at some states) before
the values settle. However good this sounds, this may be
dangerous as this might prevent convergence. Still, most
current algorithms implement this idea, giving rise to the
class of generalized policy iteration algorithm. We note in
passing that actor critic methods belong to this category.
The second issue can be corrected within the algorithm
by allowing trajectories to contribute to any state-action
pair in them. This may also help to some extent with
the third problem, although a better solution when returns
have high variance is to use Sutton's temporal difference
(TD) methods which are based on the recursive Bellman
equation. Note that the computation in TD methods can
be incremental (when after each transition the memory
is changed and the transition is thrown away), or batch
(when the transitions are collected and then the estimates
are computed once based on a large number of transi-
tions). Batch methods, a prime example of which is the
least-squares temporal difference method due to Bradtke
and Barto (1996), may use the information in the samples
better, whereas incremental methods are the only choice
when batch methods become infeasible due to their high
computational or memory complexity. In addition, there
exist methods that try to unify the advantages of the two
approaches. Methods based on temporal differences also
overcome the second but last issue.
In order to address the last issue mentioned in the previ-
ous section, function approximation methods are used. In

linear function approximation one starts with a mapping
ϕ that assigns a finite-dimensional vector to each state-
action pair. Then, the action values of a state-action pair
(s, a) are obtained by linearly combining the components
of ϕ(s, a) with some weights θ :

Q(s, a) =

d∑
i=1

θiϕi(s, a)

The algorithms then adjust the weights, instead of adjust-
ing the values associated with the individual state-action
pairs. However, linear function approximation is not the
only choice. More recently, methods based on ideas from
nonparametric statistics (which can be seen to construct
their own features) have been explored.
So far, the discussion was restricted to how policy iter-
ation can be used as a basis of the designing reinforce-
ment learning algorithms. Equally importantly, value it-
eration can also be used as a starting point, giving rise to
the Q-Learning algorithm (Watkins 1989) and its many
variants.
The problem with methods that use action-values is that
they may need highly precise estimates of the competing
action values, which can be hard to obtain when the re-
turns are noisy. Though this problem is mitigated to some
extent by temporal difference methods and if one uses
the so-called compatible function approximation method,
more work remains to be done to increase generality and
efficiency. Another problem specific to temporal differ-
ence methods comes from their reliance on the recursive
Bellman equation. Most temporal difference methods
have a so-called λ parameter (0 ≤ λ ≤ 1) that allows one
to continuously interpolate between Monte-Carlo meth-
ods (which do not rely on the Bellman equations) and the
basic temporal difference methods (which rely entirely
on the Bellman equations), which can thus be effective in
palliating this issue.

50.3.4 Direct policy search

An alternative method to find a good policy is to search
directly in (some subset of) the policy space, in which
case the problem becomes an instance of stochastic op-
timization. The two approaches available are gradient-
based and gradient-free methods.
Gradient-based methods (giving rise to the so-called pol-
icy gradient methods) start with a mapping from a finite-
dimensional (parameter) space to the space of policies:
given the parameter vector θ , let πθ denote the policy
associated to θ . Define the performance function by

ρ(θ) = ρπθ .

Under mild conditions this function will be differentiable
as a function of the parameter vector θ . If the gradient
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of ρ was known, one could use gradient ascent. Since an
analytic expression for the gradient is not available, one
must rely on a noisy estimate. Such an estimate can be
constructed in many ways, giving rise to algorithms like
Williams’ REINFORCE method (which is also known as
the likelihood ratio method in the simulation-based op-
timization literature). Policy gradient methods have re-
ceived a lot of attention in the last couple of years (e.g.,
Peters et al. (2003)), but they remain an active field.
An overview of policy search methods in the context of
robotics has been given by Deisenroth, Neumann and
Peters.[2] The issue with many of these methods is that
they may get stuck in local optima (as they are based on
local search).
A large class of methods avoids relying on gradient in-
formation. These include simulated annealing, cross-
entropy search or methods of evolutionary computation.
Many gradient-free methods can achieve (in theory and
in the limit) a global optimum. In a number of cases they
have indeed demonstrated remarkable performance.
The issue with policy search methods is that they may
converge slowly if the information based on which they
act is noisy. For example, this happens when in episodic
problems the trajectories are long and the variance of the
returns is large. As argued beforehand, value-function
based methods that rely on temporal differences might
help in this case. In recent years, several actor-critic al-
gorithms have been proposed following this idea and were
demonstrated to perform well in various problems.

50.4 Theory

The theory for small, finite MDPs is quite mature. Both
the asymptotic and finite-sample behavior of most algo-
rithms is well-understood. As mentioned beforehand,
algorithms with provably good online performance (ad-
dressing the exploration issue) are known. The the-
ory of large MDPs needs more work. Efficient explo-
ration is largely untouched (except for the case of ban-
dit problems). Although finite-time performance bounds
appeared for many algorithms in the recent years, these
bounds are expected to be rather loose and thus more
work is needed to better understand the relative advan-
tages, as well as the limitations of these algorithms.
For incremental algorithm asymptotic convergence issues
have been settled. Recently, new incremental, temporal-
difference-based algorithms have appeared which con-
verge under a much wider set of conditions than was pre-
viously possible (for example, when used with arbitrary,
smooth function approximation).

50.5 Current research

Current research topics include: adaptive methods which
work with fewer (or no) parameters under a large number
of conditions, addressing the exploration problem in large
MDPs, large-scale empirical evaluations, learning and
acting under partial information (e.g., using Predictive
State Representation), modular and hierarchical rein-
forcement learning, improving existing value-function
and policy search methods, algorithms that work well
with large (or continuous) action spaces, transfer learn-
ing, lifelong learning, efficient sample-based planning
(e.g., based on Monte-Carlo tree search). Multiagent or
Distributed Reinforcement Learning is also a topic of in-
terest in current research. There is also a growing interest
in real life applications of reinforcement learning. Suc-
cesses of reinforcement learning are collected on here and
here.
Reinforcement learning algorithms such as TD learning
are also being investigated as a model for Dopamine-
based learning in the brain. In this model, the dopamin-
ergic projections from the substantia nigra to the basal
ganglia function as the prediction error. Reinforcement
learning has also been used as a part of the model for
human skill learning, especially in relation to the inter-
action between implicit and explicit learning in skill ac-
quisition (the first publication on this application was
in 1995-1996, and there have been many follow-up
studies). See http://webdocs.cs.ualberta.ca/~{}sutton/
RL-FAQ.html#behaviorism for further details of these
research areas above.

50.6 Literature

50.6.1 Conferences, journals

Most reinforcement learning papers are published at the
major machine learning and AI conferences (ICML,
NIPS, AAAI, IJCAI, UAI, AI and Statistics) and jour-
nals (JAIR, JMLR, Machine learning journal, IEEE T-
CIAIG). Some theory papers are published at COLT
and ALT. However, many papers appear in robotics
conferences (IROS, ICRA) and the “agent” conference
AAMAS. Operations researchers publish their papers
at the INFORMS conference and, for example, in the
Operation Research, and the Mathematics of Operations
Research journals. Control researchers publish their pa-
pers at the CDC and ACC conferences, or, e.g., in the
journals IEEE Transactions on Automatic Control, or
Automatica, although applied works tend to be published
in more specialized journals. The Winter Simulation
Conference also publishes many relevant papers. Other
than this, papers also published in the major confer-
ences of the neural networks, fuzzy, and evolutionary
computation communities. The annual IEEE sympo-
sium titled Approximate Dynamic Programming and Re-
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inforcement Learning (ADPRL) and the biannual Euro-
pean Workshop on Reinforcement Learning (EWRL) are
two regularly held meetings where RL researchers meet.

50.7 See also

• Temporal difference learning

• Q-learning

• SARSA

• Fictitious play

• Learning classifier system

• Optimal control

• Dynamic treatment regimes

• Error-driven learning

• Multi-agent system

• Distributed artificial intelligence

50.8 Implementations

• RL-Glue provides a standard interface that allows
you to connect agents, environments, and experi-
ment programs together, even if they are written in
different languages.

• Maja Machine Learning Framework The Maja Ma-
chine Learning Framework (MMLF) is a general
framework for problems in the domain of Rein-
forcement Learning (RL) written in python.

• Software Tools for Reinforcement Learning (Matlab
and Python)

• PyBrain(Python)

• TeachingBox is a Java reinforcement learning
framework supporting many features like RBF net-
works, gradient descent learning methods, ...

• C++ and Python implementations for some well
known reinforcement learning algorithms with
source.

• Orange, a free data mining software suite, module
orngReinforcement

• Policy Gradient Toolbox provides a package for
learning about policy gradient approaches.

• BURLAP is an open source Java library that pro-
vides a wide range of single and multi-agent learning
and planning methods.
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Chapter 51

Decision tree learning

This article is about decision trees in machine learning.
For the use of the term in decision analysis, see Decision
tree.

Decision tree learning uses a decision tree as a
predictive model which maps observations about an item
to conclusions about the item’s target value. It is one
of the predictive modelling approaches used in statistics,
data mining and machine learning. Tree models where
the target variable can take a finite set of values are called
classification trees. In these tree structures, leaves rep-
resent class labels and branches represent conjunctions
of features that lead to those class labels. Decision trees
where the target variable can take continuous values (typ-
ically real numbers) are called regression trees.
In decision analysis, a decision tree can be used to visu-
ally and explicitly represent decisions and decision mak-
ing. In data mining, a decision tree describes data but not
decisions; rather the resulting classification tree can be an
input for decision making. This page deals with decision
trees in data mining.

51.1 General

Decision tree learning is a method commonly used in data
mining.[1] The goal is to create a model that predicts the
value of a target variable based on several input variables.
An example is shown on the right. Each interior node cor-
responds to one of the input variables; there are edges to
children for each of the possible values of that input vari-
able. Each leaf represents a value of the target variable
given the values of the input variables represented by the
path from the root to the leaf.
A decision tree is a simple representation for classifying
examples. Decision tree learning is one of the most suc-
cessful techniques for supervised classification learning.
For this section, assume that all of the features have fi-
nite discrete domains, and there is a single target feature
called the classification. Each element of the domain of
the classification is called a class. A decision tree or a
classification tree is a tree in which each internal (non-
leaf) node is labeled with an input feature. The arcs com-

A tree showing survival of passengers on the Titanic (“sibsp” is
the number of spouses or siblings aboard). The figures under
the leaves show the probability of survival and the percentage of
observations in the leaf.

ing from a node labeled with a feature are labeled with
each of the possible values of the feature. Each leaf of
the tree is labeled with a class or a probability distribu-
tion over the classes.
A tree can be “learned” by splitting the source set into
subsets based on an attribute value test. This process is
repeated on each derived subset in a recursive manner
called recursive partitioning. The recursion is completed
when the subset at a node has all the same value of the
target variable, or when splitting no longer adds value to
the predictions. This process of top-down induction of
decision trees (TDIDT) [2] is an example of a greedy al-
gorithm, and it is by far the most common strategy for
learning decision trees from data.
In data mining, decision trees can be described also as the
combination of mathematical and computational tech-
niques to aid the description, categorisation and gener-
alisation of a given set of data.
Data comes in records of the form:
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(x, Y ) = (x1, x2, x3, ..., xk, Y )

The dependent variable, Y, is the target variable that we
are trying to understand, classify or generalize. The vec-
tor x is composed of the input variables, x1, x2, x3 etc.,
that are used for that task.

51.2 Types

Decision trees used in data mining are of two main types:

• Classification tree analysis is when the predicted
outcome is the class to which the data belongs.

• Regression tree analysis is when the predicted out-
come can be considered a real number (e.g. the price
of a house, or a patient’s length of stay in a hospital).

The termClassification And Regression Tree (CART)
analysis is an umbrella term used to refer to both of the
above procedures, first introduced by Breiman et al.[3]

Trees used for regression and trees used for classification
have some similarities - but also some differences, such
as the procedure used to determine where to split.[3]

Some techniques, often called ensemble methods, con-
struct more than one decision tree:

• Bagging decision trees, an early ensemble method,
builds multiple decision trees by repeatedly resam-
pling training data with replacement, and voting the
trees for a consensus prediction.[4]

• A Random Forest classifier uses a number of deci-
sion trees, in order to improve the classification rate.

• Boosted Trees can be used for regression-type and
classification-type problems.[5][6]

• Rotation forest - in which every decision tree
is trained by first applying principal component
analysis (PCA) on a random subset of the input
features.[7]

Decision tree learning is the construction of a decision
tree from class-labeled training tuples. A decision tree is
a flow-chart-like structure, where each internal (non-leaf)
node denotes a test on an attribute, each branch represents
the outcome of a test, and each leaf (or terminal) node
holds a class label. The topmost node in a tree is the root
node.
There are many specific decision-tree algorithms. No-
table ones include:

• ID3 (Iterative Dichotomiser 3)

• C4.5 (successor of ID3)

• CART (Classification And Regression Tree)

• CHAID (CHi-squared Automatic Interaction De-
tector). Performs multi-level splits when computing
classification trees.[8]

• MARS: extends decision trees to handle numerical
data better.

• Conditional Inference Trees. Statistics-based ap-
proach that uses non-parametric tests as splitting cri-
teria, corrected for multiple testing to avoid over-
fitting. This approach results in unbiased predictor
selection and does not require pruning.[9][10]

ID3 and CART were invented independently at around
the same time (between 1970 and 1980), yet follow a
similar approach for learning decision tree from training
tuples.

51.3 Metrics

Algorithms for constructing decision trees usually work
top-down, by choosing a variable at each step that best
splits the set of items.[11] Different algorithms use differ-
ent metrics for measuring “best”. These generally mea-
sure the homogeneity of the target variable within the
subsets. Some examples are given below. These metrics
are applied to each candidate subset, and the resulting val-
ues are combined (e.g., averaged) to provide a measure of
the quality of the split.

51.3.1 Gini impurity

Not to be confused with Gini coefficient.

Used by the CART (classification and regression tree) al-
gorithm, Gini impurity is a measure of how often a ran-
domly chosen element from the set would be incorrectly
labeled if it were randomly labeled according to the dis-
tribution of labels in the subset. Gini impurity can be
computed by summing the probability of each item being
chosen times the probability of a mistake in categorizing
that item. It reaches its minimum (zero) when all cases
in the node fall into a single target category.
To compute Gini impurity for a set of items, suppose i ∈
{1, 2, ...,m} , and let fi be the fraction of items labeled
with value i in the set.
IG(f) =

∑m
i=1 fi(1 − fi) =

∑m
i=1(fi − fi

2) =∑m
i=1 fi −

∑m
i=1 fi

2 = 1−
∑m
i=1 fi

2
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51.3.2 Information gain

Main article: Information gain in decision trees

Used by the ID3, C4.5 and C5.0 tree-generation algo-
rithms. Information gain is based on the concept of
entropy from information theory.
IE(f) = −

∑m
i=1 fi log2 fi

51.3.3 Variance reduction

Introduced in CART,[3] variance reduction is often em-
ployed in cases where the target variable is continuous
(regression tree), meaning that use of many other metrics
would first require discretization before being applied.
The variance reduction of a nodeN is defined as the total
reduction of the variance of the target variable x due to
the split at this node:
IV (N) = 1

|S|2
∑
i∈S
∑
j∈S

1
2 (xi − xj)

2 −(
1

|St|2
∑
i∈St

∑
j∈St

1
2 (xi − xj)

2 + 1
|Sf |2

∑
i∈Sf

∑
j∈Sf

1
2 (xi − xj)

2
)

where S , St , and Sf are the set of presplit sample in-
dices, set of sample indices for which the split test is true,
and set of sample indices for which the split test is false,
respectively. Each of the above summands are indeed
variance estimates, though, written in a form without di-
rectly referring to the mean.

51.4 Decision tree advantages

Amongst other data mining methods, decision trees have
various advantages:

• Simple to understand and interpret. People are
able to understand decision tree models after a brief
explanation.

• Requires little data preparation. Other tech-
niques often require data normalisation, dummy
variables need to be created and blank values to be
removed.

• Able to handle both numerical and categorical
data. Other techniques are usually specialised in
analysing datasets that have only one type of vari-
able. (For example, relation rules can be used only
with nominal variables while neural networks can be
used only with numerical variables.)

• Uses a white box model. If a given situation is ob-
servable in a model the explanation for the condition
is easily explained by boolean logic. (An example
of a black box model is an artificial neural network
since the explanation for the results is difficult to un-
derstand.)

• Possible to validate a model using statistical
tests. That makes it possible to account for the reli-
ability of the model.

• Robust. Performs well even if its assumptions are
somewhat violated by the true model from which the
data were generated.

• Performs well with large datasets. Large amounts
of data can be analysed using standard computing
resources in reasonable time.

51.5 Limitations

• The problem of learning an optimal decision tree
is known to be NP-complete under several aspects
of optimality and even for simple concepts.[12][13]

Consequently, practical decision-tree learning algo-
rithms are based on heuristics such as the greedy al-
gorithm where locally-optimal decisions are made at
each node. Such algorithms cannot guarantee to re-
turn the globally-optimal decision tree. To reduce
the greedy effect of local-optimality some methods
such as the dual information distance (DID) tree
were proposed.[14]

• Decision-tree learners can create over-complex
trees that do not generalise well from the training
data. (This is known as overfitting.[15]) Mechanisms
such as pruning are necessary to avoid this problem
(with the exception of some algorithms such as the
Conditional Inference approach, that does not re-
quire pruning [9][10]).

• There are concepts that are hard to learn because
decision trees do not express them easily, such
as XOR, parity or multiplexer problems. In such
cases, the decision tree becomes prohibitively large.
Approaches to solve the problem involve either
changing the representation of the problem domain
(known as propositionalisation)[16] or using learn-
ing algorithms based on more expressive repre-
sentations (such as statistical relational learning or
inductive logic programming).

• For data including categorical variables with dif-
ferent numbers of levels, information gain in deci-
sion trees is biased in favor of those attributes with
more levels.[17] However, the issue of biased predic-
tor selection is avoided by the Conditional Inference
approach.[9]

51.6 Extensions
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51.6.1 Decision graphs

In a decision tree, all paths from the root node to the leaf
node proceed by way of conjunction, or AND. In a de-
cision graph, it is possible to use disjunctions (ORs) to
join two more paths together using Minimum message
length (MML).[18] Decision graphs have been further ex-
tended to allow for previously unstated new attributes to
be learnt dynamically and used at different places within
the graph.[19] The more general coding scheme results in
better predictive accuracy and log-loss probabilistic scor-
ing. In general, decision graphs infer models with fewer
leaves than decision trees.

51.6.2 Alternative search methods

Evolutionary algorithms have been used to avoid local op-
timal decisions and search the decision tree space with
little a priori bias.[20][21]

It is also possible for a tree to be sampled using
MCMC.[22]

The tree can be searched for in a bottom-up fashion.[23]

51.7 See also
• Decision tree pruning

• Binary decision diagram

• CHAID

• CART

• ID3 algorithm

• C4.5 algorithm

• Decision stump

• Incremental decision tree

• Alternating decision tree

• Structured data analysis (statistics)

51.8 Implementations

Many data mining software packages provide implemen-
tations of one or more decision tree algorithms. Several
examples include Salford Systems CART (which licensed
the proprietary code of the original CART authors[3]),
IBM SPSS Modeler, RapidMiner, SAS Enterprise Miner,
Matlab, R (an open source software environment for sta-
tistical computing which includes several CART imple-
mentations such as rpart, party and randomForest pack-
ages), Weka (a free and open-source data mining suite,
contains many decision tree algorithms), Orange (a free

data mining software suite, which includes the tree mod-
ule orngTree), KNIME, Microsoft SQL Server , and
scikit-learn (a free and open-source machine learning li-
brary for the Python programming language).
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Chapter 52

Information gain in decision trees

For other uses, see Gain (disambiguation).

In information theory and machine learning, informa-
tion gain is a synonym for Kullback–Leibler divergence.
However, in the context of decision trees, the term is
sometimes used synonymously with mutual information,
which is the expectation value of the Kullback–Leibler
divergence of a conditional probability distribution.
In particular, the information gain about a random vari-
able X obtained from an observation that a random vari-
able A takes the value A=a is the Kullback-Leibler diver-
gence DKL(p(x | a) || p(x | I)) of the prior distribution p(x
| I) for x from the posterior distribution p(x | a) for x given
a.
The expected value of the information gain is the mutual
information I(X; A) of X and A – i.e. the reduction in the
entropy of X achieved by learning the state of the random
variable A.
In machine learning, this concept can be used to define
a preferred sequence of attributes to investigate to most
rapidly narrow down the state of X. Such a sequence
(which depends on the outcome of the investigation of
previous attributes at each stage) is called a decision tree.
Usually an attribute with high mutual information should
be preferred to other attributes.

52.1 General definition

In general terms, the expected information gain is the
change in information entropy H from a prior state to
a state that takes some information as given:
IG(T, a) = H(T )−H(T |a)

52.2 Formal definition

Let T denote a set of training examples, each of the form
(x, y) = (x1, x2, x3, ..., xk, y) where xa ∈ vals(a) is
the value of the a th attribute of example x and y is the
corresponding class label. The information gain for an
attribute a is defined in terms of entropy H() as follows:

IG(T, a) = H(T )−
∑
v∈vals(a)

|{x∈T |xa=v}|
|T | ·H({x ∈

T |xa = v})
The mutual information is equal to the total entropy for
an attribute if for each of the attribute values a unique
classification can be made for the result attribute. In this
case, the relative entropies subtracted from the total en-
tropy are 0.

52.3 Drawbacks

Although information gain is usually a good measure for
deciding the relevance of an attribute, it is not perfect. A
notable problem occurs when information gain is applied
to attributes that can take on a large number of distinct
values. For example, suppose that one is building a deci-
sion tree for some data describing the customers of a busi-
ness. Information gain is often used to decide which of
the attributes are the most relevant, so they can be tested
near the root of the tree. One of the input attributes might
be the customer’s credit card number. This attribute has
a high mutual information, because it uniquely identifies
each customer, but we do not want to include it in the
decision tree: deciding how to treat a customer based on
their credit card number is unlikely to generalize to cus-
tomers we haven't seen before (overfitting).
Information gain ratio is sometimes used instead. This bi-
ases the decision tree against considering attributes with a
large number of distinct values. However, attributes with
very low information values then appeared to receive an
unfair advantage.

52.4 References
• Mitchell, Tom M. (1997). Machine Learning. The

Mc-Graw-Hill Companies, Inc. ISBN 0070428077.
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Chapter 53

Ensemble learning

For an alternative meaning, see variational Bayesian
methods.

In statistics and machine learning, ensemble meth-
ods use multiple learning algorithms to obtain better
predictive performance than could be obtained from any
of the constituent learning algorithms.[1][2][3] Unlike a
statistical ensemble in statistical mechanics, which is usu-
ally infinite, a machine learning ensemble refers only to
a concrete finite set of alternative models, but typically
allows for much more flexible structure to exist among
those alternatives.

53.1 Overview

Supervised learning algorithms are commonly described
as performing the task of searching through a hypoth-
esis space to find a suitable hypothesis that will make
good predictions with a particular problem. Even if the
hypothesis space contains hypotheses that are very well-
suited for a particular problem, it may be very difficult to
find a good one. Ensembles combine multiple hypotheses
to form a (hopefully) better hypothesis. The term ensem-
ble is usually reserved for methods that generate multi-
ple hypotheses using the same base learner. The broader
term of multiple classifier systems also covers hybridiza-
tion of hypotheses that are not induced by the same base
learner.
Evaluating the prediction of an ensemble typically re-
quires more computation than evaluating the prediction
of a single model, so ensembles may be thought of as a
way to compensate for poor learning algorithms by per-
forming a lot of extra computation. Fast algorithms such
as decision trees are commonly used with ensembles (for
example Random Forest), although slower algorithms can
benefit from ensemble techniques as well.

53.2 Ensemble theory

An ensemble is itself a supervised learning algorithm, be-
cause it can be trained and then used to make predic-

tions. The trained ensemble, therefore, represents a sin-
gle hypothesis. This hypothesis, however, is not necessar-
ily contained within the hypothesis space of the models
from which it is built. Thus, ensembles can be shown to
have more flexibility in the functions they can represent.
This flexibility can, in theory, enable them to over-fit the
training data more than a single model would, but in prac-
tice, some ensemble techniques (especially bagging) tend
to reduce problems related to over-fitting of the training
data.
Empirically, ensembles tend to yield better results when
there is a significant diversity among the models.[4][5]

Many ensemble methods, therefore, seek to promote di-
versity among the models they combine.[6][7] Although
perhaps non-intuitive, more random algorithms (like ran-
dom decision trees) can be used to produce a stronger
ensemble than very deliberate algorithms (like entropy-
reducing decision trees).[8] Using a variety of strong
learning algorithms, however, has been shown to be more
effective than using techniques that attempt to dumb-
down the models in order to promote diversity.[9]

53.3 Common types of ensembles

53.3.1 Bayes optimal classifier

The Bayes Optimal Classifier is a classification technique.
It is an ensemble of all the hypotheses in the hypothe-
sis space. On average, no other ensemble can outper-
form it.[10] Each hypothesis is given a vote proportional to
the likelihood that the training dataset would be sampled
from a system if that hypothesis were true. To facilitate
training data of finite size, the vote of each hypothesis is
also multiplied by the prior probability of that hypothesis.
The Bayes Optimal Classifier can be expressed with the
following equation:

y = argmaxcj∈C
∑
hi∈H

P (cj |hi)P (T |hi)P (hi)

where y is the predicted class, C is the set of all possible
classes,H is the hypothesis space, P refers to a probabil-
ity, and T is the training data. As an ensemble, the Bayes
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Optimal Classifier represents a hypothesis that is not nec-
essarily in H . The hypothesis represented by the Bayes
Optimal Classifier, however, is the optimal hypothesis in
ensemble space (the space of all possible ensembles con-
sisting only of hypotheses in H ).
Unfortunately, Bayes Optimal Classifier cannot be prac-
tically implemented for any but the most simple of prob-
lems. There are several reasons why the Bayes Optimal
Classifier cannot be practically implemented:

1. Most interesting hypothesis spaces are too large to
iterate over, as required by the argmax .

2. Many hypotheses yield only a predicted class, rather
than a probability for each class as required by the
term P (cj |hi) .

3. Computing an unbiased estimate of the probability
of the training set given a hypothesis ( P (T |hi) ) is
non-trivial.

4. Estimating the prior probability for each hypothesis
( P (hi) ) is rarely feasible.

53.3.2 Bootstrap aggregating (bagging)

Main article: Bootstrap aggregating

Bootstrap aggregating, often abbreviated as bagging, in-
volves having each model in the ensemble vote with
equal weight. In order to promote model variance, bag-
ging trains each model in the ensemble using a ran-
domly drawn subset of the training set. As an exam-
ple, the random forest algorithm combines random de-
cision trees with bagging to achieve very high classifica-
tion accuracy.[11] An interesting application of bagging in
unsupervised learning is provided here.[12][13]

53.3.3 Boosting

Main article: Boosting (meta-algorithm)

Boosting involves incrementally building an ensemble by
training each new model instance to emphasize the train-
ing instances that previous models mis-classified. In some
cases, boosting has been shown to yield better accuracy
than bagging, but it also tends to be more likely to over-fit
the training data. By far, the most common implementa-
tion of Boosting is Adaboost, although some newer algo-
rithms are reported to achieve better results .

53.3.4 Bayesian model averaging

Bayesian model averaging (BMA) is an ensemble tech-
nique that seeks to approximate the Bayes Optimal Clas-
sifier by sampling hypotheses from the hypothesis space,

and combining them using Bayes’ law.[14] Unlike the
Bayes optimal classifier, Bayesian model averaging can be
practically implemented. Hypotheses are typically sam-
pled using a Monte Carlo sampling technique such as
MCMC. For example, Gibbs sampling may be used to
draw hypotheses that are representative of the distribu-
tion P (T |H) . It has been shown that under certain cir-
cumstances, when hypotheses are drawn in this manner
and averaged according to Bayes’ law, this technique has
an expected error that is bounded to be at most twice the
expected error of the Bayes optimal classifier.[15] Despite
the theoretical correctness of this technique, it has been
found to promote over-fitting and to perform worse, em-
pirically, compared to simpler ensemble techniques such
as bagging;[16] however, these conclusions appear to be
based on a misunderstanding of the purpose of Bayesian
model averaging vs. model combination.[17]

53.3.5 Bayesian model combination

Bayesian model combination (BMC) is an algorithmic
correction to BMA. Instead of sampling each model in
the ensemble individually, it samples from the space of
possible ensembles (with model weightings drawn ran-
domly from a Dirichlet distribution having uniform pa-
rameters). This modification overcomes the tendency of
BMA to converge toward giving all of the weight to a
single model. Although BMC is somewhat more compu-
tationally expensive than BMA, it tends to yield dramat-
ically better results. The results from BMC have been
shown to be better on average (with statistical signifi-
cance) than BMA, and bagging.[18]

The use of Bayes’ law to compute model weights neces-
sitates computing the probability of the data given each
model. Typically, none of the models in the ensemble are
exactly the distribution from which the training data were
generated, so all of them correctly receive a value close
to zero for this term. This would work well if the ensem-
ble were big enough to sample the entire model-space,
but such is rarely possible. Consequently, each pattern in
the training data will cause the ensemble weight to shift
toward the model in the ensemble that is closest to the
distribution of the training data. It essentially reduces to
an unnecessarily complex method for doing model selec-
tion.
The possible weightings for an ensemble can be visualized
as lying on a simplex. At each vertex of the simplex, all
of the weight is given to a single model in the ensemble.
BMA converges toward the vertex that is closest to the
distribution of the training data. By contrast, BMC con-
verges toward the point where this distribution projects
onto the simplex. In other words, instead of selecting the
one model that is closest to the generating distribution,
it seeks the combination of models that is closest to the
generating distribution.
The results from BMA can often be approximated by us-
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ing cross-validation to select the best model from a bucket
of models. Likewise, the results from BMC may be ap-
proximated by using cross-validation to select the best en-
semble combination from a random sampling of possible
weightings.

53.3.6 Bucket of models

A “bucket of models” is an ensemble in which a model
selection algorithm is used to choose the best model for
each problem. When tested with only one problem, a
bucket of models can produce no better results than the
best model in the set, but when evaluated across many
problems, it will typically produce much better results,
on average, than any model in the set.
The most common approach used for model-selection is
cross-validation selection (sometimes called a “bake-off
contest”). It is described with the following pseudo-code:
For each model m in the bucket: Do c times: (where 'c' is
some constant) Randomly divide the training dataset into
two datasets: A, and B. Train m with A Test m with B
Select the model that obtains the highest average score
Cross-Validation Selection can be summed up as: “try
them all with the training set, and pick the one that works
best”.[19]

Gating is a generalization of Cross-Validation Selection.
It involves training another learning model to decide
which of the models in the bucket is best-suited to solve
the problem. Often, a perceptron is used for the gating
model. It can be used to pick the “best” model, or it can
be used to give a linear weight to the predictions from
each model in the bucket.
When a bucket of models is used with a large set of prob-
lems, it may be desirable to avoid training some of the
models that take a long time to train. Landmark learn-
ing is a meta-learning approach that seeks to solve this
problem. It involves training only the fast (but imprecise)
algorithms in the bucket, and then using the performance
of these algorithms to help determine which slow (but ac-
curate) algorithm is most likely to do best.[20]

53.3.7 Stacking

Stacking (sometimes called stacked generalization) in-
volves training a learning algorithm to combine the pre-
dictions of several other learning algorithms. First, all of
the other algorithms are trained using the available data,
then a combiner algorithm is trained to make a final pre-
diction using all the predictions of the other algorithms as
additional inputs. If an arbitrary combiner algorithm is
used, then stacking can theoretically represent any of the
ensemble techniques described in this article, although in
practice, a single-layer logistic regression model is often
used as the combiner.

Stacking typically yields performance better than any sin-
gle one of the trained models.[21] It has been successfully
used on both supervised learning tasks (regression,[22]

classification and distance learning [23]) and unsupervised
learning (density estimation).[24] It has also been used to
estimate bagging’s error rate.[3][25] It has been reported to
out-perform Bayesian model-averaging.[26] The two top-
performers in the Netflix competition utilized blending,
which may be considered to be a form of stacking.[27]
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Chapter 54

Random forest

This article is about the machine learning technique.
For other kinds of random tree, see Random tree
(disambiguation).

Random forests are an ensemble learning method for
classification, regression and other tasks, that operate by
constructing a multitude of decision trees at training time
and outputting the class that is the mode of the classes
(classification) or mean prediction (regression) of the in-
dividual trees. Random forests correct for decision trees’
habit of overfitting to their training set.
The algorithm for inducing a random forest was devel-
oped by Leo Breiman[1] and Adele Cutler,[2] and “Ran-
dom Forests” is their trademark. The method combines
Breiman’s "bagging" idea and the random selection of
features, introduced independently by Ho[3][4] and Amit
and Geman[5] in order to construct a collection of deci-
sion trees with controlled variance.
The selection of a random subset of features is an exam-
ple of the random subspace method, which, in Ho’s for-
mulation, is a way to implement classification proposed
by Eugene Kleinberg.[6]

54.1 History

The early development of random forests was influenced
by the work of Amit and Geman[5] who introduced the
idea of searching over a random subset of the available
decisions when splitting a node, in the context of growing
a single tree. The idea of random subspace selection from
Ho[4] was also influential in the design of random forests.
In this method a forest of trees is grown, and variation
among the trees is introduced by projecting the training
data into a randomly chosen subspace before fitting each
tree. Finally, the idea of randomized node optimization,
where the decision at each node is selected by a random-
ized procedure, rather than a deterministic optimization
was first introduced by Dietterich.[7]

The introduction of random forests proper was first made
in a paper by Leo Breiman.[1] This paper describes a
method of building a forest of uncorrelated trees using a
CART like procedure, combined with randomized node

optimization and bagging. In addition, this paper com-
bines several ingredients, some previously known and
some novel, which form the basis of the modern practice
of random forests, in particular:

1. Using out-of-bag error as an estimate of the
generalization error.

2. Measuring variable importance through permuta-
tion.

The report also offers the first theoretical result for ran-
dom forests in the form of a bound on the generalization
error which depends on the strength of the trees in the
forest and their correlation.

54.2 Algorithm

54.2.1 Preliminaries: decision tree learn-
ing

Main article: Decision tree learning

Decision trees are a popular method for various machine
learning tasks. Tree learning “come[s] closest to meeting
the requirements for serving as an off-the-shelf procedure
for data mining”, say Hastie et al., because it is invariant
under scaling and various other transformations of feature
values, is robust to inclusion of irrelevant features, and
produces inspectable models. However, they are seldom
accurate.[8]:352

In particular, trees that are grown very deep tend to learn
highly irregular patterns: they overfit their training sets,
because they have low bias, but very high variance. Ran-
dom forests are a way of averaging multiple deep deci-
sion trees, trained on different parts of the same training
set, with the goal of reducing the variance.[8]:587–588 This
comes at the expense of a small increase in the bias and
some loss of interpretability, but generally greatly boosts
the performance of the final model.
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54.2.2 Tree bagging

Main article: Bootstrap aggregating

The training algorithm for random forests applies the gen-
eral technique of bootstrap aggregating, or bagging, to
tree learners. Given a training set X = x1, …, x⛼ with
responses Y = y1, …, y⛼, bagging repeatedly selects a
random sample with replacement of the training set and
fits trees to these samples:

For b = 1, …, B:

1. Sample, with replacement, n training ex-
amples from X, Y; call these X⛲, Y⛲.

2. Train a decision or regression tree f⛲ on
X⛲, Y⛲.

After training, predictions for unseen samples x' can be
made by averaging the predictions from all the individual
regression trees on x':

f̂ =
1

B

B∑
b=1

f̂b(x
′)

or by taking the majority vote in the case of decision trees.
This bootstrapping procedure leads to better model per-
formance because it decreases the variance of the model,
without increasing the bias. This means that while the
predictions of a single tree are highly sensitive to noise
in its training set, the average of many trees is not, as
long as the trees are not correlated. Simply training many
trees on a single training set would give strongly corre-
lated trees (or even the same tree many times, if the train-
ing algorithm is deterministic); bootstrap sampling is a
way of de-correlating the trees by showing them differ-
ent training sets.
The number of samples/trees, B, is a free parameter.
Typically, a few hundred to several thousand trees are
used, depending on the size and nature of the training set.
An optimal number of trees B can be found using cross-
validation, or by observing the out-of-bag error: the mean
prediction error on each training sample xᵢ, using only the
trees that did not have xᵢ in their bootstrap sample.[9] The
training and test error tend to level off after some number
of trees have been fit.

54.2.3 From bagging to random forests

Main article: Random subspace method

The above procedure describes the original bagging algo-
rithm for trees. Random forests differ in only one way
from this general scheme: they use a modified tree learn-
ing algorithm that selects, at each candidate split in the

learning process, a random subset of the features. This
process is sometimes called “feature bagging”. The rea-
son for doing this is the correlation of the trees in an or-
dinary bootstrap sample: if one or a few features are very
strong predictors for the response variable (target output),
these features will be selected in many of the B trees,
causing them to become correlated.
Typically, for a dataset with p features, √p features are
used in each split.

54.2.4 Extensions

Adding one further step of randomization yields extremely
randomized trees, or ExtraTrees. These are trained using
bagging and the random subspace method, like in an or-
dinary random forest, but additionally the top-down split-
ting in the tree learner is randomized. Instead of comput-
ing the locally optimal feature/split combination (based
on, e.g., information gain or the Gini impurity), for each
feature under consideration a random value is selected in
the feature’s empirical range (in the tree’s training set, i.e.,
the bootstrap sample). The best of these is then chosen
as the split.[10]

54.3 Properties

54.3.1 Variable importance

Random forests can be used to rank the importance of
variables in a regression or classification problem in a
natural way. The following technique was described in
Breiman’s original paper[1] and is implemented in the R
package randomForest.[2]

The first step in measuring the variable importance in a
data set Dn = {(Xi, Yi)}ni=1 is to fit a random forest to
the data. During the fitting process the out-of-bag error
for each data point is recorded and averaged over the for-
est (errors on an independent test set can be substituted
if bagging is not used during training).
To measure the importance of the j -th feature after train-
ing, the values of the j -th feature are permuted among
the training data and the out-of-bag error is again com-
puted on this perturbed data set. The importance score
for the j -th feature is computed by averaging the differ-
ence in out-of-bag error before and after the permutation
over all trees. The score is normalized by the standard
deviation of these differences.
Features which produce large values for this score are
ranked as more important than features which produce
small values.
This method of determining variable importance has
some drawbacks. For data including categorical variables
with different number of levels, random forests are biased
in favor of those attributes with more levels. Methods
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such as partial permutations[11][12] and growing unbiased
trees[13] can be used to solve the problem. If the data
contain groups of correlated features of similar relevance
for the output, then smaller groups are favored over larger
groups.[14]

54.3.2 Relationship to nearest neighbors

A relationship between random forests and the k-nearest
neighbor algorithm (k-NN) was pointed out by Lin and
Jeon in 2002.[15] It turns out that both can be viewed
as so-called weighted neighborhoods schemes. These are
models built from a training set {(xi, yi)}ni=1 that make
predictions ŷ for new points x' by looking at the “neigh-
borhood” of the point, formalized by a weight function
W:

ŷ =
n∑
i=1

W (xi, x
′) yi.

Here, W (xi, x
′) is the non-negative weight of the i'th

training point relative to the new point x'. For any par-
ticular x', the weights must sum to one. Weight functions
are given as follows:

• In k-NN, the weights areW (xi, x
′) = 1

k if xᵢ is one
of the k points closest to x', and zero otherwise.

• In a tree, W (xi, x
′) is the fraction of the training

data that falls into the same leaf as x'.

Since a forest averages the predictions of a set of m trees
with individual weight functions Wj , its predictions are

ŷ =
1

m

m∑
j=1

n∑
i=1

Wj(xi, x
′) yi =

n∑
i=1

 1

m

m∑
j=1

Wj(xi, x
′)

 yi.

This shows that the whole forest is again a weighted neigh-
borhood scheme, with weights that average those of the
individual trees. The neighbors of x' in this interpreta-
tion are the points xi which fall in the same leaf as x' in
at least one tree of the forest. In this way, the neighbor-
hood of x' depends in a complex way on the structure of
the trees, and thus on the structure of the training set. Lin
and Jeon show that the shape of the neighborhood used
by a random forest adapts to the local importance of each
feature.[15]

54.4 Unsupervised learning with
random forests

As part of their construction, RF predictors naturally lead
to a dissimilarity measure between the observations. One

can also define an RF dissimilarity measure between un-
labeled data: the idea is to construct an RF predictor that
distinguishes the “observed” data from suitably generated
synthetic data.[1][16] The observed data are the original
unlabeled data and the synthetic data are drawn from a
reference distribution. An RF dissimilarity can be at-
tractive because it handles mixed variable types well, is
invariant to monotonic transformations of the input vari-
ables, and is robust to outlying observations. The RF
dissimilarity easily deals with a large number of semi-
continuous variables due to its intrinsic variable selection;
for example, the “Addcl 1” RF dissimilarity weighs the
contribution of each variable according to how dependent
it is on other variables. The RF dissimilarity has been
used in a variety of applications, e.g. to find clusters of
patients based on tissue marker data.[17]

54.5 Variants

Instead of decision trees, linear models have been pro-
posed and evaluated as base estimators in random forests,
in particular multinomial logistic regression and naive
Bayes classifiers.[18][19]

54.6 See also

• Decision tree learning

• Gradient boosting

• Randomized algorithm

• Bootstrap aggregating (bagging)

• Ensemble learning

• Boosting

• Non-parametric statistics

• Kernel random forest
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Chapter 55

Boosting (machine learning)

Boosting is a machine learning ensemble meta-algorithm
for reducing bias primarily and also variance[1] in
supervised learning, and a family of machine learning al-
gorithms which convert weak learners to strong ones.[2]

Boosting is based on the question posed by Kearns and
Valiant (1988, 1989):[3][4] Can a set of weak learners
create a single strong learner? A weak learner is de-
fined to be a classifier which is only slightly correlated
with the true classification (it can label examples better
than random guessing). In contrast, a strong learner is a
classifier that is arbitrarily well-correlated with the true
classification.
Robert Schapire’s affirmative answer in a 1990 paper[5]

to the question of Kearns and Valiant has had significant
ramifications in machine learning and statistics, most no-
tably leading to the development of boosting.[6]

When first introduced, the hypothesis boosting problem
simply referred to the process of turning a weak learner
into a strong learner. “Informally, [the hypothesis boost-
ing] problem asks whether an efficient learning algorithm
[…] that outputs a hypothesis whose performance is only
slightly better than random guessing [i.e. a weak learner]
implies the existence of an efficient algorithm that out-
puts a hypothesis of arbitrary accuracy [i.e. a strong
learner].”[3] Algorithms that achieve hypothesis boost-
ing quickly became simply known as “boosting”. Fre-
und and Schapire’s arcing (Adapt[at]ive Resampling and
Combining),[7] as a general technique, is more or less syn-
onymous with boosting.[8]

55.1 Boosting algorithms

While boosting is not algorithmically constrained, most
boosting algorithms consist of iteratively learning weak
classifiers with respect to a distribution and adding them
to a final strong classifier. When they are added, they
are typically weighted in some way that is usually related
to the weak learners’ accuracy. After a weak learner is
added, the data is reweighted: examples that are misclas-
sified gain weight and examples that are classified cor-
rectly lose weight (some boosting algorithms actually de-
crease the weight of repeatedly misclassified examples,

e.g., boost by majority and BrownBoost). Thus, future
weak learners focus more on the examples that previous
weak learners misclassified.
There are many boosting algorithms. The original ones,
proposed by Robert Schapire (a recursive majority gate
formulation[5]) and Yoav Freund (boost by majority[9]),
were not adaptive and could not take full advantage of
the weak learners. However, Schapire and Freund then
developed AdaBoost, an adaptive boosting algorithm that
won the prestigious Gödel Prize. Only algorithms that
are provable boosting algorithms in the probably approx-
imately correct learning formulation are called boosting
algorithms. Other algorithms that are similar in spirit to
boosting algorithms are sometimes called “leveraging al-
gorithms”, although they are also sometimes incorrectly
called boosting algorithms.[9]

55.2 Examples of boosting algo-
rithms

The main variation between many boosting algorithms is
their method of weighting training data points and hy-
potheses. AdaBoost is very popular and perhaps the
most significant historically as it was the first algo-
rithm that could adapt to the weak learners. However,
there are many more recent algorithms such as LPBoost,
TotalBoost, BrownBoost, MadaBoost, LogitBoost, and
others. Many boosting algorithms fit into the AnyBoost
framework,[9] which shows that boosting performs
gradient descent in function space using a convex cost
function.
Boosting algorithms are used in Computer Vision, where
individual classifiers detecting contrast changes can be
combined to identify Facial Features.[10]

55.3 Criticism

In 2008 Phillip Long (at Google) and Rocco A. Servedio
(Columbia University) published a paper[11] at the 25th
International Conference for Machine Learning suggest-
ing that many of these algorithms are probably flawed.
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They conclude that “convex potential boosters cannot
withstand random classification noise,” thus making the
applicability of such algorithms for real world, noisy data
sets questionable. The paper shows that if any non-zero
fraction of the training data is mis-labeled, the boost-
ing algorithm tries extremely hard to correctly classify
these training examples, and fails to produce a model
with accuracy better than 1/2. This result does not ap-
ply to branching program based boosters but does apply
to AdaBoost, LogitBoost, and others.[12][11]

55.4 See also

55.5 Implementations
• Orange, a free data mining software suite, module

Orange.ensemble

• Weka is a machine learning set of tools that offers
variate implementations of boosting algorithms like
AdaBoost and LogitBoost

• R package GBM (Generalized Boosted Regres-
sion Models) implements extensions to Freund and
Schapire’s AdaBoost algorithm and Friedman’s gra-
dient boosting machine.

• jboost; AdaBoost, LogitBoost, RobustBoost, Boos-
texter and alternating decision trees
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Bootstrap aggregating

Bootstrap aggregating, also called bagging, is a
machine learning ensemble meta-algorithm designed to
improve the stability and accuracy of machine learning
algorithms used in statistical classification and regression.
It also reduces variance and helps to avoid overfitting. Al-
though it is usually applied to decision tree methods, it
can be used with any type of method. Bagging is a spe-
cial case of the model averaging approach.

56.1 Description of the technique

Given a standard training set D of size n, bagging gener-
ates m new training sets Di , each of size n′, by sampling
from D uniformly and with replacement. By sampling
with replacement, some observations may be repeated in
eachDi . If n′=n, then for large n the setDi is expected to
have the fraction (1 - 1/e) (≈63.2%) of the unique exam-
ples of D, the rest being duplicates.[1] This kind of sample
is known as a bootstrap sample. The m models are fitted
using the above m bootstrap samples and combined by
averaging the output (for regression) or voting (for clas-
sification).
Bagging leads to “improvements for unstable procedures”
(Breiman, 1996), which include, for example, artificial
neural networks, classification and regression trees, and
subset selection in linear regression (Breiman, 1994). An
interesting application of bagging showing improvement
in preimage learning is provided here.[2][3] On the other
hand, it can mildly degrade the performance of stable
methods such as K-nearest neighbors (Breiman, 1996).

56.2 Example: Ozone data

To illustrate the basic principles of bagging, below is an
analysis on the relationship between ozone and temper-
ature (data from Rousseeuw and Leroy (1986), available
at classic data sets, analysis done in R).
The relationship between temperature and ozone in this
data set is apparently non-linear, based on the scatter plot.
To mathematically describe this relationship, LOESS
smoothers (with span 0.5) are used. Instead of building a

single smoother from the complete data set, 100 bootstrap
samples of the data were drawn. Each sample is differ-
ent from the original data set, yet resembles it in distribu-
tion and variability. For each bootstrap sample, a LOESS
smoother was fit. Predictions from these 100 smoothers
were then made across the range of the data. The first
10 predicted smooth fits appear as grey lines in the figure
below. The lines are clearly very wiggly and they overfit
the data - a result of the span being too low.
By taking the average of 100 smoothers, each fitted to a
subset of the original data set, we arrive at one bagged
predictor (red line). Clearly, the mean is more stable and
there is less overfit.
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56.3 Bagging for nearest neighbour
classifiers

The risk of a 1 nearest neighbour (1NN) classifier is at
most twice the risk of the Bayes classifier,[4] but there are
no guarantees that this classifier will be consistent. By
careful choice of the size of the resamples, bagging can
lead to substantial improvements of the performance of
the 1NN classifier. By taking a large number of resam-
ples of the data of size n′ , the bagged nearest neighbour
classifier will be consistent provided n′ → ∞ diverges
but n′/n→ 0 as the sample size n→ ∞ .
Under infinite simulation, the bagged nearest neighbour
classifier can be viewed as a weighted nearest neighbour
classifier. Suppose that the feature space is d dimensional
and denote by Cbnnn,n′ the bagged nearest neighbour classi-
fier based on a training set of size n , with resamples of
size n′ . In the infinite sampling case, under certain regu-
larity conditions on the class distributions, the excess risk
has the following asymptotic expansion[5]

RR(Cbnnn,n′)−RR(CBayes) =

(
B1

n′

n
+B2

1

(n′)4/d

)
{1+o(1)},

for some constantsB1 andB2 . The optimal choice of n′
, that balances the two terms in the asymptotic expansion,
is given by n′ = Bnd/(d+4) for some constant B .

56.4 History

Bagging (Bootstrap aggregating) was proposed by Leo
Breiman in 1994 to improve the classification by com-
bining classifications of randomly generated training sets.
See Breiman, 1994. Technical Report No. 421.

56.5 See also
• Boosting (meta-algorithm)

• Bootstrapping (statistics)

• Cross-validation (statistics)

• Random forest

• Random subspace method (attribute bagging)
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Chapter 57

Gradient boosting

Gradient boosting is a machine learning technique for
regression and classification problems, which produces a
prediction model in the form of an ensemble of weak
prediction models, typically decision trees. It builds the
model in a stage-wise fashion like other boosting meth-
ods do, and it generalizes them by allowing optimization
of an arbitrary differentiable loss function.
The idea of gradient boosting originated in the observa-
tion by Leo Breiman [1] that boosting can be interpreted as
an optimization algorithm on a suitable cost function. Ex-
plicit regression gradient boosting algorithms were subse-
quently developed by Jerome H. Friedman[2][3] simulta-
neously with the more general functional gradient boost-
ing perspective of Llew Mason, Jonathan Baxter, Peter
Bartlett and Marcus Frean .[4][5] The latter two papers in-
troduced the abstract view of boosting algorithms as itera-
tive functional gradient descent algorithms. That is, algo-
rithms that optimize a cost functional over function space
by iteratively choosing a function (weak hypothesis) that
points in the negative gradient direction. This functional
gradient view of boosting has led to the development of
boosting algorithms in many areas of machine learning
and statistics beyond regression and classification.

57.1 Informal introduction

(This section follows the exposition of gradient boosting
by Li.[6])
Like other boosting methods, gradient boosting combines
weak learners into a single strong learner, in an itera-
tive fashion. It is easiest to explain in the least-squares
regression setting, where the goal is to learn a model F
that predicts values ŷ = F (x) , minimizing the mean
squared error (ŷ−y)2 to the true values y (averaged over
some training set).
At each stage 1 ≤ m ≤ M of gradient boosting, it may
be assumed that there is some imperfect model Fm (at
the outset, a very weak model that just predicts the mean
y in the training set could be used). The gradient boost-
ing algorithm does not change Fm in any way; instead,
it improves on it by constructing a new model that adds
an estimator h to provide a better model Fm+1(x) =

Fm(x)+h(x) . The question is now, how to find h ? The
gradient boosting solution starts with the observation that
a perfect h would imply

Fm+1 = Fm(x) + h(x) = y

or, equivalently,

h(x) = y − Fm(x)

Therefore, gradient boosting will fit h to the residual
y− Fm(x) . Like in other boosting variants, each Fm+1

learns to correct its predecessor Fm . A generalization of
this idea to other loss functions than squared error (and
to classification and ranking problems) follows from the
observation that residuals y − F (x) are the negative gra-
dients of the squared error loss function 1

2 (y − F (x))2 .
So, gradient boosting is a gradient descent algorithm; and
generalizing it entails “plugging in” a different loss and its
gradient.

57.2 Algorithm

In many supervised learning problems one has an output
variable y and a vector of input variables x connected to-
gether via a joint probability distribution P(x, y). Using
a training set {(x1, y1), . . . , (xn, yn)} of known values
of x and corresponding values of y, the goal is to find an
approximation F̂ (x) to a function F*(x) that minimizes
the expected value of some specified loss function L(y,
F(x)):

F ∗ = arg min
F

Ex,y[L(y, F (x))]

Gradient boosting method assumes a real-valued y and
seeks an approximation F̂ (x) in the form of a weighted
sum of functions hi(x) from some class ℋ, called base
(or weak) learners:

F (x) =
M∑
i=1

γihi(x) + const

352

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Regression_(machine_learning)
https://en.wikipedia.org/wiki/Classification_(machine_learning)
https://en.wikipedia.org/wiki/Ensemble_learning
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Boosting_(meta-algorithm)
https://en.wikipedia.org/wiki/Differentiable_function
https://en.wikipedia.org/wiki/Loss_function
https://en.wikipedia.org/wiki/Leo_Breiman
https://en.wikipedia.org/wiki/Jerome_H._Friedman
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Joint_probability_distribution
https://en.wikipedia.org/wiki/Loss_function


57.3. GRADIENT TREE BOOSTING 353

In accordance with the empirical risk minimization prin-
ciple, the method tries to find an approximation F̂ (x) that
minimizes the average value of the loss function on the
training set. It does so by starting with a model, con-
sisting of a constant functionF0(x) , and incrementally
expanding it in a greedy fashion:

F0(x) = arg min
γ

n∑
i=1

L(yi, γ)

Fm(x) = Fm−1(x)+arg min
f∈H

n∑
i=1

L(yi, Fm−1(xi)+f(xi))

where f is restricted to be a function from the class ℋ of
base learner functions.
However, the problem of choosing at each step the best
f for an arbitrary loss function L is a hard optimization
problem in general, and so we'll “cheat” by solving a much
easier problem instead.
The idea is to apply a steepest descent step to this min-
imization problem. If we only cared about predictions
at the points of the training set, and f were unrestricted,
we'd update the model per the following equation, where
we view L(y, f) not as a functional of f, but as a function
of a vector of valuesf(x1), . . . , f(xn) :

Fm(x) = Fm−1(x)− γm

n∑
i=1

∇fL(yi, Fm−1(xi)),

γm = arg min
γ

n∑
i=1

L

(
yi, Fm−1(xi)− γ

∂L(yi, Fm−1(xi))

∂f(xi)

)
.

But as f must come from a restricted class of functions
(that’s what allows us to generalize), we'll just choose
the one that most closely approximates the gradient of L.
Having chosen f, the multiplier γ is then selected using
line search just as shown in the second equation above.
In pseudocode, the generic gradient boosting method
is:[2][7]

Input: training set {(xi, yi)}ni=1, a differentiable loss
functionL(y, F (x)), number of iterationsM.

Algorithm:

1. Initialize model with a constant value:

F0(x) = arg min
γ

n∑
i=1

L(yi, γ).

2. For m = 1 to M:

(a) Compute so-called pseudo-residuals:

rim = −
[
∂L(yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

for i = 1, . . . , n.

(b) Fit a base learner hm(x) to pseudo-
residuals, i.e. train it using the training
set {(xi, rim)}ni=1 .

(c) Compute multiplierγm by solving the follow-
ing one-dimensional optimization problem:

γm = arg min
γ

n∑
i=1

L (yi, Fm−1(xi) + γhm(xi)) .

(d) Update the model:

Fm(x) = Fm−1(x) + γmhm(x).

3. Output FM (x).

57.3 Gradient tree boosting

Gradient boosting is typically used with decision trees
(especially CART trees) of a fixed size as base learners.
For this special case Friedman proposes a modification to
gradient boosting method which improves the quality of
fit of each base learner.
Generic gradient boosting at the m-th step would fit a de-
cision treehm(x) to pseudo-residuals. LetJ be the num-
ber of its leaves. The tree partitions the input space into
J disjoint regionsR1m, . . . , RJm and predicts a constant
value in each region. Using the indicator notation, the
output ofhm(x) for input x can be written as the sum:

hm(x) =
J∑
j=1

bjmI(x ∈ Rjm),

wherebjm is the value predicted in the regionRjm .[8]

Then the coefficients bjm are multiplied by some value
γm , chosen using line search so as to minimize the loss
function, and the model is updated as follows:

Fm(x) = Fm−1(x)+γmhm(x), γm = arg min
γ

n∑
i=1

L(yi, Fm−1(xi)+γhm(xi)).

Friedman proposes to modify this algorithm so that it
chooses a separate optimal valueγjm for each of the tree’s
regions, instead of a singleγm for the whole tree. He calls
the modified algorithm “TreeBoost”. The coefficients
bjm from the tree-fitting procedure can be then simply
discarded and the model update rule becomes:

Fm(x) = Fm−1(x)+
J∑
j=1

γjmI(x ∈ Rjm), γjm = arg min
γ

∑
xi∈Rjm

L(yi, Fm−1(xi)+γhm(xi)).
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57.3.1 Size of trees

J , the number of terminal nodes in trees, is the method’s
parameter which can be adjusted for a data set at hand.
It controls the maximum allowed level of interaction be-
tween variables in the model. With J = 2 (decision
stumps), no interaction between variables is allowed.
WithJ = 3 the model may include effects of the inter-
action between up to two variables, and so on.
Hastie et al.[7] comment that typically 4 ≤ J ≤ 8 work
well for boosting and results are fairly insensitive to the
choice of J in this range, J = 2 is insufficient for many
applications, and J > 10 is unlikely to be required.

57.4 Regularization

Fitting the training set too closely can lead to degradation
of the model’s generalization ability. Several so-called
regularization techniques reduce this overfitting effect by
constraining the fitting procedure.
One natural regularization parameter is the number of
gradient boosting iterations M (i.e. the number of trees
in the model when the base learner is a decision tree). In-
creasing M reduces the error on training set, but setting it
too high may lead to overfitting. An optimal value of M
is often selected by monitoring prediction error on a sep-
arate validation data set. Besides controlling M, several
other regularization techniques are used.

57.4.1 Shrinkage

An important part of gradient boosting method is regu-
larization by shrinkage which consists in modifying the
update rule as follows:

Fm(x) = Fm−1(x) + ν · γmhm(x), 0 < ν ≤ 1,

where parameter ν is called the “learning rate”.
Empirically it has been found that using small learning
rates (such as ν < 0.1 ) yields dramatic improvements
in model’s generalization ability over gradient boosting
without shrinking ( ν = 1 ).[7] However, it comes at the
price of increasing computational time both during train-
ing and querying: lower learning rate requires more iter-
ations.

57.4.2 Stochastic gradient boosting

Soon after the introduction of gradient boosting Fried-
man proposed a minor modification to the algorithm, mo-
tivated by Breiman's bagging method.[3] Specifically, he
proposed that at each iteration of the algorithm, a base
learner should be fit on a subsample of the training set

drawn at random without replacement.[9] Friedman ob-
served a substantial improvement in gradient boosting’s
accuracy with this modification.
Subsample size is some constant fraction f of the size of
the training set. When f = 1, the algorithm is determin-
istic and identical to the one described above. Smaller
values of f introduce randomness into the algorithm and
help prevent overfitting, acting as a kind of regularization.
The algorithm also becomes faster, because regression
trees have to be fit to smaller datasets at each iteration.
Friedman[3] obtained that0.5 ≤ f ≤ 0.8 leads to good
results for small and moderate sized training sets. There-
fore, f is typically set to 0.5, meaning that one half of the
training set is used to build each base learner.
Also, like in bagging, subsampling allows one to define
an out-of-bag estimate of the prediction performance im-
provement by evaluating predictions on those observa-
tions which were not used in the building of the next base
learner. Out-of-bag estimates help avoid the need for an
independent validation dataset, but often underestimate
actual performance improvement and the optimal num-
ber of iterations.[10]

57.4.3 Number of observations in leaves

Gradient tree boosting implementations often also use
regularization by limiting the minimum number of obser-
vations in trees’ terminal nodes (this parameter is called
n.minobsinnode in the R gbm package[10]). It is used in
the tree building process by ignoring any splits that lead
to nodes containing fewer than this number of training set
instances.
Imposing this limit helps to reduce variance in predictions
at leaves.

57.4.4 Penalize Complexity of Tree

Another useful regularization techniques for gradient
boosted trees is to penalize model complexity of the
learned model. [11] The model complexity can be defined
proportional number of leaves in the learned trees. The
jointly optimization of loss and model complexity corre-
sponds to a post-pruning algorithm to remove branches
that fail to reduce the loss by a threshold. Other kinds of
regularization such as l2 penalty on the leave values can
also be added to avoid overfitting.

57.5 Usage

Recently, gradient boosting has gained some popularity in
the field of learning to rank. The commercial web search
engines Yahoo[12] and Yandex[13] use variants of gradient
boosting in their machine-learned ranking engines.
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57.6 Names

The method goes by a variety of names. Friedman in-
troduced his regression technique as a “Gradient Boost-
ing Machine” (GBM).[2] Mason, Baxter et. el. described
the generalized abstract class of algorithms as “functional
gradient boosting”.[4][5]

A popular open-source implementation[10] for R calls it
“Generalized Boosting Model”. Commercial implemen-
tations from Salford Systems use the names “Multiple
Additive Regression Trees” (MART) and TreeNet, both
trademarked.

57.7 See also
• AdaBoost

• Random forest
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Semi-supervised learning

An example of the influence of unlabeled data in semi-supervised
learning. The top panel shows a decision boundary we might
adopt after seeing only one positive (white circle) and one nega-
tive (black circle) example. The bottom panel shows a decision
boundary we might adopt if, in addition to the two labeled exam-
ples, we were given a collection of unlabeled data (gray circles).
This could be viewed as performing clustering and then labeling
the clusters with the labeled data, pushing the decision bound-
ary away from high-density regions, or learning an underlying
one-dimensional manifold where the data reside.

Semi-supervised learning is a class of supervised learn-
ing tasks and techniques that also make use of unlabeled
data for training - typically a small amount of labeled data
with a large amount of unlabeled data. Semi-supervised
learning falls between unsupervised learning (without any
labeled training data) and supervised learning (with com-
pletely labeled training data). Many machine-learning
researchers have found that unlabeled data, when used
in conjunction with a small amount of labeled data, can
produce considerable improvement in learning accuracy.
The acquisition of labeled data for a learning problem of-
ten requires a skilled human agent (e.g. to transcribe an
audio segment) or a physical experiment (e.g. determin-

ing the 3D structure of a protein or determining whether
there is oil at a particular location). The cost associated
with the labeling process thus may render a fully labeled
training set infeasible, whereas acquisition of unlabeled
data is relatively inexpensive. In such situations, semi-
supervised learning can be of great practical value. Semi-
supervised learning is also of theoretical interest in ma-
chine learning and as a model for human learning.
As in the supervised learning framework, we are given
a set of l independently identically distributed examples
x1, . . . , xl ∈ X with corresponding labels y1, . . . , yl ∈
Y . Additionally, we are given u unlabeled examples
xl+1, . . . , xl+u ∈ X . Semi-supervised learning at-
tempts to make use of this combined information to sur-
pass the classification performance that could be obtained
either by discarding the unlabeled data and doing super-
vised learning or by discarding the labels and doing un-
supervised learning.
Semi-supervised learning may refer to either transductive
learning or inductive learning. The goal of transductive
learning is to infer the correct labels for the given unla-
beled data xl+1, . . . , xl+u only. The goal of inductive
learning is to infer the correct mapping from X to Y .
Intuitively, we can think of the learning problem as an
exam and labeled data as the few example problems that
the teacher solved in class. The teacher also provides a set
of unsolved problems. In the transductive setting, these
unsolved problems are a take-home exam and you want
to do well on them in particular. In the inductive setting,
these are practice problems of the sort you will encounter
on the in-class exam.
It is unnecessary (and, according to Vapnik’s principle,
imprudent) to perform transductive learning by way of
inferring a classification rule over the entire input space;
however, in practice, algorithms formally designed for
transduction or induction are often used interchangeably.
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58.1 Assumptions used in semi-
supervised learning

In order to make any use of unlabeled data, we must
assume some structure to the underlying distribution of
data. Semi-supervised learning algorithms make use of
at least one of the following assumptions. [1]

58.1.1 Smoothness assumption

Points which are close to each other are more likely to
share a label. This is also generally assumed in supervised
learning and yields a preference for geometrically sim-
ple decision boundaries. In the case of semi-supervised
learning, the smoothness assumption additionally yields
a preference for decision boundaries in low-density re-
gions, so that there are fewer points close to each other
but in different classes.

58.1.2 Cluster assumption

The data tend to form discrete clusters, and points in the
same cluster are more likely to share a label (although data
sharing a label may be spread across multiple clusters).
This is a special case of the smoothness assumption and
gives rise to feature learning with clustering algorithms.

58.1.3 Manifold assumption

The data lie approximately on a manifold of much lower
dimension than the input space. In this case we can at-
tempt to learn the manifold using both the labeled and
unlabeled data to avoid the curse of dimensionality. Then
learning can proceed using distances and densities de-
fined on the manifold.
The manifold assumption is practical when high-
dimensional data are being generated by some process
that may be hard to model directly, but which only has
a few degrees of freedom. For instance, human voice is
controlled by a few vocal folds,[2] and images of various
facial expressions are controlled by a few muscles. We
would like in these cases to use distances and smoothness
in the natural space of the generating problem, rather than
in the space of all possible acoustic waves or images re-
spectively.

58.2 History

The heuristic approach of self-training (also known as
self-learning or self-labeling) is historically the oldest ap-
proach to semi-supervised learning,[1] with examples of
applications starting in the 1960s (see for instance Scud-
der (1965)[3]).

The transductive learning framework was formally intro-
duced by Vladimir Vapnik in the 1970s.[4] Interest in in-
ductive learning using generative models also began in the
1970s. A probably approximately correct learning bound
for semi-supervised learning of a Gaussian mixture was
demonstrated by Ratsaby and Venkatesh in 1995 [5]

Semi-supervised learning has recently become more pop-
ular and practically relevant due to the variety of prob-
lems for which vast quantities of unlabeled data are
available—e.g. text on websites, protein sequences, or
images. For a review of recent work see a survey article
by Zhu (2008).[6]

58.3 Methods for semi-supervised
learning

58.3.1 Generative models

Generative approaches to statistical learning first seek to
estimate p(x|y) , the distribution of data points belonging
to each class. The probability p(y|x) that a given point x
has label y is then proportional to p(x|y)p(y) by Bayes’
rule. Semi-supervised learning with generative models
can be viewed either as an extension of supervised learn-
ing (classification plus information about p(x) ) or as an
extension of unsupervised learning (clustering plus some
labels).
Generative models assume that the distributions take
some particular form p(x|y, θ) parameterized by the vec-
tor θ . If these assumptions are incorrect, the unla-
beled data may actually decrease the accuracy of the so-
lution relative to what would have been obtained from
labeled data alone. [7] However, if the assumptions are
correct, then the unlabeled data necessarily improves
performance.[5]

The unlabeled data are distributed according to a mix-
ture of individual-class distributions. In order to learn
the mixture distribution from the unlabeled data, it must
be identifiable, that is, different parameters must yield
different summed distributions. Gaussian mixture distri-
butions are identifiable and commonly used for generative
models.
The parameterized joint distribution can be written as
p(x, y|θ) = p(y|θ)p(x|y, θ) by using the Chain rule.
Each parameter vector θ is associated with a decision
function fθ(x) = argmax

y
p(y|x, θ) . The parameter is

then chosen based on fit to both the labeled and unlabeled
data, weighted by λ :

argmax
Θ

(
log p({xi, yi}li=1|θ) + λ log p({xi}l+ui=l+1|θ)

)
[8]
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58.3.2 Low-density separation

Another major class of methods attempts to place bound-
aries in regions where there are few data points (labeled or
unlabeled). One of the most commonly used algorithms
is the transductive support vector machine, or TSVM
(which, despite its name, may be used for inductive learn-
ing as well). Whereas support vector machines for su-
pervised learning seek a decision boundary with maximal
margin over the labeled data, the goal of TSVM is a label-
ing of the unlabeled data such that the decision boundary
has maximal margin over all of the data. In addition to
the standard hinge loss (1− yf(x))+ for labeled data, a
loss function (1 − |f(x)|)+ is introduced over the unla-
beled data by letting y = sign f(x) . TSVM then selects
f∗(x) = h∗(x) + b from a reproducing kernel Hilbert
space H by minimizing the regularized empirical risk:

f∗ = argmin
f

(
l∑
i=1

(1− yif(xi))+ + λ1||h||2H + λ2

l+u∑
i=l+1

(1− |f(xi)|)+

)

An exact solution is intractable due to the non-convex
term (1 − |f(x)|)+ , so research has focused on finding
useful approximations.[8]

Other approaches that implement low-density separation
include Gaussian process models, information regulariza-
tion, and entropy minimization (of which TSVM is a spe-
cial case).

58.3.3 Graph-based methods

Graph-based methods for semi-supervised learning use
a graph representation of the data, with a node for each
labeled and unlabeled example. The graph may be con-
structed using domain knowledge or similarity of exam-
ples; two common methods are to connect each data point
to its k nearest neighbors or to examples within some dis-
tance ϵ . The weight Wij of an edge between xi and xj
is then set to e

−||xi−xj ||
2

ϵ .
Within the framework of manifold regularization, [9] [10]

the graph serves as a proxy for the manifold. A term
is added to the standard Tikhonov regularization prob-
lem to enforce smoothness of the solution relative to the
manifold (in the intrinsic space of the problem) as well
as relative to the ambient input space. The minimization
problem becomes

argmin
f∈H

(
1
l

l∑
i=1

V (f(xi), yi) + λA||f ||2H + λI

∫
M

||∇Mf(x)||2dp(x)

)
[8]

where H is a reproducing kernel Hilbert space and M
is the manifold on which the data lie. The regularization
parameters λA and λI control smoothness in the ambient

and intrinsic spaces respectively. The graph is used to ap-
proximate the intrinsic regularization term. Defining the
graph Laplacian L = D −W where Dii =

∑l+u
j=1Wij

and f the vector [f(x1) . . . f(xl+u)] , we have

fTLf =
l+u∑
i,j=1

Wij(fi − fj)
2 ≈

∫
M

||∇Mf(x)||2dp(x)

The Laplacian can also be used to extend the supervised
learning algorithms: regularized least squares and sup-
port vector machines (SVM) to semi-supervised versions
Laplacian regularized least squares and Laplacian SVM.

58.3.4 Heuristic approaches

Some methods for semi-supervised learning are not in-
trinsically geared to learning from both unlabeled and la-
beled data, but instead make use of unlabeled data within
a supervised learning framework. For instance, the la-
beled and unlabeled examples x1, . . . , xl+u may inform
a choice of representation, distance metric, or kernel for
the data in an unsupervised first step. Then supervised
learning proceeds from only the labeled examples.
Self-training is a wrapper method for semi-supervised
learning. First a supervised learning algorithm is used
to select a classifier based on the labeled data only. This
classifier is then applied to the unlabeled data to generate
more labeled examples as input for another supervised
learning problem. Generally only the labels the classifier
is most confident of are added at each step.
Co-training is an extension of self-training in which mul-
tiple classifiers are trained on different (ideally disjoint)
sets of features and generate labeled examples for one an-
other.

58.4 Semi-supervised learning in
human cognition

Human responses to formal semi-supervised learning
problems have yielded varying conclusions about the de-
gree of influence of the unlabeled data (for a summary
see [11]). More natural learning problems may also be
viewed as instances of semi-supervised learning. Much
of human concept learning involves a small amount of
direct instruction (e.g. parental labeling of objects dur-
ing childhood) combined with large amounts of unlabeled
experience (e.g. observation of objects without naming
or counting them, or at least without feedback).
Human infants are sensitive to the structure of unlabeled
natural categories such as images of dogs and cats or male
and female faces.[12] More recent work has shown that in-
fants and children take into account not only the unlabeled
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examples available, but the sampling process from which
labeled examples arise.[13][14]

58.5 See also
• PU learning
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Perceptron

“Perceptrons” redirects here. For the book of that title,
see Perceptrons (book).

In machine learning, the perceptron is an algorithm for
supervised learning of binary classifiers: functions that
can decide whether an input (represented by a vector of
numbers) belong to one class or another.[1] It is a type of
linear classifier, i.e. a classification algorithm that makes
its predictions based on a linear predictor function com-
bining a set of weights with the feature vector. The algo-
rithm allows for online learning, in that it processes ele-
ments in the training set one at a time.
The perceptron algorithm dates back to the late 1950s; its
first implementation, in custom hardware, was one of the
first artificial neural networks to be produced.

59.1 History
See also: History of artificial intelligence, AI
winter

The perceptron algorithm was invented in 1957 at the
Cornell Aeronautical Laboratory by Frank Rosenblatt,[2]

funded by the United States Office of Naval Research.[3]

The perceptron was intended to be a machine, rather than
a program, and while its first implementation was in soft-
ware for the IBM 704, it was subsequently implemented
in custom-built hardware as the “Mark 1 perceptron”.
This machine was designed for image recognition: it had
an array of 400 photocells, randomly connected to the
“neurons”. Weights were encoded in potentiometers, and
weight updates during learning were performed by elec-
tric motors.[4]:193

In a 1958 press conference organized by the US Navy,
Rosenblatt made statements about the perceptron that
caused a heated controversy among the fledgling AI com-
munity; based on Rosenblatt’s statements, The New York
Times reported the perceptron to be “the embryo of an
electronic computer that [the Navy] expects will be able
to walk, talk, see, write, reproduce itself and be conscious
of its existence.”[3]

Although the perceptron initially seemed promising, it

was quickly proved that perceptrons could not be trained
to recognise many classes of patterns. This led to the field
of neural network research stagnating for many years,
before it was recognised that a feedforward neural net-
work with two or more layers (also called a multilayer
perceptron) had far greater processing power than per-
ceptrons with one layer (also called a single layer percep-
tron). Single layer perceptrons are only capable of learn-
ing linearly separable patterns; in 1969 a famous book en-
titled Perceptrons by Marvin Minsky and Seymour Papert
showed that it was impossible for these classes of network
to learn an XOR function. It is often believed that they
also conjectured (incorrectly) that a similar result would
hold for a multi-layer perceptron network. However, this
is not true, as both Minsky and Papert already knew
that multi-layer perceptrons were capable of producing
an XOR function. (See the page on Perceptrons (book)
for more information.) Three years later Stephen Gross-
berg published a series of papers introducing networks
capable of modelling differential, contrast-enhancing and
XOR functions. (The papers were published in 1972
and 1973, see e.g.:Grossberg (1973). “Contour enhance-
ment, short-term memory, and constancies in reverber-
ating neural networks” (PDF). Studies in Applied Math-
ematics 52: 213–257.). Nevertheless the often-miscited
Minsky/Papert text caused a significant decline in inter-
est and funding of neural network research. It took ten
more years until neural network research experienced a
resurgence in the 1980s. This text was reprinted in 1987
as “Perceptrons - Expanded Edition” where some errors
in the original text are shown and corrected.
The kernel perceptron algorithm was already introduced
in 1964 by Aizerman et al.[5] Margin bounds guaran-
tees were given for the Perceptron algorithm in the gen-
eral non-separable case first by Freund and Schapire
(1998),[1] and more recently by Mohri and Rostamizadeh
(2013) who extend previous results and give new L1
bounds.[6]

59.2 Definition

In the modern sense, the perceptron is an algorithm for
learning a binary classifier: a function that maps its input

360

https://en.wikipedia.org/wiki/Perceptrons_(book)
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Supervised_classification
https://en.wikipedia.org/wiki/Binary_classification
https://en.wikipedia.org/wiki/Linear_classifier
https://en.wikipedia.org/wiki/Linear_predictor_function
https://en.wikipedia.org/wiki/Feature_vector
https://en.wikipedia.org/wiki/Online_algorithm
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/History_of_artificial_intelligence#Perceptrons_and_the_dark_age_of_connectionism
https://en.wikipedia.org/wiki/AI_winter#The_abandonment_of_connectionism_in_1969
https://en.wikipedia.org/wiki/AI_winter#The_abandonment_of_connectionism_in_1969
https://en.wikipedia.org/wiki/Cornell_Aeronautical_Laboratory
https://en.wikipedia.org/wiki/Frank_Rosenblatt
https://en.wikipedia.org/wiki/Office_of_Naval_Research
https://en.wikipedia.org/wiki/IBM_704
https://en.wikipedia.org/wiki/Photocell
https://en.wikipedia.org/wiki/Potentiometer
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/The_New_York_Times
https://en.wikipedia.org/wiki/The_New_York_Times
https://en.wikipedia.org/wiki/Feedforward_neural_network#Multi-layer_perceptron
https://en.wikipedia.org/wiki/Feedforward_neural_network#Multi-layer_perceptron
https://en.wikipedia.org/wiki/Feedforward_neural_network#Single-layer_perceptron
https://en.wikipedia.org/wiki/Feedforward_neural_network#Single-layer_perceptron
https://en.wikipedia.org/wiki/Linearly_separable
https://en.wikipedia.org/wiki/Perceptrons_(book)
https://en.wikipedia.org/wiki/Marvin_Minsky
https://en.wikipedia.org/wiki/Seymour_Papert
https://en.wikipedia.org/wiki/XOR
https://en.wikipedia.org/wiki/Perceptrons_(book)
https://en.wikipedia.org/wiki/Stephen_Grossberg
https://en.wikipedia.org/wiki/Stephen_Grossberg
http://cns.bu.edu/Profiles/Grossberg/Gro1973StudiesAppliedMath.pdf
http://cns.bu.edu/Profiles/Grossberg/Gro1973StudiesAppliedMath.pdf
http://cns.bu.edu/Profiles/Grossberg/Gro1973StudiesAppliedMath.pdf
https://en.wikipedia.org/wiki/Neural_network
https://en.wikipedia.org/wiki/Kernel_perceptron
https://en.wikipedia.org/wiki/Yoav_Freund
https://en.wikipedia.org/wiki/Robert_Schapire
https://en.wikipedia.org/wiki/Mehryar_Mohri


59.3. LEARNING ALGORITHM 361

x (a real-valued vector) to an output value f(x) (a single
binary value):

f(x) =

{
1 ifw · x+ b > 0

0 otherwise

where w is a vector of real-valued weights, w · x is the
dot product

∑
i wixi , and b is the bias, a term that shifts

the decision boundary away from the origin and does not
depend on any input value.
The value of f(x) (0 or 1) is used to classify x as ei-
ther a positive or a negative instance, in the case of a
binary classification problem. If b is negative, then the
weighted combination of inputs must produce a positive
value greater than |b| in order to push the classifier neu-
ron over the 0 threshold. Spatially, the bias alters the posi-
tion (though not the orientation) of the decision boundary.
The perceptron learning algorithm does not terminate if
the learning set is not linearly separable. If the vectors are
not linearly separable learning will never reach a point
where all vectors are classified properly. The most fa-
mous example of the perceptron’s inability to solve prob-
lems with linearly nonseparable vectors is the Boolean
exclusive-or problem. The solution spaces of decision
boundaries for all binary functions and learning behav-
iors are studied in the reference.[7]

In the context of neural networks, a perceptron is an
artificial neuron using the Heaviside step function as the
activation function. The perceptron algorithm is also
termed the single-layer perceptron, to distinguish it
from a multilayer perceptron, which is a misnomer for a
more complicated neural network. As a linear classifier,
the single-layer perceptron is the simplest feedforward
neural network.

59.3 Learning algorithm

Below is an example of a learning algorithm for a (single-
layer) perceptron. For multilayer perceptrons, where a
hidden layer exists, more sophisticated algorithms such
as backpropagation must be used. Alternatively, meth-
ods such as the delta rule can be used if the function is
non-linear and differentiable, although the one below will
work as well.
When multiple perceptrons are combined in an artificial
neural network, each output neuron operates indepen-
dently of all the others; thus, learning each output can
be considered in isolation.

59.3.1 Definitions

We first define some variables:

si
ze

si
ze

si
ze

domestication

domestication

si
ze

domestication

domestication

A diagram showing a perceptron updating its linear boundary as
more training examples are added.

• y = f(z) denotes the output from the perceptron
for an input vector z .

• b is the bias term, which in the example below we
take to be 0.

• D = {(x1, d1), . . . , (xs, ds)} is the training set of
s samples, where:

• xj is the n -dimensional input vector.
• dj is the desired output value of the percep-

tron for that input.

We show the values of the features as follows:

• xj,i is the value of the i th feature of the j th training
input vector.

• xj,0 = 1 .

To represent the weights:

• wi is the i th value in the weight vector, to be mul-
tiplied by the value of the i th input feature.

• Because xj,0 = 1 , the w0 is effectively a learned
bias that we use instead of the bias constant b .

To show the time-dependence of w , we use:

• wi(t) is the weight i at time t .

• α is the learning rate, where 0 < α ≤ 1 .

Too high a learning rate makes the perceptron periodi-
cally oscillate around the solution unless additional steps
are taken.
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y

X1
X2
X3
X4
X5
X6
X7

W1
W2
W3
W4
W5
W6
W7

f

The appropriate weights are applied to the inputs, and the result-
ing weighted sum passed to a function that produces the output
y.

59.3.2 Steps

1. Initialize the weights and the threshold. Weights may
be initialized to 0 or to a small random value. In the ex-
ample below, we use 0.
2. For each example j in our training set D , perform
the following steps over the input xj and desired output
dj :

2a. Calculate the actual output:

yj(t) = f [w(t)·xj ] = f [w0(t)+w1(t)xj,1+w2(t)xj,2+· · ·+wn(t)xj,n]

2b. Update the weights:

wi(t + 1) = wi(t) + α(dj −
yj(t))xj,i , for all feature 0 ≤ i ≤
n .

3. For offline learning, the step 2 may be repeated until
the iteration error 1

s

∑s
j=1 |dj−yj(t)| is less than a user-

specified error threshold γ , or a predetermined number
of iterations have been completed.
The algorithm updates the weights after steps 2a and 2b.
These weights are immediately applied to a pair in the
training set, and subsequently updated, rather than wait-
ing until all pairs in the training set have undergone these
steps.

59.3.3 Convergence

The perceptron is a linear classifier, therefore it will never
get to the state with all the input vectors classified cor-
rectly if the training set D is not linearly separable, i.e.
if the positive examples can not be separated from the
negative examples by a hyperplane. In this case, no “ap-
proximate” solution will be gradually approached under
the standard learning algorithm, but instead learning will
fail completely. Hence, if linear separability of the train-
ing set is not known a priori, one of the training variants
below should be used.

But if the training set is linearly separable, then the per-
ceptron is guaranteed to converge, and there is an upper
bound on the number of times the perceptron will adjust
its weights during the training.
Suppose that the input vectors from the two classes can
be separated by a hyperplane with a margin γ , i.e. there
exists a weight vectorw, ||w|| = 1 , and a bias term b such
that w ·xj+b > γ for all j : dj = 1 and w ·xj+b < −γ
for all j : dj = 0 . And also let R denote the maxi-
mum norm of an input vector. Novikoff (1962) proved
that in this case the perceptron algorithm converges af-
ter making O(R2/γ2) updates. The idea of the proof is
that the weight vector is always adjusted by a bounded
amount in a direction that it has a negative dot product
with, and thus can be bounded above by O(

√
t) where t

is the number of changes to the weight vector. But it can
also be bounded below by O(t) because if there exists an
(unknown) satisfactory weight vector, then every change
makes progress in this (unknown) direction by a positive
amount that depends only on the input vector.

Two classes of points, and two of the infinitely many linear
boundaries that separate them. Even though the boundaries are
at nearly right angles to one another, the perceptron algorithm
has no way of choosing between them.

While the perceptron algorithm is guaranteed to converge
on some solution in the case of a linearly separable train-
ing set, it may still pick any solution and problems may
admit many solutions of varying quality.[8] The percep-
tron of optimal stability, nowadays better known as the
linear support vector machine, was designed to solve this
problem.
The decision boundary of a perceptron is invariant with
respect to scaling of the weight vector; that is, a percep-
tron trained with initial weight vector w and learning rate
α behaves identically to a perceptron trained with initial
weight vector w/α and learning rate 1. Thus, since the
initial weights become irrelevant with increasing number
of iterations, the learning rate does not matter in the case
of the perceptron and is usually just set to 1.
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59.4 Variants

The pocket algorithm with ratchet (Gallant, 1990) solves
the stability problem of perceptron learning by keep-
ing the best solution seen so far “in its pocket”. The
pocket algorithm then returns the solution in the pocket,
rather than the last solution. It can be used also for non-
separable data sets, where the aim is to find a percep-
tron with a small number of misclassifications. However,
these solutions appear purely stochastically and hence the
pocket algorithm neither approaches them gradually in
the course of learning, nor are they guaranteed to show
up within a given number of learning steps.
The Maxover algorithm (Wendemuth, 1995) [9] is
“robust” in the sense that it will converge regardless of
(prior) knowledge of linear separability of the data set. In
the linear separable case, it will solve the training problem
- if desired, even with optimal stability (maximum mar-
gin between the classes). For non-separable data sets, it
will return a solution with a small number of misclassifi-
cations. In all cases, the algorithm gradually approaches
the solution in the course of learning, without memoriz-
ing previous states and without stochastic jumps. Con-
vergence is to global optimality for separable data sets
and to local optimality for non-separable data sets.
In separable problems, perceptron training can also aim at
finding the largest separating margin between the classes.
The so-called perceptron of optimal stability can be de-
termined by means of iterative training and optimization
schemes, such as the Min-Over algorithm (Krauth and
Mezard, 1987)[10] or the AdaTron (Anlauf and Biehl,
1989)) .[11] AdaTron uses the fact that the corresponding
quadratic optimization problem is convex. The percep-
tron of optimal stability, together with the kernel trick,
are the conceptual foundations of the support vector ma-
chine.
The α -perceptron further used a pre-processing layer of
fixed random weights, with thresholded output units. This
enabled the perceptron to classify analogue patterns, by
projecting them into a binary space. In fact, for a pro-
jection space of sufficiently high dimension, patterns can
become linearly separable.
For example, consider the case of having to classify data
into two classes. Here is a small such data set, consisting
of points coming from two Gaussian distributions.

• Two-class Gaussian data

• A linear classifier operating on the original space

• A linear classifier operating on a high-dimensional
projection

A linear classifier can only separate points with a
hyperplane, so no linear classifier can classify all the
points here perfectly. On the other hand, the data can
be projected into a large number of dimensions. In our

example, a random matrix was used to project the data
linearly to a 1000-dimensional space; then each resulting
data point was transformed through the hyperbolic tan-
gent function. A linear classifier can then separate the
data, as shown in the third figure. However the data may
still not be completely separable in this space, in which
the perceptron algorithm would not converge. In the ex-
ample shown, stochastic steepest gradient descent was
used to adapt the parameters.
Another way to solve nonlinear problems without using
multiple layers is to use higher order networks (sigma-pi
unit). In this type of network, each element in the in-
put vector is extended with each pairwise combination of
multiplied inputs (second order). This can be extended
to an n-order network.
It should be kept in mind, however, that the best classifier
is not necessarily that which classifies all the training data
perfectly. Indeed, if we had the prior constraint that the
data come from equi-variant Gaussian distributions, the
linear separation in the input space is optimal, and the
nonlinear solution is overfitted.
Other linear classification algorithms include Winnow,
support vector machine and logistic regression.

59.5 Example

A perceptron learns to perform a binary NAND function
on inputs x1 and x2 .
Inputs: x0 , x1 , x2 , with input x0 held constant at 1.
Threshold ( t ): 0.5
Bias ( b ): 1
Learning rate ( r ): 0.1
Training set, consisting of four samples:
{((1, 0, 0), 1), ((1, 0, 1), 1), ((1, 1, 0), 1), ((1, 1, 1), 0)}
In the following, the final weights of one iteration become
the initial weights of the next. Each cycle over all the
samples in the training set is demarcated with heavy lines.
This example can be implemented in the following
Python code.
threshold = 0.5 learning_rate = 0.1 weights = [0, 0,
0] training_set = [((1, 0, 0), 1), ((1, 0, 1), 1), ((1, 1,
0), 1), ((1, 1, 1), 0)] def dot_product(values, weights):
return sum(value * weight for value, weight in zip(values,
weights)) while True: print('-' * 60) error_count =
0 for input_vector, desired_output in training_set:
print(weights) result = dot_product(input_vector,
weights) > threshold error = desired_output - result if
error != 0: error_count += 1 for index, value in enu-
merate(input_vector): weights[index] += learning_rate *
error * value if error_count == 0: break
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59.6 Multiclass perceptron

Like most other techniques for training linear classifiers,
the perceptron generalizes naturally to multiclass classi-
fication. Here, the input x and the output y are drawn
from arbitrary sets. A feature representation function
f(x, y) maps each possible input/output pair to a finite-
dimensional real-valued feature vector. As before, the
feature vector is multiplied by a weight vector w , but
now the resulting score is used to choose among many
possible outputs:

ŷ = argmaxy f(x, y) · w.

Learning again iterates over the examples, predicting an
output for each, leaving the weights unchanged when the
predicted output matches the target, and changing them
when it does not. The update becomes:

wt+1 = wt + f(x, y)− f(x, ŷ).

This multiclass formulation reduces to the original per-
ceptron when x is a real-valued vector, y is chosen from
{0, 1} , and f(x, y) = yx .
For certain problems, input/output representations and
features can be chosen so that argmaxyf(x, y) · w can
be found efficiently even though y is chosen from a very
large or even infinite set.
In recent years, perceptron training has become popular
in the field of natural language processing for such tasks
as part-of-speech tagging and syntactic parsing (Collins,
2002).
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59.8 External links
• A Perceptron implemented in MATLAB to learn bi-

nary NAND function

• Chapter 3 Weighted networks - the perceptron and
chapter 4 Perceptron learning of Neural Networks -
A Systematic Introduction by Raúl Rojas (ISBN 978-
3-540-60505-8)

• Explanation of the update rule by Charles Elkan

• History of perceptrons

• Mathematics of perceptrons
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Chapter 60

Support vector machine

Not to be confused with Secure Virtual Machine.

In machine learning, support vector machines (SVMs,
also support vector networks[1]) are supervised learn-
ing models with associated learning algorithms that an-
alyze data and recognize patterns, used for classification
and regression analysis. Given a set of training examples,
each marked for belonging to one of two categories, an
SVM training algorithm builds a model that assigns new
examples into one category or the other, making it a non-
probabilistic binary linear classifier. An SVM model is a
representation of the examples as points in space, mapped
so that the examples of the separate categories are divided
by a clear gap that is as wide as possible. New examples
are then mapped into that same space and predicted to
belong to a category based on which side of the gap they
fall on.
In addition to performing linear classification, SVMs can
efficiently perform a non-linear classification using what
is called the kernel trick, implicitly mapping their inputs
into high-dimensional feature spaces.

60.1 Definition

More formally, a support vector machine constructs a
hyperplane or set of hyperplanes in a high- or infinite-
dimensional space, which can be used for classification,
regression, or other tasks. Intuitively, a good separation
is achieved by the hyperplane that has the largest distance
to the nearest training-data point of any class (so-called
functional margin), since in general the larger the margin
the lower the generalization error of the classifier.
Whereas the original problem may be stated in a finite di-
mensional space, it often happens that the sets to discrim-
inate are not linearly separable in that space. For this rea-
son, it was proposed that the original finite-dimensional
space be mapped into a much higher-dimensional space,
presumably making the separation easier in that space.
To keep the computational load reasonable, the mappings
used by SVM schemes are designed to ensure that dot
products may be computed easily in terms of the variables
in the original space, by defining them in terms of a kernel

function k(x, y) selected to suit the problem.[2] The hy-
perplanes in the higher-dimensional space are defined as
the set of points whose dot product with a vector in that
space is constant. The vectors defining the hyperplanes
can be chosen to be linear combinations with parame-
ters αi of images of feature vectors xi that occur in the
data base. With this choice of a hyperplane, the points x
in the feature space that are mapped into the hyperplane
are defined by the relation:

∑
i αik(xi, x) = constant.

Note that if k(x, y) becomes small as y grows further
away from x , each term in the sum measures the degree
of closeness of the test point x to the corresponding data
base point xi . In this way, the sum of kernels above can
be used to measure the relative nearness of each test point
to the data points originating in one or the other of the sets
to be discriminated. Note the fact that the set of points
x mapped into any hyperplane can be quite convoluted
as a result, allowing much more complex discrimination
between sets which are not convex at all in the original
space.

60.2 History

The original SVM algorithm was invented by Vladimir N.
Vapnik and Alexey Ya. Chervonenkis in 1963. In 1992,
Bernhard E. Boser, Isabelle M. Guyon and Vladimir
N. Vapnik suggested a way to create nonlinear classi-
fiers by applying the kernel trick to maximum-margin
hyperplanes.[3] The current standard incarnation (soft
margin) was proposed by Corinna Cortes and Vapnik in
1993 and published in 1995.[1]

60.3 Motivation

Classifying data is a common task in machine learning.
Suppose some given data points each belong to one of two
classes, and the goal is to decide which class a new data
point will be in. In the case of support vector machines, a
data point is viewed as a p -dimensional vector (a list of p
numbers), and we want to know whether we can separate
such points with a (p−1) -dimensional hyperplane. This
is called a linear classifier. There are many hyperplanes
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H1 H2 H3

X1

X2

H1 does not separate the classes. H2 does, but only with a small
margin. H3 separates them with the maximum margin.

that might classify the data. One reasonable choice as the
best hyperplane is the one that represents the largest sepa-
ration, or margin, between the two classes. So we choose
the hyperplane so that the distance from it to the nearest
data point on each side is maximized. If such a hyper-
plane exists, it is known as the maximum-margin hyper-
plane and the linear classifier it defines is known as a max-
imum margin classifier; or equivalently, the perceptron of
optimal stability.

60.4 Linear SVM

Given some training data D , a set of n points of the form

D = {(xi, yi) | xi ∈ Rp, yi ∈ {−1, 1}}ni=1

where the yi is either 1 or −1, indicating the class to which
the point xi belongs. Each xi is a p -dimensional real
vector. We want to find the maximum-margin hyperplane
that divides the points having yi = 1 from those having
yi = −1 . Any hyperplane can be written as the set of
points x satisfying

w · x− b = 0,

where · denotes the dot product and w the (not neces-
sarily normalized) normal vector to the hyperplane. The
parameter b

∥w∥ determines the offset of the hyperplane
from the origin along the normal vector w .
If the training data are linearly separable, we can select
two hyperplanes in a way that they separate the data and
there are no points between them, and then try to maxi-
mize their distance. The region bounded by them is called
“the margin”. These hyperplanes can be described by the
equations

Maximum-margin hyperplane and margins for an SVM trained
with samples from two classes. Samples on the margin are called
the support vectors.

w · x− b = 1

and

w · x− b = −1.

By using geometry, we find the distance between these
two hyperplanes is 2

∥w∥ , so we want to minimize ∥w∥ .
As we also have to prevent data points from falling into
the margin, we add the following constraint: for each i
either

w · xi − b ≥ 1 for xi
or

w · xi − b ≤ −1 for xi
This can be rewritten as:

yi(w · xi − b) ≥ 1, all for 1 ≤ i ≤ n. (1)

We can put this together to get the optimization problem:
Minimize (in w, b )

∥w∥
subject to (for any i = 1, . . . , n )

yi(w · xi − b) ≥ 1.
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60.4.1 Primal form

The optimization problem presented in the preceding sec-
tion is difficult to solve because it depends on ∥w∥ , the
norm of w , which involves a square root. Fortunately it
is possible to alter the equation by substituting ∥w∥ with
1
2∥w∥2 (the factor of 1

2 being used for mathematical con-
venience) without changing the solution (the minimum of
the original and the modified equation have the same w
and b ). This is a quadratic programming optimization
problem. More clearly:

arg min
(w,b)

1

2
∥w∥2

subject to (for any i = 1, . . . , n )

yi(w · xi − b) ≥ 1.

By introducing Lagrange multipliers α , the previous
constrained problem can be expressed as

arg min
w,b

max
α≥0

{
1

2
∥w∥2 −

n∑
i=1

αi[yi(w · xi − b)− 1]

}
that is we look for a saddle point. In doing so all the points
which can be separated as yi(w · xi − b)− 1 > 0 do not
matter since we must set the corresponding αi to zero.
This problem can now be solved by standard quadratic
programming techniques and programs. The “stationary”
Karush–Kuhn–Tucker condition implies that the solution
can be expressed as a linear combination of the training
vectors

w =
n∑
i=1

αiyixi.

Only a few αi will be greater than zero. The correspond-
ing xi are exactly the support vectors, which lie on the
margin and satisfy yi(w · xi− b) = 1 . From this one can
derive that the support vectors also satisfy

w · xi − b =
1

yi
= yi ⇐⇒ b = w · xi − yi

which allows one to define the offset b . The b depends
on yi and xi , so it will vary for each data point in the
sample. In practice, it is more robust to average over all
NSV support vectors, since the average over the sample
is an unbiased estimator of the population mean:

b =
1

NSV

NSV∑
i=1

(w · xi − yi)

60.4.2 Dual form

Writing the classification rule in its unconstrained dual
form reveals that the maximum-margin hyperplane and
therefore the classification task is only a function of the
support vectors, the subset of the training data that lie on
the margin.
Using the fact that ∥w∥2 = wT · w and substituting w =∑n
i=1 αiyixi , one can show that the dual of the SVM

reduces to the following optimization problem:
Maximize (in αi )

L̃(α) =
n∑
i=1

αi−
1

2

∑
i,j

αiαjyiyjxTi xj =
n∑
i=1

αi−
1

2

∑
i,j

αiαjyiyjk(xi, xj)

subject to (for any i = 1, . . . , n )

αi ≥ 0,

and to the constraint from the minimization in b

n∑
i=1

αiyi = 0.

Here the kernel is defined by k(xi, xj) = xi · xj .
W can be computed thanks to the α terms:

w =
∑
i

αiyixi.

60.4.3 Biased and unbiased hyperplanes

For simplicity reasons, sometimes it is required that the
hyperplane pass through the origin of the coordinate sys-
tem. Such hyperplanes are called unbiased, whereas gen-
eral hyperplanes not necessarily passing through the ori-
gin are called biased. An unbiased hyperplane can be en-
forced by setting b = 0 in the primal optimization prob-
lem. The corresponding dual is identical to the dual given
above without the equality constraint

n∑
i=1

αiyi = 0

60.5 Soft margin

In 1995, Corinna Cortes and Vladimir N. Vapnik sug-
gested a modified maximum margin idea that allows for
mislabeled examples.[1] If there exists no hyperplane that
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can split the “yes” and “no” examples, the Soft Margin
method will choose a hyperplane that splits the examples
as cleanly as possible, while still maximizing the distance
to the nearest cleanly split examples. The method intro-
duces non-negative slack variables, ξi , which measure
the degree of misclassification of the data xi

yi(w · xi − b) ≥ 1− ξi 1 ≤ i ≤ n. (2)

The objective function is then increased by a function
which penalizes non-zero ξi , and the optimization be-
comes a trade off between a large margin and a small error
penalty. If the penalty function is linear, the optimization
problem becomes:

arg min
w,ξ,b

{
1

2
∥w∥2 + C

n∑
i=1

ξi

}
subject to (for any i = 1, . . . n )

yi(w · xi − b) ≥ 1− ξi, ξi ≥ 0

Using the hinge function notation like that in MARS, this
optimization problem can be rewritten as

∑
i[1− yi(w ·

xi+ b)]++λ∥w∥2 , wherein let [1− yi(w ·xi+ b)]+ =
[ξi]+ = ξi, λ = 1/2C .
This constraint in (2) along with the objective of mini-
mizing ∥w∥ can be solved using Lagrange multipliers as
done above. One then has to solve the following problem:

arg min
w,ξ,b

max
α,β

{
1

2
∥w∥2 + C

n∑
i=1

ξi −
n∑
i=1

αi[yi(w · xi − b)− 1 + ξi]−
n∑
i=1

βiξi

}
with αi, βi ≥ 0 .

2 1 0 1 2
x1

2

1

0

1

2

x
2

gaussian kernel

+1
-1

An example for a result of soft-margin SVM

60.5.1 Dual form

Maximize (in αi )

L̃(α) =
n∑
i=1

αi −
1

2

∑
i,j

αiαjyiyjk(xi, xj)

subject to (for any i = 1, . . . , n )

0 ≤ αi ≤ C,

and

n∑
i=1

αiyi = 0.

The key advantage of a linear penalty function is that
the slack variables vanish from the dual problem, with
the constant C appearing only as an additional constraint
on the Lagrange multipliers. For the above formula-
tion and its huge impact in practice, Cortes and Vap-
nik received the 2008 ACM Paris Kanellakis Award.[4]

Nonlinear penalty functions have been used, particularly
to reduce the effect of outliers on the classifier, but unless
care is taken the problem becomes non-convex, and thus
it is considerably more difficult to find a global solution.

60.6 Nonlinear classification

Kernel machine

The original optimal hyperplane algorithm proposed by
Vapnik in 1963 was a linear classifier. However, in 1992,
Bernhard E. Boser, Isabelle M. Guyon and Vladimir N.
Vapnik suggested a way to create nonlinear classifiers by
applying the kernel trick (originally proposed by Aizer-
man et al.[5]) to maximum-margin hyperplanes.[6] The re-
sulting algorithm is formally similar, except that every dot
product is replaced by a nonlinear kernel function. This
allows the algorithm to fit the maximum-margin hyper-
plane in a transformed feature space. The transformation
may be nonlinear and the transformed space high dimen-
sional; thus though the classifier is a hyperplane in the
high-dimensional feature space, it may be nonlinear in the
original input space.
If the kernel used is a Gaussian radial basis function, the
corresponding feature space is a Hilbert space of infi-
nite dimensions. Maximum margin classifiers are well
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regularized, and previously it was widely believed that the
infinite dimensions do not spoil the results. However, it
has been shown that higher dimensions do increase the
generalization error, although the amount is bounded.[7]

Some common kernels include:

• Polynomial (homogeneous): k(xi, xj) = (xi · xj)d

• Polynomial (inhomogeneous): k(xi, xj) = (xi ·xj+
1)d

• Gaussian radial basis function: k(xi, xj) =
exp(−γ∥xi − xj∥2) , for γ > 0 . Sometimes
parametrized using γ = 1/2σ2

• Hyperbolic tangent: k(xi, xj) = tanh(κxi · xj+ c) ,
for some (not every) κ > 0 and c < 0

The kernel is related to the transform φ(xi) by the equa-
tion k(xi, xj) = φ(xi) · φ(xj) . The value w is also in
the transformed space, with w =

∑
i αiyiφ(xi) . Dot

products with w for classification can again be computed
by the kernel trick, i.e. w · φ(x) =

∑
i αiyik(xi, x) .

However, there does not in general exist a value w' such
that w · φ(x) = k(w′, x) .

60.7 Properties

SVMs belong to a family of generalized linear classifiers
and can be interpreted as an extension of the perceptron.
They can also be considered a special case of Tikhonov
regularization. A special property is that they simulta-
neously minimize the empirical classification error and
maximize the geometric margin; hence they are also
known as maximum margin classifiers.
A comparison of the SVM to other classifiers has been
made by Meyer, Leisch and Hornik.[8]

60.7.1 Parameter selection

The effectiveness of SVM depends on the selection of
kernel, the kernel’s parameters, and soft margin pa-
rameter C. A common choice is a Gaussian kernel,
which has a single parameter γ . The best combina-
tion of C and γ is often selected by a grid search
with exponentially growing sequences of C and γ ,
for example, C ∈ {2−5, 2−3, . . . , 213, 215} ; γ ∈
{2−15, 2−13, . . . , 21, 23} . Typically, each combination
of parameter choices is checked using cross validation,
and the parameters with best cross-validation accuracy
are picked. Alternatively, recent work in Bayesian opti-
mization can be used to select C and γ , often requiring
the evaluation of far fewer parameter combinations than
grid search. The final model, which is used for testing
and for classifying new data, is then trained on the whole
training set using the selected parameters.[9]

60.7.2 Issues

Potential drawbacks of the SVM are the following three
aspects:

• Uncalibrated class membership probabilities

• The SVM is only directly applicable for two-class
tasks. Therefore, algorithms that reduce the multi-
class task to several binary problems have to be ap-
plied; see the multi-class SVM section.

• Parameters of a solved model are difficult to inter-
pret.

60.8 Extensions

60.8.1 Multiclass SVM

Multiclass SVM aims to assign labels to instances by using
support vector machines, where the labels are drawn from
a finite set of several elements.
The dominant approach for doing so is to reduce the
single multiclass problem into multiple binary classifica-
tion problems.[10] Common methods for such reduction
include:[10] [11]

• Building binary classifiers which distinguish be-
tween (i) one of the labels and the rest (one-versus-
all) or (ii) between every pair of classes (one-versus-
one). Classification of new instances for the one-
versus-all case is done by a winner-takes-all strat-
egy, in which the classifier with the highest output
function assigns the class (it is important that the
output functions be calibrated to produce compara-
ble scores). For the one-versus-one approach, clas-
sification is done by a max-wins voting strategy, in
which every classifier assigns the instance to one of
the two classes, then the vote for the assigned class is
increased by one vote, and finally the class with the
most votes determines the instance classification.

• Directed acyclic graph SVM (DAGSVM)[12]

• Error-correcting output codes[13]

Crammer and Singer proposed a multiclass SVM method
which casts the multiclass classification problem into a
single optimization problem, rather than decomposing it
into multiple binary classification problems.[14] See also
Lee, Lin and Wahba.[15][16]

60.8.2 Transductive support vector ma-
chines

Transductive support vector machines extend SVMs
in that they could also treat partially labeled data in
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semi-supervised learning by following the principles of
transduction. Here, in addition to the training set D , the
learner is also given a set

D⋆ = {x⋆i |x⋆i ∈ Rp}ki=1

of test examples to be classified. Formally, a transductive
support vector machine is defined by the following primal
optimization problem:[17]

Minimize (in w, b, y⋆ )

1

2
∥w∥2

subject to (for any i = 1, . . . , n and any j = 1, . . . , k )

yi(w · xi − b) ≥ 1,

y⋆j (w · x⋆j − b) ≥ 1,

and

y⋆j ∈ {−1, 1}.

Transductive support vector machines were introduced by
Vladimir N. Vapnik in 1998.

60.8.3 Structured SVM

SVMs have been generalized to structured SVMs, where
the label space is structured and of possibly infinite size.

60.8.4 Regression

A version of SVM for regression was proposed in 1996
by Vladimir N. Vapnik, Harris Drucker, Christopher J.
C. Burges, Linda Kaufman and Alexander J. Smola.[18]

This method is called support vector regression (SVR).
The model produced by support vector classification (as
described above) depends only on a subset of the train-
ing data, because the cost function for building the model
does not care about training points that lie beyond the
margin. Analogously, the model produced by SVR de-
pends only on a subset of the training data, because the
cost function for building the model ignores any training
data close to the model prediction. Another SVM ver-
sion known as least squares support vector machine (LS-
SVM) has been proposed by Suykens and Vandewalle.[19]

Training the original SVR means solving[20]

1

2
∥w∥2

{
yi − ⟨w, xi⟩ − b ≤ ϵ

⟨w, xi⟩+ b− yi ≤ ϵ

where xi is a training sample with target value yi . The
inner product plus intercept ⟨w, xi⟩+ b is the prediction
for that sample, and ϵ is a free parameter that serves as
a threshold: all predictions have to be within an ϵ range
of the true predictions. Slack variables are usually added
into the above to allow for errors and to allow approxima-
tion in the case the above problem is infeasible.

60.9 Interpreting SVM models

The SVM algorithm has been widely applied in the bi-
ological and other sciences. Permutation tests based on
SVM weights have been suggested as a mechanism for
interpretation of SVM models.[21][22] Support vector ma-
chine weights have also been used to interpret SVM mod-
els in the past.[23] Posthoc interpretation of support vector
machine models in order to identify features used by the
model to make predictions is a relatively new area of re-
search with special significance in the biological sciences.

60.10 Implementation

The parameters of the maximum-margin hyperplane
are derived by solving the optimization. There ex-
ist several specialized algorithms for quickly solving
the QP problem that arises from SVMs, mostly re-
lying on heuristics for breaking the problem down
into smaller, more-manageable chunks. A common
method is Platt’s sequential minimal optimization (SMO)
algorithm, which breaks the problem down into 2-
dimensional sub-problems that may be solved analyti-
cally, eliminating the need for a numerical optimization
algorithm.[24]

Another approach is to use an interior point method
that uses Newton-like iterations to find a solution of the
Karush–Kuhn–Tucker conditions of the primal and dual
problems.[25] Instead of solving a sequence of broken
down problems, this approach directly solves the prob-
lem altogether. To avoid solving a linear system involving
the large kernel matrix, a low rank approximation to the
matrix is often used in the kernel trick.
The special case of linear support vector machines can
be solved more efficiently by the same kind of algo-
rithms used to optimize its close cousin, logistic re-
gression; this class of algorithms includes sub-gradient
descent (e.g., PEGASOS[26]) and coordinate descent
(e.g., LIBLINEAR[27]). LIBLINEAR has some attrac-
tive training time properties. Each convergence itera-
tion takes time linear in the time taken to read the train
data and the iterations also have a Q-Linear Convergence
property, making the algorithm extremely fast.
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The general kernel SVMs can also be solved more effi-
ciently using sub-gradient descent (e.g. P-packSVM[28]),
especially when parallelization is allowed.
Kernel SVMs are available in many machine learn-
ing toolkits, including LIBSVM, MATLAB, SVM-
light, kernlab, scikit-learn, Shogun, Weka, Shark,
JKernelMachines and others.

60.11 Applications

SVMs can be used to solve various real world problems:

• SVMs are helpful in text and hypertext categoriza-
tion as their application can significantly reduce the
need for labeled training instances in both the stan-
dard inductive and transductive settings.

• Classification of images can also be performed us-
ing SVMs. Experimental results show that SVMs
achieve significantly higher search accuracy than
traditional query refinement schemes after just three
to four rounds of relevance feedback.

• SVMs are also useful in medical science to classify
proteins with up to 90% of the compounds classified
correctly.

• Hand-written characters can be recognized using
SVM.

60.12 See also

• In situ adaptive tabulation

• Kernel machines

• Fisher kernel

• Platt scaling

• Polynomial kernel

• Predictive analytics

• Regularization perspectives on support vector ma-
chines

• Relevance vector machine, a probabilistic sparse
kernel model identical in functional form to SVM

• Sequential minimal optimization

• Winnow (algorithm)
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60.14 External links

• www.support-vector.net The key book about the
method, “An Introduction to Support Vector Ma-
chines” with online software

• Burges, Christopher J. C.; A Tutorial on Sup-
port Vector Machines for Pattern Recognition, Data
Mining and Knowledge Discovery 2:121–167, 1998

• www.kernel-machines.org (general information and
collection of research papers)

• www.support-vector-machines.org (Literature, Re-
view, Software, Links related to Support Vector Ma-
chines — Academic Site)

• videolectures.net (SVM-related video lectures)

• Karatzoglou, Alexandros et al.; Support Vector Ma-
chines in R, Journal of Statistical Software April
2006, Volume 15, Issue 9.

• libsvm LIBSVM is a popular library of SVM learn-
ers

• liblinear liblinear is a library for large linear classi-
fication including some SVMs

• Shark Shark is a C++ machine learning library im-
plementing various types of SVMs

• dlib dlib is a C++ library for working with kernel
methods and SVMs

• SVM light is a collection of software tools for learn-
ing and classification using SVM.

• SVMJS live demo is a GUI demo for Javascript im-
plementation of SVMs

• Gesture Recognition Toolkit contains an easy to use
wrapper for libsvm
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Chapter 61

Artificial neural network

“Neural network” redirects here. For networks of living
neurons, see Biological neural network. For the journal,
see Neural Networks (journal). For the evolutionary
concept, see Neutral network (evolution).

An artificial neural network is an interconnected group of nodes,
akin to the vast network of neurons in a brain. Here, each circu-
lar node represents an artificial neuron and an arrow represents
a connection from the output of one neuron to the input of an-
other.

In machine learning and cognitive science, artificial neu-
ral networks (ANNs) are a family of statistical learning
models inspired by biological neural networks (the central
nervous systems of animals, in particular the brain) and
are used to estimate or approximate functions that can
depend on a large number of inputs and are generally
unknown. Artificial neural networks are generally pre-
sented as systems of interconnected "neurons" which send
messages to each other. The connections have numeric
weights that can be tuned based on experience, making
neural nets adaptive to inputs and capable of learning.

For example, a neural network for handwriting recogni-
tion is defined by a set of input neurons which may be
activated by the pixels of an input image. After being
weighted and transformed by a function (determined by
the network’s designer), the activations of these neurons
are then passed on to other neurons. This process is re-
peated until finally, an output neuron is activated. This
determines which character was read.
Like other machine learning methods - systems that learn
from data - neural networks have been used to solve a
wide variety of tasks that are hard to solve using ordinary
rule-based programming, including computer vision and
speech recognition.

61.1 Background

Examinations of humans’ central nervous systems in-
spired the concept of artificial neural networks. In an ar-
tificial neural network, simple artificial nodes, known as
"neurons", “neurodes”, “processing elements” or “units”,
are connected together to form a network which mimics
a biological neural network.
There is no single formal definition of what an artificial
neural network is. However, a class of statistical mod-
els may commonly be called “Neural” if it possesses the
following characteristics:

1. contains sets of adaptive weights, i.e. numerical pa-
rameters that are tuned by a learning algorithm, and

2. capability of approximating non-linear functions of
their inputs.

The adaptive weights can be thought of as connection
strengths between neurons, which are activated during
training and prediction.
Neural networks are similar to biological neural networks
in the performing of functions collectively and in parallel
by the units, rather than there being a clear delineation
of subtasks to which individual units are assigned. The
term “neural network” usually refers to models employed
in statistics, cognitive psychology and artificial intelli-
gence. Neural network models which emulate the central
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nervous system are part of theoretical neuroscience and
computational neuroscience.
In modern software implementations of artificial neu-
ral networks, the approach inspired by biology has been
largely abandoned for a more practical approach based
on statistics and signal processing. In some of these sys-
tems, neural networks or parts of neural networks (like
artificial neurons) form components in larger systems that
combine both adaptive and non-adaptive elements. While
the more general approach of such systems is more suit-
able for real-world problem solving, it has little to do with
the traditional, artificial intelligence connectionist mod-
els. What they do have in common, however, is the prin-
ciple of non-linear, distributed, parallel and local process-
ing and adaptation. Historically, the use of neural net-
work models marked a directional shift in the late eight-
ies from high-level (symbolic) AI, characterized by expert
systems with knowledge embodied in if-then rules, to low-
level (sub-symbolic) machine learning, characterized by
knowledge embodied in the parameters of a dynamical
system.

61.2 History

Warren McCulloch and Walter Pitts[1] (1943) created
a computational model for neural networks based on
mathematics and algorithms called threshold logic. This
model paved the way for neural network research to split
into two distinct approaches. One approach focused on
biological processes in the brain and the other focused
on the application of neural networks to artificial intelli-
gence.
In the late 1940s psychologist Donald Hebb[2] created a
hypothesis of learning based on the mechanism of neural
plasticity that is now known as Hebbian learning. Heb-
bian learning is considered to be a 'typical' unsupervised
learning rule and its later variants were early models
for long term potentiation. Researchers started apply-
ing these ideas to computational models in 1948 with
Turing’s B-type machines.
Farley and Wesley A. Clark[3] (1954) first used compu-
tational machines, then called “calculators,” to simulate
a Hebbian network at MIT. Other neural network com-
putational machines were created by Rochester, Holland,
Habit, and Duda[4] (1956).
Frank Rosenblatt[5] (1958) created the perceptron, an al-
gorithm for pattern recognition based on a two-layer com-
puter learning network using simple addition and sub-
traction. With mathematical notation, Rosenblatt also
described circuitry not in the basic perceptron, such
as the exclusive-or circuit, a circuit whose mathemati-
cal computation could not be processed until after the
backpropagation algorithm was created by Paul Wer-
bos[6] (1975).
Neural network research stagnated after the publication

of machine learning research by Marvin Minsky and
Seymour Papert[7] (1969), who discovered two key is-
sues with the computational machines that processed neu-
ral networks. The first was that single-layer neural net-
works were incapable of processing the exclusive-or cir-
cuit. The second significant issue was that comput-
ers didn't have enough processing power to effectively
handle the long run time required by large neural net-
works. Neural network research slowed until comput-
ers achieved greater processing power. Another key ad-
vance that came later was the backpropagation algorithm
which effectively solved the exclusive-or problem (Wer-
bos 1975).[6]

The parallel distributed processing of the mid-1980s be-
came popular under the name connectionism. The text-
book by David E. Rumelhart and James McClelland[8]

(1986) provided a full exposition of the use of connec-
tionism in computers to simulate neural processes.
Neural networks, as used in artificial intelligence, have
traditionally been viewed as simplified models of neural
processing in the brain, even though the relation between
this model and the biological architecture of the brain is
debated; it’s not clear to what degree artificial neural net-
works mirror brain function.[9]

Support vector machines and other, much simpler meth-
ods such as linear classifiers gradually overtook neural
networks in machine learning popularity. But the advent
of deep learning in the late 2000s sparked renewed inter-
est in neural nets.

61.2.1 Improvements since 2006

Computational devices have been created in CMOS, for
both biophysical simulation and neuromorphic comput-
ing. More recent efforts show promise for creating
nanodevices[10] for very large scale principal components
analyses and convolution. If successful, these efforts
could usher in a new era of neural computing[11] that is
a step beyond digital computing, because it depends on
learning rather than programming and because it is fun-
damentally analog rather than digital even though the first
instantiations may in fact be with CMOS digital devices.
Between 2009 and 2012, the recurrent neural networks
and deep feedforward neural networks developed in the
research group of Jürgen Schmidhuber at the Swiss AI
Lab IDSIA have won eight international competitions
in pattern recognition and machine learning.[12][13] For
example, the bi-directional and multi-dimensional long
short term memory (LSTM)[14][15][16][17] of Alex Graves
et al. won three competitions in connected handwriting
recognition at the 2009 International Conference on Doc-
ument Analysis and Recognition (ICDAR), without any
prior knowledge about the three different languages to be
learned.
Fast GPU-based implementations of this approach by
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Dan Ciresan and colleagues at IDSIA have won several
pattern recognition contests, including the IJCNN 2011
Traffic Sign Recognition Competition,[18][19] the ISBI
2012 Segmentation of Neuronal Structures in Electron
Microscopy Stacks challenge,[20] and others. Their neu-
ral networks also were the first artificial pattern recog-
nizers to achieve human-competitive or even superhuman
performance[21] on important benchmarks such as traffic
sign recognition (IJCNN 2012), or the MNIST handwrit-
ten digits problem of Yann LeCun at NYU.
Deep, highly nonlinear neural architectures similar to the
1980 neocognitron by Kunihiko Fukushima[22] and the
“standard architecture of vision”,[23] inspired by the sim-
ple and complex cells identified by David H. Hubel and
Torsten Wiesel in the primary visual cortex, can also be
pre-trained by unsupervised methods[24][25] of Geoff Hin-
ton's lab at University of Toronto.[26][27] A team from this
lab won a 2012 contest sponsored by Merck to design
software to help find molecules that might lead to new
drugs.[28]

61.3 Models

Neural network models in artificial intelligence are usu-
ally referred to as artificial neural networks (ANNs);
these are essentially simple mathematical models defin-
ing a function f : X → Y or a distribution over X or
bothX and Y , but sometimes models are also intimately
associated with a particular learning algorithm or learn-
ing rule. A common use of the phrase “ANN model” is
really the definition of a class of such functions (where
members of the class are obtained by varying parame-
ters, connection weights, or specifics of the architecture
such as the number of neurons or their connectivity).

61.3.1 Network function

See also: Graphical models

The word network in the term 'artificial neural network'
refers to the inter–connections between the neurons in the
different layers of each system. An example system has
three layers. The first layer has input neurons which send
data via synapses to the second layer of neurons, and then
via more synapses to the third layer of output neurons.
More complex systems will have more layers of neurons,
some having increased layers of input neurons and output
neurons. The synapses store parameters called “weights”
that manipulate the data in the calculations.
An ANN is typically defined by three types of parameters:

1. The interconnection pattern between the different
layers of neurons

2. The learning process for updating the weights of the

interconnections

3. The activation function that converts a neuron’s
weighted input to its output activation.

Mathematically, a neuron’s network function f(x) is de-
fined as a composition of other functions gi(x) , which
can further be defined as a composition of other func-
tions. This can be conveniently represented as a net-
work structure, with arrows depicting the dependen-
cies between variables. A widely used type of com-
position is the nonlinear weighted sum, where f(x) =
K (
∑
i wigi(x)) , whereK (commonly referred to as the

activation function[29]) is some predefined function, such
as the hyperbolic tangent. It will be convenient for the
following to refer to a collection of functions gi as simply
a vector g = (g1, g2, . . . , gn) .

ANN dependency graph

This figure depicts such a decomposition of f , with de-
pendencies between variables indicated by arrows. These
can be interpreted in two ways.
The first view is the functional view: the input x is trans-
formed into a 3-dimensional vector h , which is then
transformed into a 2-dimensional vector g , which is fi-
nally transformed into f . This view is most commonly
encountered in the context of optimization.
The second view is the probabilistic view: the random
variable F = f(G) depends upon the random variable
G = g(H) , which depends upon H = h(X) , which
depends upon the random variable X . This view is most
commonly encountered in the context of graphical mod-
els.
The two views are largely equivalent. In either case, for
this particular network architecture, the components of
individual layers are independent of each other (e.g., the
components of g are independent of each other given their
input h ). This naturally enables a degree of parallelism
in the implementation.
Networks such as the previous one are commonly called
feedforward, because their graph is a directed acyclic
graph. Networks with cycles are commonly called
recurrent. Such networks are commonly depicted in the
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Two separate depictions of the recurrent ANN dependency graph

manner shown at the top of the figure, where f is shown as
being dependent upon itself. However, an implied tem-
poral dependence is not shown.

61.3.2 Learning

What has attracted the most interest in neural networks is
the possibility of learning. Given a specific task to solve,
and a class of functions F , learning means using a set
of observations to find f∗ ∈ F which solves the task in
some optimal sense.
This entails defining a cost functionC : F → R such that,
for the optimal solution f∗ , C(f∗) ≤ C(f) ∀f ∈ F –
i.e., no solution has a cost less than the cost of the optimal
solution (see Mathematical optimization).
The cost function C is an important concept in learning,
as it is a measure of how far away a particular solution
is from an optimal solution to the problem to be solved.
Learning algorithms search through the solution space to
find a function that has the smallest possible cost.
For applications where the solution is dependent on some
data, the cost must necessarily be a function of the obser-
vations, otherwise we would not be modelling anything
related to the data. It is frequently defined as a statistic
to which only approximations can be made. As a sim-
ple example, consider the problem of finding the model
f , which minimizes C = E

[
(f(x)− y)2

]
, for data

pairs (x, y) drawn from some distribution D . In prac-
tical situations we would only have N samples from D
and thus, for the above example, we would only minimize
Ĉ = 1

N

∑N
i=1(f(xi)−yi)2 . Thus, the cost is minimized

over a sample of the data rather than the entire distribu-
tion generating the data.

When N → ∞ some form of online machine learning
must be used, where the cost is partially minimized as
each new example is seen. While online machine learning
is often used when D is fixed, it is most useful in the case
where the distribution changes slowly over time. In neural
network methods, some form of online machine learning
is frequently used for finite datasets.
See also: Mathematical optimization, Estimation theory
and Machine learning

Choosing a cost function

While it is possible to define some arbitrary ad hoc cost
function, frequently a particular cost will be used, either
because it has desirable properties (such as convexity) or
because it arises naturally from a particular formulation
of the problem (e.g., in a probabilistic formulation the
posterior probability of the model can be used as an in-
verse cost). Ultimately, the cost function will depend on
the desired task. An overview of the three main cate-
gories of learning tasks is provided below:

61.3.3 Learning paradigms

There are three major learning paradigms, each corre-
sponding to a particular abstract learning task. These
are supervised learning, unsupervised learning and
reinforcement learning.

Supervised learning

In supervised learning, we are given a set of example pairs
(x, y), x ∈ X, y ∈ Y and the aim is to find a function
f : X → Y in the allowed class of functions that matches
the examples. In other words, we wish to infer the map-
ping implied by the data; the cost function is related to the
mismatch between our mapping and the data and it im-
plicitly contains prior knowledge about the problem do-
main.
A commonly used cost is the mean-squared error, which
tries to minimize the average squared error between the
network’s output, f(x) , and the target value y over all
the example pairs. When one tries to minimize this cost
using gradient descent for the class of neural networks
called multilayer perceptrons, one obtains the common
and well-known backpropagation algorithm for training
neural networks.
Tasks that fall within the paradigm of supervised learn-
ing are pattern recognition (also known as classification)
and regression (also known as function approximation).
The supervised learning paradigm is also applicable to
sequential data (e.g., for speech and gesture recognition).
This can be thought of as learning with a “teacher”, in the
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form of a function that provides continuous feedback on
the quality of solutions obtained thus far.

Unsupervised learning

In unsupervised learning, some data x is given and the
cost function to be minimized, that can be any function
of the data x and the network’s output, f .
The cost function is dependent on the task (what we are
trying to model) and our a priori assumptions (the implicit
properties of our model, its parameters and the observed
variables).
As a trivial example, consider the model f(x) = a where
a is a constant and the cost C = E[(x− f(x))2] . Mini-
mizing this cost will give us a value of a that is equal to the
mean of the data. The cost function can be much more
complicated. Its form depends on the application: for ex-
ample, in compression it could be related to the mutual
information between x and f(x) , whereas in statistical
modeling, it could be related to the posterior probability
of the model given the data (note that in both of those ex-
amples those quantities would be maximized rather than
minimized).
Tasks that fall within the paradigm of unsupervised learn-
ing are in general estimation problems; the applications
include clustering, the estimation of statistical distribu-
tions, compression and filtering.

Reinforcement learning

In reinforcement learning, data x are usually not given,
but generated by an agent’s interactions with the environ-
ment. At each point in time t , the agent performs an
action yt and the environment generates an observation
xt and an instantaneous cost ct , according to some (usu-
ally unknown) dynamics. The aim is to discover a policy
for selecting actions that minimizes some measure of a
long-term cost, e.g., the expected cumulative cost. The
environment’s dynamics and the long-term cost for each
policy are usually unknown, but can be estimated.
More formally the environment is modeled as a Markov
decision process (MDP) with states s1, ..., sn ∈ S and
actions a1, ..., am ∈ Awith the following probability dis-
tributions: the instantaneous cost distribution P (ct|st)
, the observation distribution P (xt|st) and the transi-
tion P (st+1|st, at) , while a policy is defined as the
conditional distribution over actions given the observa-
tions. Taken together, the two then define a Markov chain
(MC). The aim is to discover the policy (i.e., the MC) that
minimizes the cost.
ANNs are frequently used in reinforcement learning as
part of the overall algorithm.[30][31] Dynamic program-
ming has been coupled with ANNs (Neuro dynamic pro-
gramming) by Bertsekas and Tsitsiklis[32] and applied
to multi-dimensional nonlinear problems such as those

involved in vehicle routing,[33] natural resources man-
agement[34][35] or medicine[36] because of the ability of
ANNs to mitigate losses of accuracy even when reduc-
ing the discretization grid density for numerically approx-
imating the solution of the original control problems.
Tasks that fall within the paradigm of reinforcement
learning are control problems, games and other sequential
decision making tasks.
See also: dynamic programming and stochastic control

61.3.4 Learning algorithms

Training a neural network model essentially means se-
lecting one model from the set of allowed models (or,
in a Bayesian framework, determining a distribution over
the set of allowed models) that minimizes the cost crite-
rion. There are numerous algorithms available for train-
ing neural network models; most of them can be viewed
as a straightforward application of optimization theory
and statistical estimation.
Most of the algorithms used in training artificial neural
networks employ some form of gradient descent, using
backpropagation to compute the actual gradients. This is
done by simply taking the derivative of the cost function
with respect to the network parameters and then chang-
ing those parameters in a gradient-related direction. The
backpropagation training algorithms are usually classi-
fied into three categories: steepest descent (with vari-
able learning rate, with variable learning rate and momen-
tum, resilient backpropagation), quasi-Newton (Broyden-
Fletcher-Goldfarb-Shanno, one step secant, Levenberg-
Marquardt) and conjugate gradient (Fletcher-Reeves up-
date, Polak-Ribiére update, Powell-Beale restart, scaled
conjugate gradient). [37]

Evolutionary methods,[38] gene expression pro-
gramming,[39] simulated annealing,[40] expectation-
maximization, non-parametric methods and particle
swarm optimization[41] are some commonly used
methods for training neural networks.
See also: machine learning

61.4 Employing artificial neural
networks

Perhaps the greatest advantage of ANNs is their ability
to be used as an arbitrary function approximation mech-
anism that 'learns’ from observed data. However, using
them is not so straightforward, and a relatively good un-
derstanding of the underlying theory is essential.

• Choice of model: This will depend on the data rep-
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resentation and the application. Overly complex
models tend to lead to problems with learning.

• Learning algorithm: There are numerous trade-offs
between learning algorithms. Almost any algorithm
will work well with the correct hyperparameters for
training on a particular fixed data set. However, se-
lecting and tuning an algorithm for training on un-
seen data requires a significant amount of experi-
mentation.

• Robustness: If the model, cost function and learn-
ing algorithm are selected appropriately the result-
ing ANN can be extremely robust.

With the correct implementation, ANNs can be used nat-
urally in online learning and large data set applications.
Their simple implementation and the existence of mostly
local dependencies exhibited in the structure allows for
fast, parallel implementations in hardware.

61.5 Applications

The utility of artificial neural network models lies in the
fact that they can be used to infer a function from obser-
vations. This is particularly useful in applications where
the complexity of the data or task makes the design of
such a function by hand impractical.

61.5.1 Real-life applications

The tasks artificial neural networks are applied to tend to
fall within the following broad categories:

• Function approximation, or regression analysis, in-
cluding time series prediction, fitness approximation
and modeling.

• Classification, including pattern and sequence
recognition, novelty detection and sequential deci-
sion making.

• Data processing, including filtering, clustering, blind
source separation and compression.

• Robotics, including directing manipulators,
prosthesis.

• Control, including Computer numerical control.

Application areas include the system identification and
control (vehicle control, process control, natural re-
sources management), quantum chemistry,[42] game-
playing and decision making (backgammon, chess,
poker), pattern recognition (radar systems, face identi-
fication, object recognition and more), sequence recog-
nition (gesture, speech, handwritten text recognition),

medical diagnosis, financial applications (e.g. automated
trading systems), data mining (or knowledge discovery in
databases, “KDD”), visualization and e-mail spam filter-
ing.
Artificial neural networks have also been used to diag-
nose several cancers. An ANN based hybrid lung cancer
detection system named HLND improves the accuracy
of diagnosis and the speed of lung cancer radiology.[43]

These networks have also been used to diagnose prostate
cancer. The diagnoses can be used to make specific mod-
els taken from a large group of patients compared to in-
formation of one given patient. The models do not de-
pend on assumptions about correlations of different vari-
ables. Colorectal cancer has also been predicted using
the neural networks. Neural networks could predict the
outcome for a patient with colorectal cancer with more
accuracy than the current clinical methods. After train-
ing, the networks could predict multiple patient outcomes
from unrelated institutions.[44]

61.5.2 Neural networks and neuroscience

Theoretical and computational neuroscience is the field
concerned with the theoretical analysis and the computa-
tional modeling of biological neural systems. Since neu-
ral systems are intimately related to cognitive processes
and behavior, the field is closely related to cognitive and
behavioral modeling.
The aim of the field is to create models of biological neu-
ral systems in order to understand how biological systems
work. To gain this understanding, neuroscientists strive
to make a link between observed biological processes
(data), biologically plausible mechanisms for neural pro-
cessing and learning (biological neural network models)
and theory (statistical learning theory and information
theory).

Types of models

Many models are used in the field, defined at different
levels of abstraction and modeling different aspects of
neural systems. They range from models of the short-
term behavior of individual neurons (e.g. [45]), models
of how the dynamics of neural circuitry arise from inter-
actions between individual neurons and finally to models
of how behavior can arise from abstract neural modules
that represent complete subsystems. These include mod-
els of the long-term, and short-term plasticity, of neural
systems and their relations to learning and memory from
the individual neuron to the system level.

Memory networks

Integrating external memory components with artifi-
cial neural networks has a long history dating back to
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early research in distributed representations [46] and self-
organizing maps. E.g. in sparse distributed memory
the patterns encoded by neural networks are used as
memory addresses for content-addressable memory, with
“neurons” essentially serving as address encoders and
decoders.
More recently deep learning was shown to be useful in
semantic hashing[47] where a deep graphical model the
word-count vectors[48] obtained from a large set of doc-
uments. Documents are mapped to memory addresses in
such a way that semantically similar documents are lo-
cated at nearby addresses. Documents similar to a query
document can then be found by simply accessing all the
addresses that differ by only a few bits from the address
of the query document.
Neural Turing Machines[49] developed by Google Deep-
Mind extend the capabilities of deep neural networks by
coupling them to external memory resources, which they
can interact with by attentional processes. The combined
system is analogous to a Turing Machine but is differ-
entiable end-to-end, allowing it to be efficiently trained
with gradient descent. Preliminary results demonstrate
that Neural Turing Machines can infer simple algorithms
such as copying, sorting, and associative recall from input
and output examples.
Memory Networks[50] is another extension to neural net-
works incorporating long-term memory which was devel-
oped by Facebook research. The long-term memory can
be read and written to, with the goal of using it for pre-
diction. These models have been applied in the context
of question answering (QA) where the long-term mem-
ory effectively acts as a (dynamic) knowledge base, and
the output is a textual response.

61.6 Neural network software

Main article: Neural network software

Neural network software is used to simulate, research,
develop and apply artificial neural networks, biological
neural networks and, in some cases, a wider array of
adaptive systems.

61.7 Types of artificial neural net-
works

Main article: Types of artificial neural networks

Artificial neural network types vary from those with only
one or two layers of single direction logic, to compli-
cated multi–input many directional feedback loops and
layers. On the whole, these systems use algorithms in
their programming to determine control and organization

of their functions. Most systems use “weights” to change
the parameters of the throughput and the varying con-
nections to the neurons. Artificial neural networks can be
autonomous and learn by input from outside “teachers” or
even self-teaching from written-in rules.

61.8 Theoretical properties

61.8.1 Computational power

The multi-layer perceptron (MLP) is a universal function
approximator, as proven by the universal approximation
theorem. However, the proof is not constructive regard-
ing the number of neurons required or the settings of the
weights.
Work by Hava Siegelmann and Eduardo D. Sontag has
provided a proof that a specific recurrent architecture
with rational valued weights (as opposed to full preci-
sion real number-valued weights) has the full power of
a Universal Turing Machine[51] using a finite number of
neurons and standard linear connections. Further, it has
been shown that the use of irrational values for weights
results in a machine with super-Turing power.[52]

61.8.2 Capacity

Artificial neural network models have a property called
'capacity', which roughly corresponds to their ability to
model any given function. It is related to the amount of
information that can be stored in the network and to the
notion of complexity.

61.8.3 Convergence

Nothing can be said in general about convergence since it
depends on a number of factors. Firstly, there may exist
many local minima. This depends on the cost function
and the model. Secondly, the optimization method used
might not be guaranteed to converge when far away from
a local minimum. Thirdly, for a very large amount of
data or parameters, some methods become impractical.
In general, it has been found that theoretical guarantees
regarding convergence are an unreliable guide to practical
application.

61.8.4 Generalization and statistics

In applications where the goal is to create a system that
generalizes well in unseen examples, the problem of over-
training has emerged. This arises in convoluted or over-
specified systems when the capacity of the network sig-
nificantly exceeds the needed free parameters. There
are two schools of thought for avoiding this problem:
The first is to use cross-validation and similar techniques

https://en.wikipedia.org/wiki/Distributed_representations
https://en.wikipedia.org/wiki/Self-organizing_map
https://en.wikipedia.org/wiki/Self-organizing_map
https://en.wikipedia.org/wiki/Sparse_distributed_memory
https://en.wikipedia.org/wiki/Encoder
https://en.wikipedia.org/wiki/Decoder
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Semantic_hashing
https://en.wikipedia.org/wiki/Graphical_model
https://en.wikipedia.org/wiki/Neural_Turing_Machines
https://en.wikipedia.org/wiki/Google_DeepMind
https://en.wikipedia.org/wiki/Google_DeepMind
https://en.wikipedia.org/wiki/Turing_Machine
https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Memory_Networks
https://en.wikipedia.org/wiki/Long-term_memory
https://en.wikipedia.org/wiki/Facebook
https://en.wikipedia.org/wiki/Question_answering
https://en.wikipedia.org/wiki/Neural_network_software
https://en.wikipedia.org/wiki/Simulation
https://en.wikipedia.org/wiki/Research
https://en.wikipedia.org/wiki/Biological_neural_network
https://en.wikipedia.org/wiki/Biological_neural_network
https://en.wikipedia.org/wiki/Adaptive_system
https://en.wikipedia.org/wiki/Types_of_artificial_neural_networks
https://en.wikipedia.org/wiki/Multi-layer_perceptron
https://en.wikipedia.org/wiki/Universal_approximation_theorem
https://en.wikipedia.org/wiki/Universal_approximation_theorem
https://en.wikipedia.org/wiki/Hava_Siegelmann
https://en.wikipedia.org/wiki/Eduardo_D._Sontag
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Universal_Turing_Machine
https://en.wikipedia.org/wiki/Hypercomputation
https://en.wikipedia.org/wiki/Cross-validation_(statistics)


382 CHAPTER 61. ARTIFICIAL NEURAL NETWORK

to check for the presence of overtraining and optimally
select hyperparameters such as to minimize the gener-
alization error. The second is to use some form of
regularization. This is a concept that emerges naturally in
a probabilistic (Bayesian) framework, where the regular-
ization can be performed by selecting a larger prior prob-
ability over simpler models; but also in statistical learning
theory, where the goal is to minimize over two quantities:
the 'empirical risk' and the 'structural risk', which roughly
corresponds to the error over the training set and the pre-
dicted error in unseen data due to overfitting.

Confidence analysis of a neural network

Supervised neural networks that use a mean squared error
(MSE) cost function can use formal statistical methods to
determine the confidence of the trained model. The MSE
on a validation set can be used as an estimate for variance.
This value can then be used to calculate the confidence
interval of the output of the network, assuming a normal
distribution. A confidence analysis made this way is sta-
tistically valid as long as the output probability distribu-
tion stays the same and the network is not modified.
By assigning a softmax activation function, a generaliza-
tion of the logistic function, on the output layer of the
neural network (or a softmax component in a component-
based neural network) for categorical target variables, the
outputs can be interpreted as posterior probabilities. This
is very useful in classification as it gives a certainty mea-
sure on classifications.
The softmax activation function is:

yi =
exi∑c
j=1 e

xj

61.9 Controversies

61.9.1 Training issues

A common criticism of neural networks, particularly in
robotics, is that they require a large diversity of training

for real-world operation . This is not surprising, since
any learning machine needs sufficient representative ex-
amples in order to capture the underlying structure that
allows it to generalize to new cases. Dean Pomerleau,
in his research presented in the paper “Knowledge-based
Training of Artificial Neural Networks for Autonomous
Robot Driving,” uses a neural network to train a robotic
vehicle to drive on multiple types of roads (single lane,
multi-lane, dirt, etc.). A large amount of his research
is devoted to (1) extrapolating multiple training scenar-
ios from a single training experience, and (2) preserving
past training diversity so that the system does not become
overtrained (if, for example, it is presented with a series
of right turns – it should not learn to always turn right).
These issues are common in neural networks that must de-
cide from amongst a wide variety of responses, but can be
dealt with in several ways, for example by randomly shuf-
fling the training examples, by using a numerical opti-
mization algorithm that does not take too large steps when
changing the network connections following an example,
or by grouping examples in so-called mini-batches.
A. K. Dewdney, a former Scientific American columnist,
wrote in 1997, “Although neural nets do solve a few toy
problems, their powers of computation are so limited that
I am surprised anyone takes them seriously as a general
problem-solving tool.” (Dewdney, p. 82)

61.9.2 Hardware issues

To implement large and effective software neural net-
works, considerable processing and storage resources
need to be committed . While the brain has hardware
tailored to the task of processing signals through a graph
of neurons, simulating even a most simplified form on
Von Neumann technology may compel a neural network
designer to fill many millions of database rows for its con-
nections – which can consume vast amounts of computer
memory and hard disk space. Furthermore, the designer
of neural network systems will often need to simulate
the transmission of signals through many of these con-
nections and their associated neurons – which must often
be matched with incredible amounts of CPU processing
power and time. While neural networks often yield effec-
tive programs, they too often do so at the cost of efficiency
(they tend to consume considerable amounts of time and
money).
Computing power continues to grow roughly according
to Moore’s Law, which may provide sufficient resources
to accomplish new tasks. Neuromorphic engineering ad-
dresses the hardware difficulty directly, by constructing
non-Von-Neumann chips with circuits designed to imple-
ment neural nets from the ground up.
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61.9.3 Practical counterexamples to criti-
cisms

Arguments against Dewdney’s position are that neural
networks have been successfully used to solve many com-
plex and diverse tasks, ranging from autonomously flying
aircraft[53] to detecting credit card fraud .
Technology writer Roger Bridgman commented on
Dewdney’s statements about neural nets:

Neural networks, for instance, are in the
dock not only because they have been hyped
to high heaven, (what hasn't?) but also be-
cause you could create a successful net with-
out understanding how it worked: the bunch
of numbers that captures its behaviour would
in all probability be “an opaque, unreadable ta-
ble...valueless as a scientific resource”.

In spite of his emphatic declaration that
science is not technology, Dewdney seems here
to pillory neural nets as bad science when most
of those devising them are just trying to be
good engineers. An unreadable table that a
useful machine could read would still be well
worth having.[54]

Although it is true that analyzing what has been learned
by an artificial neural network is difficult, it is much eas-
ier to do so than to analyze what has been learned by a
biological neural network. Furthermore, researchers in-
volved in exploring learning algorithms for neural net-
works are gradually uncovering generic principles which
allow a learning machine to be successful. For exam-
ple, Bengio and LeCun (2007) wrote an article regard-
ing local vs non-local learning, as well as shallow vs deep
architecture.[55]

61.9.4 Hybrid approaches

Some other criticisms come from advocates of hybrid
models (combining neural networks and symbolic ap-
proaches), who believe that the intermix of these two ap-
proaches can better capture the mechanisms of the human
mind.[56][57]

61.10 Gallery
• A single-layer feedforward artificial neural network.

Arrows originating from are omitted for clarity.
There are p inputs to this network and q outputs.
In this system, the value of the qth output, would be
calculated as

• A two-layer feedforward artificial neural network.

•

•
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• Neural gas

• Neural network software

• Neuroscience

• Ni1000 chip

• Nonlinear system identification

• Optical neural network

• Parallel Constraint Satisfaction Processes

• Parallel distributed processing

• Radial basis function network
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• A brief introduction to Neural Networks (PDF), il-
lustrated 250p textbook covering the common kinds
of neural networks (CC license).
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Chapter 62

Deep learning

For deep versus shallow learning in educational psychol-
ogy, see Student approaches to learning

Deep learning (deepmachine learning, or deep structured
learning, or hierarchical learning, or sometimes DL) is a
branch of machine learning based on a set of algorithms
that attempt to model high-level abstractions in data by
using model architectures, with complex structures or
otherwise, composed of multiple non-linear transforma-
tions.[1](p198)[2][3][4]

Deep learning is part of a broader family of machine
learning methods based on learning representations of
data. An observation (e.g., an image) can be represented
in many ways such as a vector of intensity values per pixel,
or in a more abstract way as a set of edges, regions of
particular shape, etc.. Some representations make it eas-
ier to learn tasks (e.g., face recognition or facial expres-
sion recognition[5]) from examples. One of the promises
of deep learning is replacing handcrafted features with
efficient algorithms for unsupervised or semi-supervised
feature learning and hierarchical feature extraction.[6]

Research in this area attempts to make better represen-
tations and create models to learn these representations
from large-scale unlabeled data. Some of the represen-
tations are inspired by advances in neuroscience and are
loosely based on interpretation of information processing
and communication patterns in a nervous system, such
as neural coding which attempts to define a relationship
between the stimulus and the neuronal responses and the
relationship among the electrical activity of the neurons
in the brain.[7]

Various deep learning architectures such as deep neural
networks, convolutional deep neural networks, deep be-
lief networks and recurrent neural networks have been
applied to fields like computer vision, automatic speech
recognition, natural language processing, audio recogni-
tion and bioinformatics where they have been shown to
produce state-of-the-art results on various tasks.
Alternatively, deep learning has been characterized as a
buzzword, or a rebranding of neural networks.[8][9]

62.1 Introduction

62.1.1 Definitions

There are a number of ways that the field of deep learn-
ing has been characterized. Deep learning is a class of
machine learning algorithms that[1](pp199–200)

• use a cascade of many layers of nonlinear pro-
cessing units for feature extraction and transforma-
tion. Each successive layer uses the output from
the previous layer as input. The algorithms may
be supervised or unsupervised and applications in-
clude pattern analysis (unsupervised) and classifica-
tion (supervised).

• are based on the (unsupervised) learning of multi-
ple levels of features or representations of the data.
Higher level features are derived from lower level
features to form a hierarchical representation.

• are part of the broader machine learning field of
learning representations of data.

• learn multiple levels of representations that corre-
spond to different levels of abstraction; the levels
form a hierarchy of concepts.

These definitions have in common (1) multiple layers
of nonlinear processing units and (2) the supervised or
unsupervised learning of feature representations in each
layer, with the layers forming a hierarchy from low-level
to high-level features.[1](p200) The composition of a layer
of nonlinear processing units used in a deep learning al-
gorithm depends on the problem to be solved. Layers
that have been used in deep learning include hidden lay-
ers of an artificial neural network and sets of complicated
propositional formulas.[2] They may also include latent
variables organized layer-wise in deep generative mod-
els such as the nodes in Deep Belief Networks and Deep
Boltzmann Machines.
Deep learning algorithms are contrasted with shallow
learning algorithms by the number of parameterized
transformations a signal encounters as it propagates from
the input layer to the output layer, where a parameterized
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transformation is a processing unit that has trainable pa-
rameters, such as weights and thresholds.[4](p6) A chain
of transformations from input to output is a credit assign-
ment path (CAP). CAPs describe potentially causal con-
nections between input and output and may vary in length.
For a feedforward neural network, the depth of the CAPs,
and thus the depth of the network, is the number of hid-
den layers plus one (the output layer is also parameter-
ized). For recurrent neural networks, in which a signal
may propagate through a layer more than once, the CAP
is potentially unlimited in length. There is no universally
agreed upon threshold of depth dividing shallow learning
from deep learning, but most researchers in the field agree
that deep learning has multiple nonlinear layers (CAP >
2) and Schmidhuber considers CAP > 10 to be very deep
learning.[4](p7)

62.1.2 Fundamental concepts

Deep learning algorithms are based on distributed rep-
resentations. The underlying assumption behind dis-
tributed representations is that observed data is generated
by the interactions of many different factors on different
levels. Deep learning adds the assumption that these fac-
tors are organized into multiple levels, corresponding to
different levels of abstraction or composition. Varying
numbers of layers and layer sizes can be used to provide
different amounts of abstraction.[3]

Deep learning algorithms in particular exploit this idea
of hierarchical explanatory factors. Different concepts
are learned from other concepts, with the more abstract,
higher level concepts being learned from the lower level
ones. These architectures are often constructed with a
greedy layer-by-layer method that models this idea. Deep
learning helps to disentangle these abstractions and pick
out which features are useful for learning.[3]

For supervised learning tasks where label information is
readily available in training, deep learning promotes a
principle which is very different than traditional meth-
ods of machine learning. That is, rather than focusing
on feature engineering which is often labor-intensive and
varies from one task to another, deep learning methods
are focused on end-to-end learning based on raw features.
In other words, deep learning moves away from feature
engineering to a maximal extent possible. To accomplish
end-to-end optimization starting with raw features and
ending in labels, layered structures are often necessary.
From this perspective, we can regard the use of layered
structures to derive intermediate representations in deep
learning as a natural consequence of raw-feature-based
end-to-end learning.[1] Understanding the connection be-
tween the above two aspects of deep learning is important
to appreciate its use in several application areas, all in-
volving supervised learning tasks (e.g., supervised speech
and image recognition), as to be discussed in a later part
of this article.

Many deep learning algorithms are framed as unsuper-
vised learning problems. Because of this, these algo-
rithms can make use of the unlabeled data that supervised
algorithms cannot. Unlabeled data is usually more abun-
dant than labeled data, making this an important benefit
of these algorithms. The deep belief network is an exam-
ple of a deep structure that can be trained in an unsuper-
vised manner.[3]

62.2 History

Deep learning architectures, specifically those built from
artificial neural networks (ANN), date back at least to
the Neocognitron introduced by Kunihiko Fukushima in
1980.[10] The ANNs themselves date back even further.
In 1989, Yann LeCun et al. were able to apply the stan-
dard backpropagation algorithm, which had been around
since 1974,[11] to a deep neural network with the purpose
of recognizing handwritten ZIP codes on mail. Despite
the success of applying the algorithm, the time to train
the network on this dataset was approximately 3 days,
making it impractical for general use.[12] Many factors
contribute to the slow speed, one being due to the so-
called vanishing gradient problem analyzed in 1991 by
Sepp Hochreiter.[13][14]

While such neural networks by 1991 were used for rec-
ognizing isolated 2-D hand-written digits, 3-D object
recognition by 1991 used a 3-D model-based approach
– matching 2-D images with a handcrafted 3-D object
model. Juyang Weng et al.. proposed that a human brain
does not use a monolithic 3-D object model and in 1992
they published Cresceptron,[15][16][17] a method for per-
forming 3-D object recognition directly from cluttered
scenes. Cresceptron is a cascade of many layers similar to
Neocognitron. But unlike Neocognitron which required
the human programmer to hand-merge features, Crescep-
tron fully automatically learned an open number of un-
supervised features in each layer of the cascade where
each feature is represented by a convolution kernel. In
addition, Cresceptron also segmented each learned ob-
ject from a cluttered scene through back-analysis through
the network. Max-pooling, now often adopted by deep
neural networks (e.g., ImageNet tests), was first used in
Cresceptron to reduce the position resolution by a factor
of (2x2) to 1 through the cascade for better generaliza-
tion. Because of a great lack of understanding how the
brain autonomously wire its biological networks and the
computational cost by ANNs then, simpler models that
use task-specific handcrafted features such as Gabor fil-
ter and support vector machines (SVMs) were of popular
choice of the field in the 1990s and 2000s.
In the long history of speech recognition, both shallow
form and deep form (e.g., recurrent nets) of artificial neu-
ral networks had been explored for many years.[18][19][20]

But these methods never won over the non-uniform
internal-handcrafting Gaussian mixture model/Hidden
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Markov model (GMM-HMM) technology based on gen-
erative models of speech trained discriminatively.[21]

A number of key difficulties had been methodologi-
cally analyzed, including gradient diminishing and weak
temporal correlation structure in the neural predictive
models.[22][23] All these difficulties were in addition to
the lack of big training data and big computing power
in these early days. Most speech recognition researchers
who understood such barriers hence subsequently moved
away from neural nets to pursue generative modeling ap-
proaches until the recent resurgence of deep learning that
has overcome all these difficulties. Hinton et al. and
Deng et al. reviewed part of this recent history about
how their collaboration with each other and then with
cross-group colleagues ignited the renaissance of neural
networks and initiated deep learning research and appli-
cations in speech recognition.[24][25][26][27]

The term “deep learning” gained traction in the mid-
2000s after a publication by Geoffrey Hinton and Ruslan
Salakhutdinov showed how a many-layered feedforward
neural network could be effectively pre-trained one layer
at a time, treating each layer in turn as an unsupervised
restricted Boltzmann machine, then using supervised
backpropagation for fine-tuning.[28] In 1992, Schmidhu-
ber had already implemented a very similar idea for the
more general case of unsupervised deep hierarchies of
recurrent neural networks, and also experimentally shown
its benefits for speeding up supervised learning [29][30]

Since the resurgence of deep learning, it has become part
of many state-of-the-art systems in different disciplines,
particularly that of computer vision and automatic speech
recognition (ASR). Results on commonly used evalua-
tion sets such as TIMIT (ASR) and MNIST (image clas-
sification) as well as a range of large vocabulary speech
recognition tasks are constantly being improved with new
applications of deep learning.[24][31][32] Currently, it has
been shown that deep learning architectures in the form
of convolutional neural networks have been nearly best
performing;[33][34] however, these are more widely used
in computer vision than in ASR.
The real impact of deep learning in industry started in
large-scale speech recognition around 2010. In late 2009,
Geoff Hinton was invited by Li Deng to work with him
and colleagues at Microsoft Research in Redmond to
apply deep learning to speech recognition. They co-
organized the 2009 NIPS Workshop on Deep Learning
for Speech Recognition. The workshop was motivated
by the limitations of deep generative models of speech,
and the possibility that the big-compute, big-data era
warranted a serious try of the deep neural net (DNN)
approach. It was then (incorrectly) believed that pre-
training of DNNs using generative models of deep belief
net (DBN) would be the cure for the main difficulties of
neural nets encountered during 1990’s.[26] However, soon
after the research along this direction started at Microsoft
Research, it was discovered that when large amounts of
training data are used and especially when DNNs are

designed correspondingly with large, context-dependent
output layers, dramatic error reduction occurred over the
then-state-of-the-art GMM-HMM and more advanced
generative model-based speech recognition systems with-
out the need for generative DBN pre-training, the find-
ing verified subsequently by several other major speech
recognition research groups [24][35] Further, the nature of
recognition errors produced by the two types of systems
was found to be characteristically different,[25][36] offer-
ing technical insights into how to artfully integrate deep
learning into the existing highly efficient, run-time speech
decoding system deployed by all major players in speech
recognition industry. The history of this significant de-
velopment in deep learning has been described and ana-
lyzed in recent books.[1][37]

Advances in hardware have also been an important en-
abling factor for the renewed interest of deep learning.
In particular, powerful graphics processing units (GPUs)
are highly suited for the kind of number crunching, ma-
trix/vector math involved in machine learning. GPUs
have been shown to speed up training algorithms by or-
ders of magnitude, bringing running times of weeks back
to days.[38][39]

62.3 Deep learning in artificial
neural networks

Some of the most successful deep learning methods in-
volve artificial neural networks. Artificial neural net-
works are inspired by the 1959 biological model proposed
by Nobel laureates David H. Hubel & Torsten Wiesel,
who found two types of cells in the primary visual cortex:
simple cells and complex cells. Many artificial neural net-
works can be viewed as cascading models [15][16][17][40] of
cell types inspired by these biological observations.
Fukushima’s Neocognitron introduced convolutional
neural networks partially trained by unsupervised learn-
ing while humans directed features in the neural
plane. Yann LeCun et al. (1989) applied super-
vised backpropagation to such architectures.[41] Weng
et al. (1992) published convolutional neural networks
Cresceptron[15][16][17] for 3-D object recognition from
images of cluttered scenes and segmentation of such ob-
jects from images.
An obvious need for recognizing general 3-D ob-
jects is least shift invariance and tolerance to defor-
mation. Max-pooling appeared to be first proposed
by Cresceptron[15][16] to enable the network to tolerate
small-to-large deformation in a hierarchical way while
using convolution. Max-pooling helps, but still does not
fully guarantee, shift-invariance at the pixel level.[17]

With the advent of the back-propagation algorithm in the
1970s, many researchers tried to train supervised deep
artificial neural networks from scratch, initially with little
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success. Sepp Hochreiter's diploma thesis of 1991[42][43]

formally identified the reason for this failure in the “van-
ishing gradient problem,” which not only affects many-
layered feedforward networks, but also recurrent neural
networks. The latter are trained by unfolding them into
very deep feedforward networks, where a new layer is cre-
ated for each time step of an input sequence processed by
the network. As errors propagate from layer to layer, they
shrink exponentially with the number of layers.
To overcome this problem, several methods were pro-
posed. One is Jürgen Schmidhuber's multi-level hi-
erarchy of networks (1992) pre-trained one level at a
time through unsupervised learning, fine-tuned through
backpropagation.[29] Here each level learns a compressed
representation of the observations that is fed to the next
level.
Another method is the long short term memory (LSTM)
network of 1997 by Hochreiter & Schmidhuber.[44] In
2009, deep multidimensional LSTM networks won three
ICDAR 2009 competitions in connected handwriting
recognition, without any prior knowledge about the three
different languages to be learned.[45][46]

Sven Behnke relied only on the sign of the gra-
dient (Rprop) when training his Neural Abstraction
Pyramid[47] to solve problems like image reconstruction
and face localization.
Other methods also use unsupervised pre-training to
structure a neural network, making it first learn generally
useful feature detectors. Then the network is trained fur-
ther by supervised back-propagation to classify labeled
data. The deep model of Hinton et al. (2006) involves
learning the distribution of a high level representation us-
ing successive layers of binary or real-valued latent vari-
ables. It uses a restricted Boltzmann machine (Smolen-
sky, 1986[48]) to model each new layer of higher level
features. Each new layer guarantees an increase on the
lower-bound of the log likelihood of the data, thus im-
proving the model, if trained properly. Once sufficiently
many layers have been learned the deep architecture may
be used as a generative model by reproducing the data
when sampling down the model (an “ancestral pass”)
from the top level feature activations.[49] Hinton reports
that his models are effective feature extractors over high-
dimensional, structured data.[50]

The Google Brain team led by Andrew Ng and Jeff Dean
created a neural network that learned to recognize higher-
level concepts, such as cats, only from watching unlabeled
images taken from YouTube videos.[51] [52]

Other methods rely on the sheer processing power of
modern computers, in particular, GPUs. In 2010 it
was shown by Dan Ciresan and colleagues[38] in Jürgen
Schmidhuber's group at the Swiss AI Lab IDSIA that
despite the above-mentioned “vanishing gradient prob-
lem,” the superior processing power of GPUs makes plain
back-propagation feasible for deep feedforward neural
networks with many layers. The method outperformed

all other machine learning techniques on the old, famous
MNIST handwritten digits problem of Yann LeCun and
colleagues at NYU.
At about the same time, in late 2009, deep learning made
inroad into speech recognition, as marked by the NIPS
Workshop on Deep Learning for Speech Recognition. In-
tensive collaborative work between Microsoft Research
and University of Toronto researchers had demonstrated
by mid 2010 in Redmond that deep neural networks
interfaced with a hidden Markov model with context-
dependent states that define the neural network output
layer can drastically reduce errors in large vocabulary
speech recognition tasks such as voice search. The same
deep neural net model was shown to scale up to Switch-
board tasks about one year later at Microsoft Research
Asia.
As of 2011, the state of the art in deep learn-
ing feedforward networks alternates convolutional lay-
ers and max-pooling layers,[53][54] topped by several
pure classification layers. Training is usually done
without any unsupervised pre-training. Since 2011,
GPU-based implementations[53] of this approach won
many pattern recognition contests, including the IJCNN
2011 Traffic Sign Recognition Competition,[55] the ISBI
2012 Segmentation of neuronal structures in EM stacks
challenge,[56] and others.
Such supervised deep learning methods also were the
first artificial pattern recognizers to achieve human-
competitive performance on certain tasks.[57]

To break the barriers of weak AI represented by deep
learning, it is necessary to go beyond the deep learn-
ing architectures because biological brains use both shal-
low and deep circuits as reported by brain anatomy[58]

in order to deal with the wide variety of invariance that
the brain displays. Weng[59] argued that the brain self-
wires largely according to signal statistics and, therefore,
a serial cascade cannot catch all major statistical depen-
dencies. Fully guaranteed shift invariance for ANNs to
deal with small and large natural objects in large clut-
tered scenes became true when the invariance went be-
yond shift, to extend to all ANN-learned concepts, such
as location, type (object class label), scale, lighting, in the
Developmental Networks (DNs)[60] whose embodiments
are Where-What Networks, WWN-1 (2008)[61] through
WWN-7 (2013).[62]

62.4 Deep learning architectures

There are huge number of different variants of deep ar-
chitectures; however, most of them are branched from
some original parent architectures. It is not always pos-
sible to compare the performance of multiple architec-
tures all together, since they are not all implemented on
the same data set. Deep learning is a fast-growing field
so new architectures, variants, or algorithms may appear

https://en.wikipedia.org/wiki/Sepp_Hochreiter
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/J%C3%BCrgen_Schmidhuber
https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/Long_short_term_memory
https://en.wikipedia.org/wiki/Sepp_Hochreiter
https://en.wikipedia.org/wiki/J%C3%BCrgen_Schmidhuber
https://en.wikipedia.org/wiki/Rprop
https://en.wikipedia.org/wiki/Feature_detector
https://en.wikipedia.org/wiki/Back-propagation
https://en.wikipedia.org/wiki/Latent_variable
https://en.wikipedia.org/wiki/Latent_variable
https://en.wikipedia.org/wiki/Restricted_Boltzmann_machine
https://en.wikipedia.org/wiki/Lower_bound
https://en.wikipedia.org/wiki/Log_likelihood
https://en.wikipedia.org/wiki/Generative_model
https://en.wikipedia.org/wiki/Google_Brain
https://en.wikipedia.org/wiki/Andrew_Ng
https://en.wikipedia.org/wiki/Jeff_Dean_(computer_scientist)
https://en.wikipedia.org/wiki/YouTube
https://en.wikipedia.org/wiki/GPU
https://en.wikipedia.org/wiki/J%C3%BCrgen_Schmidhuber
https://en.wikipedia.org/wiki/J%C3%BCrgen_Schmidhuber
https://en.wikipedia.org/wiki/IDSIA
https://en.wikipedia.org/wiki/Back-propagation
https://en.wikipedia.org/wiki/Yann_LeCun
https://en.wikipedia.org/wiki/NYU


392 CHAPTER 62. DEEP LEARNING

every few weeks.

62.4.1 Deep neural networks

A deep neural network (DNN) is an artificial neu-
ral network with multiple hidden layers of units be-
tween the input and output layers.[2][4] Similar to shal-
low ANNs, DNNs can model complex non-linear re-
lationships. DNN architectures, e.g., for object detec-
tion and parsing generate compositional models where
the object is expressed as layered composition of image
primitives.[63] The extra layers enable composition of fea-
tures from lower layers, giving the potential of modeling
complex data with fewer units than a similarly performing
shallow network.[2]

DNNs are typically designed as feedforward networks,
but recent research has successfully applied the deep
learning architecture to recurrent neural networks for ap-
plications such as language modeling.[64] Convolutional
deep neural networks (CNNs) are used in computer vi-
sion where their success is well-documented.[65] More
recently, CNNs have been applied to acoustic modeling
for automatic speech recognition (ASR), where they have
shown success over previous models.[34] For simplicity, a
look at training DNNs is given here.
A DNN can be discriminatively trained with the standard
backpropagation algorithm. The weight updates can be
done via stochastic gradient descent using the following
equation:

wij(t+ 1) = wij(t) + η
∂C

∂wij

Here, η is the learning rate, and C is the cost func-
tion. The choice of the cost function depends on fac-
tors such as the learning type (supervised, unsuper-
vised, reinforcement, etc.) and the activation function.
For example, when performing supervised learning on
a multiclass classification problem, common choices for
the activation function and cost function are the softmax
function and cross entropy function, respectively. The
softmax function is defined as pj = exp(xj)∑

k exp(xk)
where pj

represents the class probability and xj and xk represent
the total input to units j and k respectively. Cross en-
tropy is defined as C = −

∑
j dj log(pj) where dj rep-

resents the target probability for output unit j and pj is
the probability output for j after applying the activation
function.[66]

62.4.2 Issues with deep neural networks

As with ANNs, many issues can arise with DNNs if they
are naively trained. Two common issues are overfitting
and computation time.

DNNs are prone to overfitting because of the added lay-
ers of abstraction, which allow them to model rare de-
pendencies in the training data. Regularization meth-
ods such as weight decay ( ℓ2 -regularization) or sparsity
( ℓ1 -regularization) can be applied during training to
help combat overfitting.[67] A more recent regularization
method applied to DNNs is dropout regularization. In
dropout, some number of units are randomly omitted
from the hidden layers during training. This helps to
break the rare dependencies that can occur in the training
data [68]

Backpropagation and gradient descent have been the pre-
ferred method for training these structures due to the
ease of implementation and their tendency to converge
to better local optima in comparison with other training
methods. However, these methods can be computation-
ally expensive, especially when being used to train DNNs.
There are many training parameters to be considered with
a DNN, such as the size (number of layers and number
of units per layer), the learning rate and initial weights.
Sweeping through the parameter space for optimal pa-
rameters may not be feasible due to the cost in time and
computational resources. Various 'tricks’ such as using
mini-batching (computing the gradient on several train-
ing examples at once rather than individual examples) [69]

have been shown to speed up computation. The large
processing throughput of GPUs has produced significant
speedups in training, due to the matrix and vector com-
putations required being well suited for GPUs.[4] Radical
alternatives to backprop such as Extreme Learning Ma-
chines,[70] “No-prop” networks [71] and Weightless neural
networks [72] are gaining attention.

62.4.3 Deep belief networks

Main article: Deep belief network
A deep belief network (DBN) is a probabilistic,

generative model made up of multiple layers of hidden
units. It can be looked at as a composition of simple learn-
ing modules that make up each layer.[73]

A DBN can be used for generatively pre-training a DNN
by using the learned weights as the initial weights. Back-
propagation or other discriminative algorithms can then
be applied for fine-tuning of these weights. This is par-
ticularly helpful in situations where limited training data
is available, as poorly initialized weights can have signifi-
cant impact on the performance of the final model. These
pre-trained weights are in a region of the weight space that
is closer to the optimal weights (as compared to just ran-
dom initialization). This allows for both improved mod-
eling capability and faster convergence of the fine-tuning
phase.[74]

A DBN can be efficiently trained in an unsupervised,
layer-by-layer manner where the layers are typically made
of restricted Boltzmann machines (RBM). A description
of training a DBN via RBMs is provided below. An RBM
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A restricted Boltzmann machine (RBM) with fully connected visi-
ble and hidden units. Note there are no hidden-hidden or visible-
visible connections.

is an undirected, generative energy-based model with an
input layer and single hidden layer. Connections only ex-
ist between the visible units of the input layer and the hid-
den units of the hidden layer; there are no visible-visible
or hidden-hidden connections.
The training method for RBMs was initially proposed
by Geoffrey Hinton for use with training “Product of
Expert” models and is known as contrastive divergence
(CD).[75] CD provides an approximation to the maximum
likelihood method that would ideally be applied for learn-
ing the weights of the RBM.[69][76]

In training a single RBM, weight updates are performed
with gradient ascent via the following equation: ∆wij(t+
1) = wij(t) + η ∂ log(p(v))

∂wij
. Here, p(v) is the prob-

ability of a visible vector, which is given by p(v) =
1
Z

∑
h e

−E(v,h) . Z is the partition function (used for
normalizing) and E(v, h) is the energy function assigned
to the state of the network. A lower energy indicates the
network is in a more “desirable” configuration. The gradi-
ent ∂ log(p(v))

∂wij
has the simple form ⟨vihj⟩data−⟨vihj⟩model

where ⟨· · · ⟩p represent averages with respect to distribu-
tion p . The issue arises in sampling ⟨vihj⟩model as this
requires running alternating Gibbs sampling for a long
time. CD replaces this step by running alternating Gibbs
sampling for n steps (values of n = 1 have empirically
been shown to perform well). After n steps, the data is
sampled and that sample is used in place of ⟨vihj⟩model .
The CD procedure works as follows:[69]

1. Initialize the visible units to a training vector.

2. Update the hidden units in parallel given the visible
units: p(hj = 1 | V) = σ(bj +

∑
i viwij) . σ

represents the sigmoid function and bj is the bias of
hj .

3. Update the visible units in parallel given the hidden
units: p(vi = 1 | H) = σ(ai +

∑
j hjwij) . ai

is the bias of vi . This is called the “reconstruction”
step.

4. Reupdate the hidden units in parallel given the re-
constructed visible units using the same equation as
in step 2.

5. Perform the weight update: ∆wij ∝ ⟨vihj⟩data −
⟨vihj⟩reconstruction .

Once an RBM is trained, another RBM can be “stacked”
atop of it to create a multilayer model. Each time an-
other RBM is stacked, the input visible layer is initialized
to a training vector and values for the units in the already-
trained RBM layers are assigned using the current weights
and biases. The final layer of the already-trained layers is
used as input to the new RBM. The new RBM is then
trained with the procedure above, and then this whole
process can be repeated until some desired stopping cri-
terion is met.[2]

Despite the approximation of CD to maximum likelihood
being very crude (CD has been shown to not follow the
gradient of any function), empirical results have shown
it to be an effective method for use with training deep
architectures.[69]

62.4.4 Convolutional neural networks

Main article: Convolutional neural network

A CNN is composed of one or more convolutional layers
with fully connected layers (matching those in typical ar-
tificial neural networks) on top. It also uses tied weights
and pooling layers. This architecture allows CNNs to
take advantage of the 2D structure of input data. In
comparison with other deep architectures, convolutional
neural networks are starting to show superior results in
both image and speech applications. They can also be
trained with standard backpropagation. CNNs are eas-
ier to train than other regular, deep, feed-forward neural
networks and have many fewer parameters to estimate,
making them a highly attractive architecture to use.[77]

62.4.5 Convolutional Deep Belief Net-
works

A recent achievement in deep learning is from the use of
convolutional deep belief networks (CDBN). A CDBN
is very similar to normal Convolutional neural network
in terms of its structure. Therefore, like CNNs they are
also able to exploit the 2D structure of images combined
with the advantage gained by pre-training in Deep belief
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network. They provide a generic structure which can be
used in many image and signal processing tasks and can
be trained in a way similar to that for Deep Belief Net-
works. Recently, many benchmark results on standard
image datasets like CIFAR [78] have been obtained using
CDBNs.[79]

62.4.6 Deep Boltzmann Machines

A Deep Boltzmann Machine (DBM) is a type of bi-
nary pairwise Markov random field (undirected proba-
bilistic graphical models) with multiple layers of hidden
random variables. It is a network of symmetrically cou-
pled stochastic binary units. It comprises a set of visible
units ν ∈ {0, 1}D , and a series of layers of hidden units
h(1) ∈ {0, 1}F1 ,h(2) ∈ {0, 1}F2 , . . . ,h(L) ∈ {0, 1}FL

. There is no connection between the units of the same
layer (like RBM). For the DBM, we can write the proba-
bility which is assigned to vector ν as:

p(ν) = 1
Z

∑
h e

∑
ij W

(1)
ij νih

(1)
j +

∑
jlW

(2)
jl h

(1)
j h

(2)
l +

∑
lmW

(3)
lm h

(2)
l h(3)

m ,

where h = {h(1),h(2),h(3)} are the set of hidden units,
and θ = {W (1),W (2),W (3)} are the model parame-
ters, representing visible-hidden and hidden-hidden sym-
metric interaction, since they are undirected links. As it
is clear by setting W (2) = 0 and W (3) = 0 the net-
work becomes the well-known Restricted Boltzmann ma-
chine.[80]

There are several reasons which motivate us to take ad-
vantage of deep Boltzmann machine architectures. Like
DBNs, they benefit from the ability of learning com-
plex and abstract internal representations of the input in
tasks such as object or speech recognition, with the use
of limited number of labeled data to fine-tune the rep-
resentations built based on a large supply of unlabeled
sensory input data. However, unlike DBNs and deep
convolutional neural networks, they adopt the inference
and training procedure in both directions, bottom-up and
top-down pass, which enable the DBMs to better unveil
the representations of the ambiguous and complex input
structures,[81] .[82]

Since the exact maximum likelihood learning is intractable
for the DBMs, we may perform the approximate max-
imum likelihood learning. There is another possibility,
to use mean-field inference to estimate data-dependent
expectations, incorporation with a Markov chain Monte
Carlo (MCMC) based stochastic approximation technique
to approximate the expected sufficient statistics of the
model.[80]

We can see the difference between DBNs and DBM. In
DBNs, the top two layers form a restricted Boltzmann
machine which is an undirected graphical model, but the
lower layers form a directed generative model.
Apart from all the advantages of DBMs discussed so far,
they have a crucial disadvantage which limits the per-

formance and functionality of this kind of architecture.
The approximate inference, which is based on mean-
field method, is about 25 to 50 times slower than a sin-
gle bottom-up pass in DBNs. This time consuming task
make the joint optimization, quite impractical for large
data sets, and seriously restricts the use of DBMs in tasks
such as feature representations (the mean-field inference
have to be performed for each new test input).[83]

62.4.7 Stacked (Denoising) Auto-Encoders

The auto encoder idea is motivated by the concept of good
representation. For instance for the case of classifier it is
possible to define that a good representation is one that will
yield a better performing classifier.
An encoder is referred to a deterministic mapping fθ that
transforms an input vector x into hidden representation
y, where θ = {W , b} , W is the weight matrix and b is
an offset vector (bias). On the contrary a decoder maps
back the hidden representation y to the reconstructed in-
put z via gθ . The whole process of auto encoding is to
compare this reconstructed input to the original and try
to minimize this error to make the reconstructed value as
close as possible to the original.
In stacked denoising auto encoders, the partially corrupted
output is cleaned (denoised). This fact has been intro-
duced in [84] with a specific approach to good represen-
tation, a good representation is one that can be obtained
robustly from a corrupted input and that will be useful for
recovering the corresponding clean input. Implicit in this
definition are the ideas of

• The higher level representations are relatively stable
and robust to the corruption of the input;

• It is required to extract features that are useful for
representation of the input distribution.

The algorithm consists of multiple steps; starts by a
stochastic mapping of x to x̃ through qD(x̃|x) , this is
the corrupting step. Then the corrupted input x̃ passes
through a basic auto encoder process and is mapped to a
hidden representation y = fθ(x̃) = s(Wx̃+ b) . From
this hidden representation we can reconstruct z = gθ(y)
. In the last stage a minimization algorithm is done in or-
der to have a z as close as possible to uncorrupted input x
. The reconstruction error LH(x, z) might be either the
cross-entropy loss with an affine-sigmoid decoder, or the
squared error loss with an affine decoder.[84]

In order to make a deep architecture, auto encoders stack
one on top of another. Once the encoding function fθ
of the first denoising auto encoder is learned and used to
uncorrupt the input (corrupted input), we can train the
second level.[84]

Once the stacked auto encoder is trained, its output might
be used as the input to a supervised learning algorithm
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such as support vector machine classifier or a multiclass
logistic regression.[84]

62.4.8 Deep Stacking Networks

One of the deep architectures recently introduced in[85]

which is based on building hierarchies with blocks of
simplified neural network modules, is called deep con-
vex network. They are called “convex” because of the
formulation of the weights learning problem, which is
a convex optimization problem with a closed-form solu-
tion. The network is also called the deep stacking network
(DSN),[86] emphasizing on this fact that a similar mecha-
nism as the stacked generalization is used.[87]

The DSN blocks, each consisting of a simple, easy-to-
learn module, are stacked to form the overall deep net-
work. It can be trained block-wise in a supervised fash-
ion without the need for back-propagation for the entire
blocks.[88]

As designed in [85] each block consists of a simplified
MLP with a single hidden layer. It comprises a weight
matrixU as the connection between the logistic sigmoidal
units of the hidden layer h to the linear output layer y,
and a weight matrix W which connects each input of the
blocks to their respective hidden layers. If we assume
that the target vectors t be arranged to form the columns
of T (the target matrix), let the input data vectors x be
arranged to form the columns of X, let H = σ(W TX)
denote the matrix of hidden units, and assume the lower-
layer weightsW are known (training layer-by-layer). The
function performs the element-wise logistic sigmoid op-
eration. Then learning the upper-layer weight matrix U
given other weights in the network can be formulated as
a convex optimization problem:

min
UT

f = ||UTH − T ||2F ,

which has a closed-form solution. The input to the first
block X only contains the original data, however in the
upper blocks in addition to this original (raw) data there
is a copy of the lower-block(s) output y.
In each block an estimate of the same final label class y
is produced, then this estimated label concatenated with
original input to form the expanded input for the upper
block. In contrast with other deep architectures, such as
DBNs, the goal is not to discover the transformed feature
representation. Regarding the structure of the hierarchy
of this kind of architecture, it makes the parallel training
straightforward as the problem is naturally a batch-mode
optimization one. In purely discriminative tasks DSN
performance is better than the conventional DBN.[86]

62.4.9 Tensor Deep Stacking Networks (T-
DSN)

This architecture is an extension of the DSN. It improves
the DSN in two important ways, using the higher order
information by means of covariance statistics and trans-
forming the non-convex problem of the lower-layer to a
convex sub-problem of the upper-layer.[89]

Unlike the DSN, the covariance statistics of the data is
employed using a bilinear mapping from two distinct sets
of hidden units in the same layer to predictions via a third-
order tensor.
The scalability and parallelization are the two important
factors in the learning algorithms which are not consid-
ered seriously in the conventional DNNs.[90][91][92] All
the learning process for the DSN (and TDSN as well) is
done on a batch-mode basis so as to make the paralleliza-
tion possible on a cluster of CPU or GPU nodes.[85][86]

Parallelization gives the opportunity to scale up the de-
sign to larger (deeper) architectures and data sets.
The basic architecture is suitable for diverse tasks such as
classification and regression.

62.4.10 Spike-and-Slab RBMs (ssRBMs)

The need for real-valued inputs which are employed in
Gaussian RBMs (GRBMs), motivates scientists seeking
new methods. One of these methods is the spike and slab
RBM (ssRBMs), which models continuous-valued inputs
with strictly binary latent variables.[93]

Similar to basic RBMs and its variants, the spike and
slab RBM is a bipartite graph. Like GRBM, the visi-
ble units (input) are real-valued. The difference arises
in the hidden layer, where each hidden unit come along
with a binary spike variable and real-valued slab vari-
able. These terms (spike and slab) come from the statis-
tics literature,[94] and refer to a prior including a mixture
of two components. One is a discrete probability mass at
zero called spike, and the other is a density over continu-
ous domain.[95][95]

There is also an extension of the ssRBM model, which
is called µ-ssRBM. This variant provides extra modeling
capacity to the architecture using additional terms in the
energy function. One of these terms enable model to form
a conditional distribution of the spike variables by means
of marginalizing out the slab variables given an observa-
tion.

62.4.11 Compound Hierarchical-Deep
Models

The class architectures called compound HD models,
where HD stands for Hierarchical-Deep are structured as
a composition of non-parametric Bayesian models with
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deep networks. The features, learned by deep architec-
tures such as DBNs,[96] DBMs,[81] deep auto encoders,[97]

convolutional variants,[98][99] ssRBMs,[95] deep coding
network,[100] DBNs with sparse feature learning,[101] re-
cursive neural networks,[102] conditional DBNs,[103] de-
noising auto encoders,[104] are able to provide better rep-
resentation for more rapid and accurate classification
tasks with high-dimensional training data sets. However,
they are not quite powerful in learning novel classes with
few examples, themselves. In these architectures, all units
through the network are involved in the representation of
the input (distributed representations), and they have to be
adjusted together (high degree of freedom). However, if
we limit the degree of freedom, we make it easier for the
model to learn new classes out of few training samples
(less parameters to learn). Hierarchical Bayesian (HB)
models, provide learning from few examples, for example
[105][106][107][108][109] for computer vision, statistics, and
cognitive science.
Compound HD architectures try to integrate both charac-
teristics of HB and deep networks. The compound HDP-
DBM architecture, a hierarchical Dirichlet process (HDP)
as a hierarchical model, incorporated with DBM archi-
tecture. It is a full generative model, generalized from
abstract concepts flowing through the layers of the model,
which is able to synthesize new examples in novel classes
that look reasonably natural. Note that all the levels
are learned jointly by maximizing a joint log-probability
score.[110]

Consider a DBM with three hidden layers, the probability
of a visible input ν is:

p(ν, ψ) = 1
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where h = {h(1),h(2),h(3)} are the set of hidden units,
and ψ = {W (1),W (2),W (3)} are the model parame-
ters, representing visible-hidden and hidden-hidden sym-
metric interaction terms.
After a DBM model has been learned, we have an
undirected model that defines the joint distribution
P (ν, h1, h2, h3) . One way to express what has been
learned is the conditional model P (ν, h1, h2|h3) and a
prior term P (h3) .
The part P (ν, h1, h2|h3) , represents a conditional DBM
model, which can be viewed as a two-layer DBM but with
bias terms given by the states of h3 :
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62.4.12 Deep Coding Networks

There are several advantages to having a model which can
actively update itself to the context in data. One of these
methods arises from the idea to have a model which is
able to adjust its prior knowledge dynamically according
to the context of the data. Deep coding network (DPCN)
is a predictive coding scheme where top-down informa-

tion is used to empirically adjust the priors needed for
the bottom-up inference procedure by means of a deep
locally connected generative model. This is based on ex-
tracting sparse features out of time-varying observations
using a linear dynamical model. Then, a pooling strategy
is employed in order to learn invariant feature represen-
tations. Similar to other deep architectures, these blocks
are the building elements of a deeper architecture where
greedy layer-wise unsupervised learning are used. Note
that the layers constitute a kind of Markov chain such that
the states at any layer are only dependent on the succeed-
ing and preceding layers.
Deep predictive coding network (DPCN)[111] predicts the
representation of the layer, by means of a top-down ap-
proach using the information in upper layer and also tem-
poral dependencies from the previous states, it is called
It is also possible to extend the DPCN to form a
convolutional network.[111]

62.4.13 Multilayer Kernel Machine

The Multilayer Kernel Machine (MKM) as introduced in
[112] is a way of learning highly nonlinear functions with
the iterative applications of weakly nonlinear kernels.
They use the kernel principal component analysis (KPCA),
in,[113] as method for unsupervised greedy layer-wise pre-
training step of the deep learning architecture.
Layer l + 1 -th learns the representation of the previous
layer l , extracting the nl principal component (PC) of the
projection layer l output in the feature domain induced
by the kernel. For the sake of dimensionality reduction
of the updated representation in each layer, a supervised
strategy is proposed to select the best informative features
among the ones extracted by KPCA. The process is:

• ranking the nl features according to their mutual in-
formation with the class labels;

• for different values of K and ml ∈ {1, . . . , nl} ,
compute the classification error rate of a K-nearest
neighbor (K-NN) classifier using only the ml most
informative features on a validation set;

• the value ofml with which the classifier has reached
the lowest error rate determines the number of fea-
tures to retain.

There are some drawbacks in using the KPCA method as
the building cells of an MKM.
Another, more straightforward method of integrating ker-
nel machine into the deep learning architecture was de-
veloped by Microsoft researchers for spoken language un-
derstanding applications.[114] The main idea is to use a
kernel machine to approximate a shallow neural net with
an infinite number of hidden units, and then to use the
stacking technique to splice the output of the kernel ma-
chine and the raw input in building the next, higher level
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of the kernel machine. The number of the levels in this
kernel version of the deep convex network is a hyper-
parameter of the overall system determined by cross val-
idation.

62.4.14 Deep Q-Networks

This is the latest class of deep learning models targeted
for reinforcement learning, published in February 2015
in Nature[115] The application discussed in this paper is
limited to ATARI gaming, but the implications for other
potential applications are profound.

62.4.15 Memory networks

Integrating external memory component with artificial
neural networks has a long history dating back to early
research in distributed representations [116] and self-
organizing maps. E.g. in sparse distributed memory or
HTM the patterns encoded by neural networks are used
as memory addresses for content-addressable memory,
with “neurons” essentially serving as address encoders
and decoders.
In the 1990s and 2000s, there was a lot of related work
with differentiable long-term memories. For example:

• Differentiable push and pop actions for alterna-
tive memory networks called neural stack ma-
chines[117][118]

• Memory networks where the control network’s ex-
ternal differentiable storage is in the fast weights of
another network [119]

• The LSTM “forget gates” [120]

• Self-referential RNNs with special output units for
addressing and rapidly manipulating each of the
RNN’s own weights in differentiable fashion (so the
external storage is actually internal) [121][122]

More recently deep learning was shown to be useful in
semantic hashing[123] where a deep graphical model the
word-count vectors[124] obtained from a large set of doc-
uments. Documents are mapped to memory addresses in
such a way that semantically similar documents are lo-
cated at nearby addresses. Documents similar to a query
document can then be found by simply accessing all the
addresses that differ by only a few bits from the address
of the query document.
Neural Turing Machines[125] developed by Google Deep-
Mind extend the capabilities of deep neural networks by
coupling them to external memory resources, which they
can interact with by attentional processes. The combined

system is analogous to a Turing Machine but is differ-
entiable end-to-end, allowing it to be efficiently trained
with gradient descent. Preliminary results demonstrate
that Neural Turing Machines can infer simple algorithms
such as copying, sorting, and associative recall from input
and output examples.
Memory Networks[126] is another extension to neural net-
works incorporating long-term memory which was devel-
oped by Facebook research. The long-term memory can
be read and written to, with the goal of using it for pre-
diction. These models have been applied in the context
of question answering (QA) where the long-term mem-
ory effectively acts as a (dynamic) knowledge base, and
the output is a textual response.

62.5 Applications

62.5.1 Automatic speech recognition

The results shown in the table below are for automatic
speech recognition on the popular TIMIT data set. This
is a common data set used for initial evaluations of deep
learning architectures. The entire set contains 630 speak-
ers from eight major dialects of American English, with
each speaker reading 10 different sentences.[127] Its small
size allows many different configurations to be tried ef-
fectively with it. More importantly, the TIMIT task con-
cerns phone-sequence recognition, which, unlike word-
sequence recognition, permits very weak “language mod-
els” and thus the weaknesses in acoustic modeling aspects
of speech recognition can be more easily analyzed. It
was such analysis on TIMIT contrasting the GMM (and
other generative models of speech) vs. DNN models car-
ried out by Li Deng and collaborators around 2009-2010
that stimulated early industrial investment on deep learn-
ing technology for speech recognition from small to large
scales,[25][36] eventually leading to pervasive and domi-
nant uses of deep learning in speech recognition indus-
try. That analysis was carried out with comparable per-
formance (less than 1.5% in error rate) between discrimi-
native DNNs and generative models. The error rates pre-
sented below, including these early results and measured
as percent phone error rates (PER), have been summa-
rized over a time span of the past 20 years:
Extension of the success of deep learning from TIMIT
to large vocabulary speech recognition occurred in 2010
by industrial researchers, where large output layers of
the DNN based on context dependent HMM states con-
structed by decision trees were adopted.[130][131] See
comprehensive reviews of this development and of the
state of the art as of October 2014 in the recent Springer
book from Microsoft Research.[37] See also the related
background of automatic speech recognition and the im-
pact of various machine learning paradigms including no-
tably deep learning in a recent overview article.[132]
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One fundamental principle of deep learning is to do away
with hand-crafted feature engineering and to use raw fea-
tures. This principle was first explored successfully in the
architecture of deep autoencoder on the “raw” spectro-
gram or linear filter-bank features,[133] showing its su-
periority over the Mel-Cepstral features which contain
a few stages of fixed transformation from spectrograms.
The true “raw” features of speech, waveforms, have more
recently been shown to produce excellent larger-scale
speech recognition results.[134]

Since the initial successful debut of DNNs for speech
recognition around 2009-2011, there has been huge
progress made. This progress (as well as future direc-
tions) has been summarized into the following eight ma-
jor areas:[1][27][37] 1) Scaling up/out and speedup DNN
training and decoding; 2) Sequence discriminative train-
ing of DNNs; 3) Feature processing by deep models
with solid understanding of the underlying mechanisms;
4) Adaptation of DNNs and of related deep models;
5) Multi-task and transfer learning by DNNs and re-
lated deep models; 6) Convolution neural networks and
how to design them to best exploit domain knowledge
of speech; 7) Recurrent neural network and its rich
LSTM variants; 8) Other types of deep models includ-
ing tensor-based models and integrated deep genera-
tive/discriminative models.
Large-scale automatic speech recognition is the first and
the most convincing successful case of deep learning in
the recent history, embraced by both industry and aca-
demic across the board. Between 2010 and 2014, the
two major conferences on signal processing and speech
recognition, IEEE-ICASSP and Interspeech, have seen
near exponential growth in the numbers of accepted pa-
pers in their respective annual conference papers on the
topic of deep learning for speech recognition. More im-
portantly, all major commercial speech recognition sys-
tems (e.g., Microsoft Cortana, Xbox, Skype Translator,
Google Now, Apple Siri, Baidu and iFlyTek voice search,
and a range of Nuance speech products, etc.) nowa-
days are based on deep learning methods.[1][135][136] See
also the recent media interview with the CTO of Nuance
Communications.[137]

The wide-spreading success in speech recognition
achieved by 2011 was followed shortly by large-scale im-
age recognition described next.

62.5.2 Image recognition

A common evaluation set for image classification is the
MNIST database data set. MNIST is composed of hand-
written digits and includes 60000 training examples and
10000 test examples. Similar to TIMIT, its small size
allows multiple configurations to be tested. A compre-
hensive list of results on this set can be found in.[138] The
current best result on MNIST is an error rate of 0.23%,
achieved by Ciresan et al. in 2012.[139]

The real impact of deep learning in image or object
recognition, one major branch of computer vision, was
felt in the fall of 2012 after the team of Geoff Hinton and
his students won the large-scale ImageNet competition by
a significant margin over the then-state-of-the-art shallow
machine learning methods. The technology is based on
20-year-old deep convolutional nets, but with much larger
scale on a much larger task, since it had been learned
that deep learning works quite well on large-scale speech
recognition. In 2013 and 2014, the error rate on the Im-
ageNet task using deep learning was further reduced at a
rapid pace, following a similar trend in large-scale speech
recognition.
As in the ambitious moves from automatic speech recog-
nition toward automatic speech translation and under-
standing, image classification has recently been extended
to the more ambitious and challenging task of automatic
image captioning, in which deep learning is the essential
underlying technology. [140] [141] [142] [143]

One example application is a car computer said to be
trained with deep learning, which may be able to let cars
interpret 360° camera views.[144]

62.5.3 Natural language processing

Neural networks have been used for implementing
language models since the early 2000s.[145] Key tech-
niques in this field are negative sampling[146] and word
embedding. A word embedding, such as word2vec, can
be thought of as a representational layer in a deep learn-
ing architecture transforming an atomic word into a po-
sitional representation of the word relative to other words
in the dataset; the position is represented as a point in a
vector space. Using a word embedding as an input layer
to a recursive neural network (RNN) allows for the train-
ing of the network to parse sentences and phrases using an
effective compositional vector grammar. A compositional
vector grammar can be thought of as probabilistic context
free grammar (PCFG) implemented by a recursive neu-
ral network.[147] Recursive autoencoders built atop word
embeddings have been trained to assess sentence simi-
larity and detect paraphrasing.[147] Deep neural architec-
tures have achieved state-of-the-art results in many tasks
in natural language processing, such as constituency pars-
ing,[148] sentiment analysis,[149] information retrieval,[150]
[151] machine translation, [152] [153] contextual entity link-
ing, [154] and other areas of NLP. [155]

62.5.4 Drug discovery and toxicology

The pharmaceutical industry faces the problem that a
large percentage of candidate drugs fail to reach the mar-
ket. These failures of chemical compounds are caused by
insufficient efficacy on the biomolecular target (on-target
effect), undetected and undesired interactions with other
biomolecules (off-target effects), or unanticipated toxic
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effects.[156][157] In 2012 a team led by George Dahl won
the “Merck Molecular Activity Challenge” using multi-
task deep neural networks to predict the biomolecular tar-
get of a compound.[158][159] In 2014 Sepp Hochreiter’s
group used Deep Learning to detect off-target and toxic
effects of environmental chemicals in nutrients, house-
hold products and drugs and won the “Tox21 Data Chal-
lenge” of NIH, FDA and NCATS.[160][161] These im-
pressive successes show Deep Learning may be superior
to other virtual screening methods.[162][163] Researchers
from Google and Stanford enhanced Deep Learning for
drug discovery by combining data from a variety of
sources.[164]

62.5.5 Customer relationship manage-
ment

Recently success has been reported with application of
deep reinforcement learning in direct marketing settings,
illustrating suitability of the method for CRM automa-
tion. A neural network was used to approximate the value
of possible direct marketing actions over the customer
state space, defined in terms of RFM variables. The esti-
mated value function was shown to have a natural inter-
pretation as CLV (customer lifetime value).[165]

62.6 Deep learning in the human
brain

Computational deep learning is closely related to a class
of theories of brain development (specifically, neocorti-
cal development) proposed by cognitive neuroscientists
in the early 1990s.[166] An approachable summary of this
work is Elman, et al.'s 1996 book “Rethinking Innate-
ness” [167] (see also: Shrager and Johnson;[168] Quartz and
Sejnowski [169]). As these developmental theories were
also instantiated in computational models, they are tech-
nical predecessors of purely computationally-motivated
deep learning models. These developmental models share
the interesting property that various proposed learning
dynamics in the brain (e.g., a wave of nerve growth factor)
conspire to support the self-organization of just the sort of
inter-related neural networks utilized in the later, purely
computational deep learning models; and such computa-
tional neural networks seem analogous to a view of the
brain’s neocortex as a hierarchy of filters in which each
layer captures some of the information in the operating
environment, and then passes the remainder, as well as
modified base signal, to other layers further up the hi-
erarchy. This process yields a self-organizing stack of
transducers, well-tuned to their operating environment.
As described in The New York Times in 1995: "...the
infant’s brain seems to organize itself under the influ-
ence of waves of so-called trophic-factors ... different
regions of the brain become connected sequentially, with

one layer of tissue maturing before another and so on un-
til the whole brain is mature.” [170]

The importance of deep learning with respect to the evo-
lution and development of human cognition did not es-
cape the attention of these researchers. One aspect of
human development that distinguishes us from our near-
est primate neighbors may be changes in the timing of
development.[171] Among primates, the human brain re-
mains relatively plastic until late in the post-natal pe-
riod, whereas the brains of our closest relatives are more
completely formed by birth. Thus, humans have greater
access to the complex experiences afforded by being
out in the world during the most formative period of
brain development. This may enable us to “tune in” to
rapidly changing features of the environment that other
animals, more constrained by evolutionary structuring of
their brains, are unable to take account of. To the ex-
tent that these changes are reflected in similar timing
changes in hypothesized wave of cortical development,
they may also lead to changes in the extraction of infor-
mation from the stimulus environment during the early
self-organization of the brain. Of course, along with this
flexibility comes an extended period of immaturity, dur-
ing which we are dependent upon our caretakers and our
community for both support and training. The theory
of deep learning therefore sees the coevolution of cul-
ture and cognition as a fundamental condition of human
evolution.[172]

62.7 Commercial activities

Deep learning is often presented as a step towards re-
alising strong AI[173] and thus many organizations have
become interested in its use for particular applications.
Most recently, in December 2013, Facebook announced
that it hired Yann LeCun to head its new artificial intel-
ligence (AI) lab that will have operations in California,
London, and New York. The AI lab will be used for
developing deep learning techniques that will help Face-
book do tasks such as automatically tagging uploaded pic-
tures with the names of the people in them.[174]

In March 2013, Geoffrey Hinton and two of his graduate
students, Alex Krizhevsky and Ilya Sutskever, were hired
by Google. Their work will be focused on both improv-
ing existing machine learning products at Google and also
help deal with the growing amount of data Google has.
Google also purchased Hinton’s company, DNNresearch.
In 2014 Google also acquired DeepMind Technologies, a
British start-up that developed a system capable of learn-
ing how to play Atari video games using only raw pixels
as data input.
Also in 2014, Microsoft established The Deep Learning
Technology Center in its MSR division, amassing deep
learning experts for application-focused activities.
And Baidu hired Andrew Ng to head their new Silicon
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Valley based research lab focusing on deep learning.

62.8 Criticism and comment

Given the far-reaching implications of artificial intelli-
gence coupled with the realization that deep learning is
emerging as one of its most powerful techniques, the sub-
ject is understandably attracting both criticism and com-
ment, and in some cases from outside the field of com-
puter science itself.
A main criticism of deep learning concerns the lack
of theory surrounding many of the methods. Most of
the learning in deep architectures is just some form of
gradient descent. While gradient descent has been under-
stood for a while now, the theory surrounding other algo-
rithms, such as contrastive divergence is less clear (i.e.,
Does it converge? If so, how fast? What is it approxi-
mating?). Deep learning methods are often looked at as
a black box, with most confirmations done empirically,
rather than theoretically.
Others point out that deep learning should be looked
at as a step towards realizing strong AI, not as an all-
encompassing solution. Despite the power of deep learn-
ing methods, they still lack much of the functionality
needed for realizing this goal entirely. Research psychol-
ogist Gary Marcus has noted that:
“Realistically, deep learning is only part of the larger chal-
lenge of building intelligent machines. Such techniques
lack ways of representing causal relationships (...) have
no obvious ways of performing logical inferences, and
they are also still a long way from integrating abstract
knowledge, such as information about what objects are,
what they are for, and how they are typically used. The
most powerful A.I. systems, like Watson (...) use tech-
niques like deep learning as just one element in a very
complicated ensemble of techniques, ranging from the
statistical technique of Bayesian inference to deductive
reasoning.” [175]

To the extent that such a viewpoint implies, without in-
tending to, that deep learning will ultimately constitute
nothing more than the primitive discriminatory levels of a
comprehensive future machine intelligence, a recent pair
of speculations regarding art and artificial intelligence[176]

offers an alternative and more expansive outlook. The
first such speculation is that it might be possible to train
a machine vision stack to perform the sophisticated task
of discriminating between “old master” and amateur fig-
ure drawings; and the second is that such a sensitivity
might in fact represent the rudiments of a non-trivial
machine empathy. It is suggested, moreover, that such
an eventuality would be in line with both anthropology,
which identifies a concern with aesthetics as a key element
of behavioral modernity, and also with a current school
of thought which suspects that the allied phenomenon
of consciousness, formerly thought of as a purely high-

order phenomenon, may in fact have roots deep within
the structure of the universe itself.
In further reference to the idea that a significant degree of
artistic sensitivity might inhere within relatively low lev-
els, whether biological or digital, of the cognitive hierar-
chy, there has recently been published a series of graphic
representations of the internal states of deep (20-30 lay-
ers) neural networks attempting to discern within essen-
tially random data the images on which they have been
trained,[177] and these show a striking degree of what
can only be described as visual creativity. This work,
moreover, has captured a remarkable level of public at-
tention, with the original research notice receiving well
in excess of one thousand comments, and The Guardian
coverage[178] achieving the status of most frequently ac-
cessed article on that newspaper’s web site.
Some currently popular and successful deep learning ar-
chitectures display certain problematical behaviors[179]

(e.g. confidently classifying random data as belonging to
a familiar category of nonrandom images;[180] and mis-
classifying miniscule perturbations of correctly classified
images [181]). The creator of OpenCog, Ben Goertzel hy-
pothesized [179] that these behaviors are tied with lim-
itations in the internal representations learned by these
architectures, and that these same limitations would in-
hibit integration of these architectures into heterogeneous
multi-component AGI architectures. It is suggested that
these issues can be worked around by developing deep
learning architectures that internally form states homolo-
gous to image-grammar [182] decompositions of observed
entities and events.[179] Learning a grammar (visual or
linguistic) from training data would be equivalent to re-
stricting the system to commonsense reasoning which op-
erates on concepts in terms of production rules of the
grammar, and is a basic goal of both human language
acquisition [183] and A.I. (Also see Grammar induction
[184])

62.9 Deep learning software li-
braries

• Torch - An open source software library for machine
learning based on the Lua programming language.

• Theano - An open source machine learning library
for Python.

• H2O.ai - An open source machine learning platform
written in Java with a parallel architecture.

• Deeplearning4j - An open source deep learning li-
bray written for Java. It provides parallelization with
CPUs and GPUs.

• OpenNN - An open source C++ library which im-
plements deep neural networks and provides paral-
lelization with CPUs.
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• NVIDIA cuDNN - A GPU-accelerated library of
primitives for deep neural networks.

• DeepLearnToolbox - A Matlab/Octave toolbox for
deep learning.

• convnetjs - A Javascript library for training deep
learning models. It contains online demos.

• Gensim - A toolkit for natural language processing
implemented in the Python programming language.

• Caffe - A deep learning framework .

• Apache SINGA[185] - A deep learning platform de-
veloped for scalability, usability and extensibility.

62.10 See also

• Sparse coding

• Compressed Sensing

• Connectionism

• Self-organizing map

• Applications of artificial intelligence

• List of artificial intelligence projects

• Reservoir computing

• Liquid state machine

• Echo state network
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Editor, YdJ, T lanuza, BioMeow, Madan Pokharel, Pbravo2, Dodynamic, Evolutionvisions, Wstevens2090, Zeus000000, Charmingpianist,
ChamithN, Feynman1918, Shrestha sumit, Yoon Aris, Dorianluparu, Junbibi, Pythagoros, SpRu01, Comp-heur-intel, Praneshyadav1,
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• Business intelligence Source: https://en.wikipedia.org/wiki/Business_intelligence?oldid=667392522 Contributors: Manning Bartlett, Ant,
Chuq, Leandrod, Michael Hardy, Norm, Nixdorf, Kku, SebastianHelm, Ellywa, Ronz, Mkoval, Elvis, Mydogategodshat, Jay, Rednblu,
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Pinethicket, Rayrubenstein, Qqppqqpp, Triplestop, Jim380, Serols, Dnedzel, Jandalhandler, Steelsabre, Ordnascrazy, Hyphen DJW, ITPer-
forms, Ethansdad, Genuinedifference, Wondigoma, Iaantheron, Ansumang, Crysb, Dr.apostrophe, Goyalaishwarya, Sulhan, Vasant Dhar,
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Nneonneo, Tardis, Hugeride, Bgwhite, YurikBot, Wavelength, Jlc46, KSmrq, Philopedia, Grafen, Deodar~enwiki, Witger, Bordaigorl, Scs,
Syrthiss, Arthur Rubin, JahJah, Zvika, KnightRider~enwiki, SmackBot, Unyoyega, DanielPenfield, Tgdwyer, Oli Filth, Kostmo, DHN-
bot~enwiki, Ladislav Mecir, Rludlow, Tamfang, Berland, Memming, G716, Lambiam, Derek farn, Dicklyon, Theswampman, Ichoran,
Tudy77, CapitalR, Harold f, Tensheapz, Ezrakilty, Cydebot, Zzzmarcus, Talgalili, Thijs!bot, Naucer, Tolstoy the Cat, MattWatt, Daniel
il, Escarbot, JEBrown87544, Woollymammoth, And4e, Daytona2, JAnDbot, Eromana, Gavia immer, Magioladitis, Albmont, Jllm06,
Risujin, MyNameIsNeo, Livingthingdan, Jkjo, User A1, AllenDowney, Glrx, Pharaoh of the Wizards, Vi2, Jiuguang Wang, Baiusmc,
DorganBot, PesoSwe, Larryisgood, Nevillerichards, Jmath666, Dfarrar, Forwardmeasure, Sbratu, Bpringlemeir, Petergans, BotMultichill,
Zbvhs, MinorContributor, KoenDelaere, Lourakis, Mika.fischer, JackSchmidt, Water and Land, Melcombe, Oekaki, ClueBot, Vikasatkin,
Turbojet, Cipherous, Lbertolotti, Geoeg, Uraza, Bender2k14, Sun Creator, Brews ohare, Muro Bot, ChrisHodgesUK, BOTarate, Qwfp,
XLinkBot, Juliusllb, NellieBly, Addbot, Mmonks, AndrewHZ, Fgnievinski, MrOllie, EconoPhysicist, Publichealthguru, Glane23, LinkFA-
Bot, Kruzmissile, Erutuon, Lightbot, Zorrobot, TeH nOmInAtOr, Meisam, Legobot, Yobot, Sked123, AnomieBOT, SomethingElse-
ToSay, GLRenderer, Ciphers, Rubinbot, Materialscientist, HanPritcher, Citation bot, JmCor, Xqbot, Urbansuperstar~enwiki, Flavio Gui-
tian, Dwlotter, RibotBOT, Hamamelis, FrescoBot, J6w5, Idfah, AstaBOTh15, Kiefer.Wolfowitz, Astropro, Stpasha, Emptiless, Sss41,
Full-date unlinking bot, Jonkerz, Weedwhacker128, Elitropia, EmausBot, WikitanvirBot, Netheril96, Cfg1777, Manyu aditya, ZéroBot,
Durka42, JonAWellner, JA(000)Davidson, AManWithNoPlan, Mayur, Zfeinst, Robin48gx, Sigma0 1, JaneCow, Mikhail Ryazanov, Clue-
Bot NG, KlappCK, Demonsquirrel, Habil zare, Hikenstuff, Helpful Pixie Bot, Mythirdself, Koertefa, Abryhn, BG19bot, Benelot, Lxlxlx82,
Vanangamudiyan, Op47, Manoguru, Simonfn, Kodiologist, ChrisGualtieri, IPWAI, Gameboy97q, Tschmidt23, Dexbot, Declaration1776,
Dough34, RichardInMiami, Mgfbinae, Leegrc, Velvel2, Yilincau, Gowk, BTM912, KasparBot and Anonymous: 208

• Newton’s method Source: https://en.wikipedia.org/wiki/Newton’{}s_method?oldid=663961763 Contributors: AxelBoldt, Lee Daniel
Crocker, Zundark, Miguel~enwiki, Roadrunner, Formulax~enwiki, Hirzel, Pichai Asokan, Patrick, JohnOwens, Michael Hardy, Pit~enwiki,
Dominus, Dcljr, Loisel, Minesweeper, Ejrh, Looxix~enwiki, Cyp, Poor Yorick, Pizza Puzzle, Hike395, Dcoetzee, Jitse Niesen, Kbk, Saltine,
AaronSw, Robbot, Jaredwf, Fredrik, Wikibot, Giftlite, Rs2, BenFrantzDale, Neilc, MarkSweep, PDH, Torokun, Sam Hocevar, Kutulu,
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Earlh, ConMan, Jon Awbrey, Henning Makholm, Bdiscoe, Wvbailey, Coredesat, Jim.belk, Magmait, Gco, JRSpriggs, CRGreathouse, Jack-
zhp, David Cooke, Holycow958, Eric Le Bigot, Cydebot, Quibik, Christian75, Billtubbs, Talgalili, Thijs!bot, Epbr123, Nonagonal Spider,
Headbomb, Martin Hedegaard, BigJohnHenry, Ben pcc, Seaphoto, CPMartin, JAnDbot, Coffee2theorems, VoABot II, JamesBWatson,
Baccyak4H, Avicennasis, David Eppstein, User A1, GuidoGer, Arithmonic, Glrx, Pbroks13, Kawautar, Rankarana, Nedunuri, K.menin,
Gombang, Chiswick Chap, Goingstuckey, Policron, Juliancolton, Homo logos, JohnBlackburne, Philip Trueman, TXiKiBoT, Anony-
mous Dissident, Broadbot, Aaron Rotenberg, Draconx, Pitel, Katzmik, Psymun747, SieBot, Gex999, Dawn Bard, Bentogoa, Flyer22,
MinorContributor, Jasondet, Smarchesini, Redmarkviolinist, Dreamofthedolphin, Cyfal, PlantTrees, ClueBot, Metaprimer, Wysprgr2005,
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Lakshmi7977, Manoelramon, Ginsuloft, Mohit.del94, Blitztall, Rob Haelterman, Loraof, Akemdh and Anonymous: 276

• Supervised learning Source: https://en.wikipedia.org/wiki/Supervised_learning?oldid=643120523 Contributors: Damian Yerrick,
LC~enwiki, Isomorph, Darius Bacon, Boleslav Bobcik, Michael Hardy, Oliver Pereira, Zeno Gantner, Chadloder, Alfio, Ahoerstemeier,
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Dromedario~enwiki, Alexbot, Ecov, Kaspar.jan, Tokorode~enwiki, Skbkekas, Stephen Milborrow, Diaa abdelmoneim, Qwfp, Bigoperm,
Sunsetsky, XLinkBot, Tofallis, W82~enwiki, Tayste, Addbot, RPHv, Fgnievinski, Doronp, MrOllie, Download, Forich, Zorrobot, Et-
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lan, Wikieconometrician, Bkearb, NGPriest, BartlebytheScrivener, Chewings72, Esaintpierre, Manipande, ClueBot NG, Mathstat, Friet-
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• Tikhonov regularization Source: https://en.wikipedia.org/wiki/Tikhonov_regularization?oldid=670944714 Contributors: Gareth Owen,
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Pablodiazgutierrez, Lantonov, TomyDuby, Asjogren, Sigmundur, STBotD, Thiverus, FghIJklm, Melcombe, Skbkekas, Addbot, Legobot,
Ptbotgourou, AnomieBOT, Angry bee, SassoBot, Richarddonkin, FrescoBot, Fortdj33, Citation bot 1, Wkretzsch, Duoduoduo, Rjwilm-
siBot, EmausBot, ZéroBot, Jotaf, Yagola, Koertefa, SciCompTeacher, Manoguru, BattyBot, Viraltux, Wsrosenthal, Evan Aad, Monkbot
and Anonymous: 59

• Regression analysis Source: https://en.wikipedia.org/wiki/Regression_analysis?oldid=670597343 Contributors: Berek, Taw,
ChangChienFu, Michael Hardy, Kku, Meekohi, Jeremymiles, Ronz, Den fjättrade ankan~enwiki, Hike395, Quickbeam, Jitse
Niesen, Taxman, Samsara, Bevo, Mazin07, Benwing, Robinh, Giftlite, Bfinn, TomViza, BrendanH, Jason Quinn, Noe, Piotrus,
APH, Israel Steinmetz, Urhixidur, Rich Farmbrough, Pak21, Paul August, Bender235, Bobo192, Cretog8, Arcadian, NickSchweitzer,
Photonique, Mdd, Jérôme, Denoir, Arthena, Riana, Avenue, Emvee~enwiki, Nvrmnd, Gene Nygaard, Krubo, Oleg Alexandrov, Abanima,
Lkinkade, Woohookitty, LOL, Marc K, Kosher Fan, BlaiseFEgan, Wayward, Btyner, Lacurus~enwiki, Gmelli, Salix alba, MZMcBride,
Pruneau, Mathbot, Valermos, Goudzovski, King of Hearts, Chobot, Jdannan, Krishnavedala, Wavelength, Wimt, Afelton, Brian Crawford,
DavidHouse~enwiki, DeadEyeArrow, Avraham, Jmchen, NorsemanII, Tribaal, Closedmouth, Arthur Rubin, Josh3580, Wikiant, Shawnc,
���� robot, Veinor, Doubleplusjeff, SmackBot, NickyMcLean, Deimos 28, Antro5, Cazort, Gilliam, Feinstein, Oli Filth, Nbarth, Ctbolt,
DHN-bot~enwiki, Gruzd, Hve, Berland, EvelinaB, Radagast83, Cybercobra, Krexer, CarlManaster, Nrcprm2026, G716, Mwtoews,
Cosmix, Tedjn, Friend of facts, Danilcha, John, FrozenMan, Tim bates, JorisvS, IronGargoyle, Beetstra, Dicklyon, AdultSwim, Kvng,
Joseph Solis in Australia, Chris53516, AbsolutDan, Ioannes Pragensis, Markjoseph125, CBM, Thomasmeeks, GargoyleMT, Ravens-
fan5252, JohnInDC, Talgalili, Wikid77, Qwyrxian, Sagaciousuk, Tolstoy the Cat, N5iln, Carpentc, AntiVandalBot, Woollymammoth,
Lcalc, JAnDbot, Goskan, Giler, QuantumEngineer, Ph.eyes, SiobhanHansa, DickStartz, JamesBWatson, Username550, Fleagle11,
Marcelobbribeiro, David Eppstein, DerHexer, Apdevries, Thenightowl~enwiki, Mbhiii, Discott, Trippingpixie, Cpiral, Gzkn, Rod57,
TomyDuby, Coppertwig, RenniePet, Policron, Bobianite, Blueharmony, Peepeedia, EconProf86, Qtea, BernardZ, TinJack, CardinalDan,
HughD, DarkArcher, Gpeilon, TXiKiBoT, SueHay, Qxz, Gnomepirate, Sintaku, Antaltamas, JhsBot, Broadbot, Beusson, Cremepuff222,
Zain Ebrahim111, Billinghurst, Kusyadi, Traderlion, Asjoseph, Petergans, Rlendog, BotMultichill, Statlearn, Gerakibot, Matthew Yeager,
Timhowardriley, Strife911, Indianarhodes, Amitabha sinha, OKBot, Water and Land, AlanUS, Savedthat, Mangledorf, Randallbsmith,
Amadas, Tesi1700, Melcombe, Denisarona, JL-Bot, Mrfebruary, Kotsiantis, Tdhaene, The Thing That Should Not Be, Sabri76,
Auntof6, DragonBot, Sterdeus, Skbkekas, Stephen Milborrow, Cfn011, Crash D 0T0, SBemper, Qwfp, Antonwg, Sunsetsky, XLinkBot,
Gerhardvalentin, Nomoskedasticity, Veryhuman, Piratejosh85, WikHead, SilvonenBot, Hess88, Addbot, Diegoful, Wootbag, Geced,
MrOllie, LaaknorBot, Lightbot, Luckas-bot, Yobot, Themfromspace, TaBOT-zerem, Andresswift, KamikazeBot, Eaihua, Tempodivalse,
AnomieBOT, Andypost, RandomAct, HanPritcher, Citation bot, Jyngyr, LilHelpa, Obersachsebot, Xqbot, Statisticsblog, TinucherianBot
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