Spaces:
Runtime error
Runtime error
feat: add nixtla pp
Browse files- .gitignore +131 -0
- app.py +374 -0
- requirements.txt +11 -0
- src/model_descriptions.py +522 -0
- src/nf.py +211 -0
- src/st_deploy.py +16 -0
.gitignore
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
pip-wheel-metadata/
|
24 |
+
share/python-wheels/
|
25 |
+
*.egg-info/
|
26 |
+
.installed.cfg
|
27 |
+
*.egg
|
28 |
+
MANIFEST
|
29 |
+
|
30 |
+
# PyInstaller
|
31 |
+
# Usually these files are written by a python script from a template
|
32 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
33 |
+
*.manifest
|
34 |
+
*.spec
|
35 |
+
|
36 |
+
# Installer logs
|
37 |
+
pip-log.txt
|
38 |
+
pip-delete-this-directory.txt
|
39 |
+
|
40 |
+
# Unit test / coverage reports
|
41 |
+
htmlcov/
|
42 |
+
.tox/
|
43 |
+
.nox/
|
44 |
+
.coverage
|
45 |
+
.coverage.*
|
46 |
+
.cache
|
47 |
+
nosetests.xml
|
48 |
+
coverage.xml
|
49 |
+
*.cover
|
50 |
+
*.py,cover
|
51 |
+
.hypothesis/
|
52 |
+
.pytest_cache/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
target/
|
76 |
+
|
77 |
+
# Jupyter Notebook
|
78 |
+
.ipynb_checkpoints
|
79 |
+
|
80 |
+
# IPython
|
81 |
+
profile_default/
|
82 |
+
ipython_config.py
|
83 |
+
|
84 |
+
# pyenv
|
85 |
+
.python-version
|
86 |
+
|
87 |
+
# pipenv
|
88 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
89 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
90 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
91 |
+
# install all needed dependencies.
|
92 |
+
#Pipfile.lock
|
93 |
+
|
94 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
95 |
+
__pypackages__/
|
96 |
+
|
97 |
+
# Celery stuff
|
98 |
+
celerybeat-schedule
|
99 |
+
celerybeat.pid
|
100 |
+
|
101 |
+
# SageMath parsed files
|
102 |
+
*.sage.py
|
103 |
+
|
104 |
+
# Environments
|
105 |
+
.env
|
106 |
+
.venv
|
107 |
+
env/
|
108 |
+
venv/
|
109 |
+
ENV/
|
110 |
+
env.bak/
|
111 |
+
venv.bak/
|
112 |
+
|
113 |
+
# Spyder project settings
|
114 |
+
.spyderproject
|
115 |
+
.spyproject
|
116 |
+
|
117 |
+
# Rope project settings
|
118 |
+
.ropeproject
|
119 |
+
|
120 |
+
# mkdocs documentation
|
121 |
+
/site
|
122 |
+
|
123 |
+
# mypy
|
124 |
+
.mypy_cache/
|
125 |
+
.dmypy.json
|
126 |
+
dmypy.json
|
127 |
+
|
128 |
+
# Pyre type checker
|
129 |
+
.pyre/
|
130 |
+
|
131 |
+
models/
|
app.py
ADDED
@@ -0,0 +1,374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from time import time
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
import plotly.express as px
|
6 |
+
import plotly.graph_objects as go
|
7 |
+
import streamlit as st
|
8 |
+
from datasetsforecast.losses import rmse, mae, smape, mse, mape
|
9 |
+
from st_aggrid import AgGrid
|
10 |
+
|
11 |
+
from src.nf import MODELS, forecast_pretrained_model
|
12 |
+
from src.model_descriptions import model_cards
|
13 |
+
|
14 |
+
DATASETS = {
|
15 |
+
"Electricity (Ercot COAST)": "https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/ercot_COAST.csv",
|
16 |
+
#"Electriciy (ERCOT, multiple markets)": "https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/ercot_multiple_ts.csv",
|
17 |
+
"Web Traffic (Peyton Manning)": "https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/peyton_manning.csv",
|
18 |
+
"Demand (AirPassengers)": "https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/air_passengers.csv",
|
19 |
+
"Finance (Exchange USD-EUR)": "https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/usdeur.csv",
|
20 |
+
}
|
21 |
+
|
22 |
+
|
23 |
+
@st.cache_data
|
24 |
+
def convert_df(df):
|
25 |
+
# IMPORTANT: Cache the conversion to prevent computation on every rerun
|
26 |
+
return df.to_csv(index=False).encode("utf-8")
|
27 |
+
|
28 |
+
|
29 |
+
def plot(df, uid, df_forecast, model):
|
30 |
+
figs = []
|
31 |
+
figs += [
|
32 |
+
go.Scatter(
|
33 |
+
x=df["ds"],
|
34 |
+
y=df["y"],
|
35 |
+
mode="lines",
|
36 |
+
marker=dict(color="#236796"),
|
37 |
+
legendrank=1,
|
38 |
+
name=uid,
|
39 |
+
),
|
40 |
+
]
|
41 |
+
if df_forecast is not None:
|
42 |
+
ds_f = df_forecast["ds"].to_list()
|
43 |
+
lo = df_forecast["forecast_lo_90"].to_list()
|
44 |
+
hi = df_forecast["forecast_hi_90"].to_list()
|
45 |
+
figs += [
|
46 |
+
go.Scatter(
|
47 |
+
x=ds_f + ds_f[::-1],
|
48 |
+
y=hi + lo[::-1],
|
49 |
+
fill="toself",
|
50 |
+
fillcolor="#E7C4C0",
|
51 |
+
mode="lines",
|
52 |
+
line=dict(color="#E7C4C0"),
|
53 |
+
name="Prediction Intervals (90%)",
|
54 |
+
legendrank=5,
|
55 |
+
opacity=0.5,
|
56 |
+
hoverinfo="skip",
|
57 |
+
),
|
58 |
+
go.Scatter(
|
59 |
+
x=ds_f,
|
60 |
+
y=df_forecast["forecast"],
|
61 |
+
mode="lines",
|
62 |
+
legendrank=4,
|
63 |
+
marker=dict(color="#E7C4C0"),
|
64 |
+
name=f"Forecast {uid}",
|
65 |
+
),
|
66 |
+
]
|
67 |
+
fig = go.Figure(figs)
|
68 |
+
fig.update_layout(
|
69 |
+
{"plot_bgcolor": "rgba(0, 0, 0, 0)", "paper_bgcolor": "rgba(0, 0, 0, 0)"}
|
70 |
+
)
|
71 |
+
fig.update_layout(
|
72 |
+
title=f"Forecasts for {uid} using Transfer Learning (from {model})",
|
73 |
+
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
|
74 |
+
margin=dict(l=20, b=20),
|
75 |
+
xaxis=dict(rangeslider=dict(visible=True)),
|
76 |
+
)
|
77 |
+
initial_range = [df.tail(200)["ds"].iloc[0], ds_f[-1]]
|
78 |
+
fig["layout"]["xaxis"].update(range=initial_range)
|
79 |
+
return fig
|
80 |
+
|
81 |
+
|
82 |
+
def st_transfer_learning():
|
83 |
+
st.set_page_config(
|
84 |
+
page_title="Time Series Visualization",
|
85 |
+
page_icon="🔮",
|
86 |
+
layout="wide",
|
87 |
+
initial_sidebar_state="expanded",
|
88 |
+
)
|
89 |
+
|
90 |
+
st.title(
|
91 |
+
"Transfer Learning: Revolutionizing Time Series by Nixtla"
|
92 |
+
)
|
93 |
+
st.write(
|
94 |
+
"<style>div.block-container{padding-top:2rem;}</style>", unsafe_allow_html=True
|
95 |
+
)
|
96 |
+
|
97 |
+
intro = """
|
98 |
+
The success of startups like Open AI and Stability highlights the potential for transfer learning (TL) techniques to have a similar impact on the field of time series forecasting.
|
99 |
+
|
100 |
+
TL can achieve lightning-fast predictions with a fraction of the computational cost by pre-training a flexible model on a large dataset and then using it on another dataset with little to no additional training.
|
101 |
+
|
102 |
+
In this live demo, you can use pre-trained models by Nixtla (trained on the M4 dataset) to predict your own datasets. You can also see how the models perform on unseen example datasets.
|
103 |
+
"""
|
104 |
+
st.write(intro)
|
105 |
+
|
106 |
+
required_cols = ["ds", "y"]
|
107 |
+
|
108 |
+
with st.sidebar.expander("Dataset", expanded=False):
|
109 |
+
data_selection = st.selectbox("Select example dataset", DATASETS.keys())
|
110 |
+
data_url = DATASETS[data_selection]
|
111 |
+
url_json = st.text_input("Data (you can pass your own url here)", data_url)
|
112 |
+
st.write(
|
113 |
+
"You can also upload a CSV file like [this one](https://github.com/Nixtla/transfer-learning-time-series/blob/main/datasets/air_passengers.csv)."
|
114 |
+
)
|
115 |
+
|
116 |
+
uploaded_file = st.file_uploader("Upload CSV")
|
117 |
+
with st.form("Data"):
|
118 |
+
|
119 |
+
if uploaded_file is not None:
|
120 |
+
df = pd.read_csv(uploaded_file)
|
121 |
+
cols = df.columns
|
122 |
+
timestamp_col = st.selectbox("Timestamp column", options=cols)
|
123 |
+
value_col = st.selectbox("Value column", options=cols)
|
124 |
+
else:
|
125 |
+
timestamp_col = st.text_input("Timestamp column", value="timestamp")
|
126 |
+
value_col = st.text_input("Value column", value="value")
|
127 |
+
st.write("You must press Submit each time you want to forecast.")
|
128 |
+
submitted = st.form_submit_button("Submit")
|
129 |
+
if submitted:
|
130 |
+
if uploaded_file is None:
|
131 |
+
st.write("Please provide a dataframe.")
|
132 |
+
if url_json.endswith("json"):
|
133 |
+
df = pd.read_json(url_json)
|
134 |
+
else:
|
135 |
+
df = pd.read_csv(url_json)
|
136 |
+
df = df.rename(
|
137 |
+
columns=dict(zip([timestamp_col, value_col], required_cols))
|
138 |
+
)
|
139 |
+
else:
|
140 |
+
# df = pd.read_csv(uploaded_file)
|
141 |
+
df = df.rename(
|
142 |
+
columns=dict(zip([timestamp_col, value_col], required_cols))
|
143 |
+
)
|
144 |
+
else:
|
145 |
+
if url_json.endswith("json"):
|
146 |
+
df = pd.read_json(url_json)
|
147 |
+
else:
|
148 |
+
df = pd.read_csv(url_json)
|
149 |
+
cols = df.columns
|
150 |
+
if "unique_id" in cols:
|
151 |
+
cols = cols[-2:]
|
152 |
+
df = df.rename(columns=dict(zip(cols, required_cols)))
|
153 |
+
|
154 |
+
if "unique_id" not in df:
|
155 |
+
df.insert(0, "unique_id", "ts_0")
|
156 |
+
|
157 |
+
df["ds"] = pd.to_datetime(df["ds"])
|
158 |
+
df = df.sort_values(["unique_id", "ds"])
|
159 |
+
|
160 |
+
with st.sidebar:
|
161 |
+
st.write("Define the pretrained model you want to use to forecast your data")
|
162 |
+
model_name = st.selectbox("Select your model", tuple(MODELS.keys()))
|
163 |
+
model_file = MODELS[model_name]["model"]
|
164 |
+
st.write("Choose how many steps you want to forecast")
|
165 |
+
fh = st.number_input("Forecast horizon", value=18)
|
166 |
+
st.write(
|
167 |
+
"Choose for how many steps the pretrained model will be updated using your data (use 0 for fast computation)"
|
168 |
+
)
|
169 |
+
max_steps = st.number_input("N-shot inference", value=0)
|
170 |
+
|
171 |
+
# tabs
|
172 |
+
tab_fcst, tab_cv, tab_docs, tab_nixtla = st.tabs(
|
173 |
+
[
|
174 |
+
"📈 Forecast",
|
175 |
+
"🔎 Cross Validation",
|
176 |
+
"📚 Documentation",
|
177 |
+
"🔮 Nixtlaverse",
|
178 |
+
]
|
179 |
+
)
|
180 |
+
|
181 |
+
uids = df["unique_id"].unique()
|
182 |
+
fcst_cols = ["forecast_lo_90", "forecast", "forecast_hi_90"]
|
183 |
+
|
184 |
+
with tab_fcst:
|
185 |
+
uid = uids[0]#st.selectbox("Dataset", options=uids)
|
186 |
+
col1, col2 = st.columns([2, 4])
|
187 |
+
with col1:
|
188 |
+
tab_insample, tab_forecast = st.tabs(
|
189 |
+
["Modify input data", "Modify forecasts"]
|
190 |
+
)
|
191 |
+
with tab_insample:
|
192 |
+
df_grid = df.query("unique_id == @uid").drop(columns="unique_id")
|
193 |
+
grid_table = AgGrid(
|
194 |
+
df_grid,
|
195 |
+
editable=True,
|
196 |
+
theme="streamlit",
|
197 |
+
fit_columns_on_grid_load=True,
|
198 |
+
height=360,
|
199 |
+
)
|
200 |
+
df.loc[df["unique_id"] == uid, "y"] = (
|
201 |
+
grid_table["data"].sort_values("ds")["y"].values
|
202 |
+
)
|
203 |
+
# forecast code
|
204 |
+
init = time()
|
205 |
+
df_forecast = forecast_pretrained_model(df, model_file, fh, max_steps)
|
206 |
+
end = time()
|
207 |
+
df_forecast = df_forecast.rename(
|
208 |
+
columns=dict(zip(["y_5", "y_50", "y_95"], fcst_cols))
|
209 |
+
)
|
210 |
+
with tab_forecast:
|
211 |
+
df_fcst_grid = df_forecast.query("unique_id == @uid").filter(
|
212 |
+
["ds", "forecast"]
|
213 |
+
)
|
214 |
+
grid_fcst_table = AgGrid(
|
215 |
+
df_fcst_grid,
|
216 |
+
editable=True,
|
217 |
+
theme="streamlit",
|
218 |
+
fit_columns_on_grid_load=True,
|
219 |
+
height=360,
|
220 |
+
)
|
221 |
+
changes = (
|
222 |
+
df_forecast.query("unique_id == @uid")["forecast"].values
|
223 |
+
- grid_fcst_table["data"].sort_values("ds")["forecast"].values
|
224 |
+
)
|
225 |
+
for col in fcst_cols:
|
226 |
+
df_forecast.loc[df_forecast["unique_id"] == uid, col] = (
|
227 |
+
df_forecast.loc[df_forecast["unique_id"] == uid, col] - changes
|
228 |
+
)
|
229 |
+
with col2:
|
230 |
+
st.plotly_chart(
|
231 |
+
plot(
|
232 |
+
df.query("unique_id == @uid"),
|
233 |
+
uid,
|
234 |
+
df_forecast.query("unique_id == @uid"),
|
235 |
+
model_name,
|
236 |
+
),
|
237 |
+
use_container_width=True,
|
238 |
+
)
|
239 |
+
st.success(f'Done! Approximate inference time CPU: {0.7*(end-init):.2f} seconds.')
|
240 |
+
|
241 |
+
with tab_cv:
|
242 |
+
col_uid, col_n_windows = st.columns(2)
|
243 |
+
uid = uids[0]
|
244 |
+
#with col_uid:
|
245 |
+
# uid = st.selectbox("Time series to analyse", options=uids, key="uid_cv")
|
246 |
+
with col_n_windows:
|
247 |
+
n_windows = st.number_input("Cross validation windows", value=1)
|
248 |
+
df_forecast = []
|
249 |
+
for i_window in range(n_windows, 0, -1):
|
250 |
+
test = df.groupby("unique_id").tail(i_window * fh)
|
251 |
+
df_forecast_w = forecast_pretrained_model(
|
252 |
+
df.drop(test.index), model_file, fh, max_steps
|
253 |
+
)
|
254 |
+
df_forecast_w = df_forecast_w.rename(
|
255 |
+
columns=dict(zip(["y_5", "y_50", "y_95"], fcst_cols))
|
256 |
+
)
|
257 |
+
df_forecast_w.insert(2, "window", i_window)
|
258 |
+
df_forecast.append(df_forecast_w)
|
259 |
+
df_forecast = pd.concat(df_forecast)
|
260 |
+
df_forecast["ds"] = pd.to_datetime(df_forecast["ds"])
|
261 |
+
df_forecast = df_forecast.merge(df, how="left", on=["unique_id", "ds"])
|
262 |
+
metrics = [mae, mape, rmse, smape]
|
263 |
+
evaluation = df_forecast.groupby(["unique_id", "window"]).apply(
|
264 |
+
lambda df: [f'{fn(df["y"].values, df["forecast"]):.2f}' for fn in metrics]
|
265 |
+
)
|
266 |
+
evaluation = evaluation.rename("eval").reset_index()
|
267 |
+
evaluation["eval"] = evaluation["eval"].str.join(",")
|
268 |
+
evaluation[["MAE", "MAPE", "RMSE", "sMAPE"]] = evaluation["eval"].str.split(
|
269 |
+
",", expand=True
|
270 |
+
)
|
271 |
+
col_eval, col_plot = st.columns([2, 4])
|
272 |
+
with col_eval:
|
273 |
+
st.write("Evaluation metrics for each cross validation window")
|
274 |
+
st.dataframe(
|
275 |
+
evaluation.query("unique_id == @uid")
|
276 |
+
.drop(columns=["unique_id", "eval"])
|
277 |
+
.set_index("window")
|
278 |
+
)
|
279 |
+
with col_plot:
|
280 |
+
st.plotly_chart(
|
281 |
+
plot(
|
282 |
+
df.query("unique_id == @uid"),
|
283 |
+
uid,
|
284 |
+
df_forecast.query("unique_id == @uid").drop(columns="y"),
|
285 |
+
model_name,
|
286 |
+
),
|
287 |
+
use_container_width=True,
|
288 |
+
)
|
289 |
+
with tab_docs:
|
290 |
+
tab_transfer, tab_desc, tab_ref = st.tabs(
|
291 |
+
[
|
292 |
+
"🚀 Transfer Learning",
|
293 |
+
"🔎 Description of the model",
|
294 |
+
"📚 References",
|
295 |
+
]
|
296 |
+
)
|
297 |
+
|
298 |
+
with tab_desc:
|
299 |
+
model_card_name = MODELS[model_name]["card"]
|
300 |
+
st.subheader("Abstract")
|
301 |
+
st.write(f"""{model_cards[model_card_name]['Abstract']}""")
|
302 |
+
st.subheader("Intended use")
|
303 |
+
st.write(f"""{model_cards[model_card_name]['Intended use']}""")
|
304 |
+
st.subheader("Secondary use")
|
305 |
+
st.write(f"""{model_cards[model_card_name]['Secondary use']}""")
|
306 |
+
st.subheader("Limitations")
|
307 |
+
st.write(f"""{model_cards[model_card_name]['Limitations']}""")
|
308 |
+
st.subheader("Training data")
|
309 |
+
st.write(f"""{model_cards[model_card_name]['Training data']}""")
|
310 |
+
st.subheader("BibTex/Citation Info")
|
311 |
+
st.code(f"""{model_cards[model_card_name]['Citation Info']}""")
|
312 |
+
|
313 |
+
with tab_transfer:
|
314 |
+
transfer_text = """
|
315 |
+
Transfer learning refers to the process of pre-training a flexible model on a large dataset and using it later on other data with little to no training. It is one of the most outstanding 🚀 achievements in Machine Learning 🧠 and has many practical applications.
|
316 |
+
|
317 |
+
For time series forecasting, the technique allows you to get lightning-fast predictions ⚡ bypassing the tradeoff between accuracy and speed.
|
318 |
+
|
319 |
+
[This notebook](https://colab.research.google.com/drive/1uFCO2UBpH-5l2fk3KmxfU0oupsOC6v2n?authuser=0&pli=1#cell-5=) shows how to generate a pre-trained model and store it in a checkpoint to make it available for public use to forecast new time series never seen by the model.
|
320 |
+
**You can contribute with your pre-trained models by following [this Notebook](https://github.com/Nixtla/transfer-learning-time-series/blob/main/nbs/Transfer_Learning.ipynb) and sending us an email at federico[at]nixtla.io**
|
321 |
+
|
322 |
+
You can also take a look at list of pretrained models here. Currently we have this ones avaiable in our [API](https://docs.nixtla.io/reference/neural_transfer_neural_transfer_post) or [Demo](http://nixtla.io/transfer-learning/). You can also download the `.ckpt`:
|
323 |
+
- [Pretrained N-HiTS M4 Hourly](https://nixtla-public.s3.amazonaws.com/transfer/pretrained_models/nhits_m4_hourly.ckpt)
|
324 |
+
- [Pretrained N-HiTS M4 Hourly (Tiny)](https://nixtla-public.s3.amazonaws.com/transfer/pretrained_models/nhits_m4_hourly_tiny.ckpt)
|
325 |
+
- [Pretrained N-HiTS M4 Daily](https://nixtla-public.s3.amazonaws.com/transfer/pretrained_models/nhits_m4_daily.ckpt)
|
326 |
+
- [Pretrained N-HiTS M4 Monthly](https://nixtla-public.s3.amazonaws.com/transfer/pretrained_models/nhits_m4_monthly.ckpt)
|
327 |
+
- [Pretrained N-HiTS M4 Yearly](https://nixtla-public.s3.amazonaws.com/transfer/pretrained_models/nhits_m4_yearly.ckpt)
|
328 |
+
- [Pretrained N-BEATS M4 Hourly](https://nixtla-public.s3.amazonaws.com/transfer/pretrained_models/nbeats_m4_hourly.ckpt)
|
329 |
+
- [Pretrained N-BEATS M4 Daily](https://nixtla-public.s3.amazonaws.com/transfer/pretrained_models/nbeats_m4_daily.ckpt)
|
330 |
+
- [Pretrained N-BEATS M4 Weekly](https://nixtla-public.s3.amazonaws.com/transfer/pretrained_models/nbeats_m4_weekly.ckpt)
|
331 |
+
- [Pretrained N-BEATS M4 Monthly](https://nixtla-public.s3.amazonaws.com/transfer/pretrained_models/nbeats_m4_monthly.ckpt)
|
332 |
+
- [Pretrained N-BEATS M4 Yearly](https://nixtla-public.s3.amazonaws.com/transfer/pretrained_models/nbeats_m4_yearly.ckpt)
|
333 |
+
"""
|
334 |
+
st.write(transfer_text)
|
335 |
+
|
336 |
+
with tab_ref:
|
337 |
+
ref_text = """
|
338 |
+
If you are interested in the transfer learning literature applied to time series forecasting, take a look at these papers:
|
339 |
+
- [Meta-learning framework with applications to zero-shot time-series forecasting](https://arxiv.org/abs/2002.02887)
|
340 |
+
- [N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting](https://arxiv.org/abs/2201.12886)
|
341 |
+
"""
|
342 |
+
st.write(ref_text)
|
343 |
+
|
344 |
+
with tab_nixtla:
|
345 |
+
nixtla_text = """
|
346 |
+
Nixtla is a startup that is building forecasting software for Data Scientists and Devs.
|
347 |
+
|
348 |
+
We have been developing different open source libraries for machine learning, statistical and deep learning forecasting.
|
349 |
+
|
350 |
+
In our [GitHub repo](https://github.com/Nixtla), you can find the projects that support this APP.
|
351 |
+
"""
|
352 |
+
st.write(nixtla_text)
|
353 |
+
st.image(
|
354 |
+
"https://files.readme.io/168cdb2-Screen_Shot_2022-09-30_at_10.40.09.png",
|
355 |
+
width=800,
|
356 |
+
)
|
357 |
+
|
358 |
+
with st.sidebar:
|
359 |
+
st.download_button(
|
360 |
+
label="Download historical data as CSV",
|
361 |
+
data=convert_df(df),
|
362 |
+
file_name="history.csv",
|
363 |
+
mime="text/csv",
|
364 |
+
)
|
365 |
+
st.download_button(
|
366 |
+
label="Download forecasts as CSV",
|
367 |
+
data=convert_df(df_forecast),
|
368 |
+
file_name="forecasts.csv",
|
369 |
+
mime="text/csv",
|
370 |
+
)
|
371 |
+
|
372 |
+
|
373 |
+
if __name__ == "__main__":
|
374 |
+
st_transfer_learning()
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
datasetsforecast
|
2 |
+
fire
|
3 |
+
neuralforecast<1.0.0
|
4 |
+
pandas
|
5 |
+
plotly
|
6 |
+
python-dotenv
|
7 |
+
pytorch-lightning==1.6.3
|
8 |
+
statsforecast
|
9 |
+
streamlit
|
10 |
+
streamlit-aggrid
|
11 |
+
torch==1.11.0
|
src/model_descriptions.py
ADDED
@@ -0,0 +1,522 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model_cards = dict(
|
2 |
+
nhitsm={
|
3 |
+
"Abstract": (
|
4 |
+
"The N-HiTS_M incorporates hierarchical interpolation and multi-rate data sampling "
|
5 |
+
"techniques. It assembles its predictions sequentially, selectively emphasizing "
|
6 |
+
"components with different frequencies and scales, while decomposing the input signal "
|
7 |
+
" and synthesizing the forecast [Cristian Challu, Kin G. Olivares, Boris N. Oreshkin, "
|
8 |
+
"Federico Garza, Max Mergenthaler-Canseco, Artur Dubrawski. N-HiTS: Neural "
|
9 |
+
"Hierarchical Interpolation for Time Series Forecasting, Submitted working paper.]"
|
10 |
+
"(https://arxiv.org/abs/2201.12886)"
|
11 |
+
),
|
12 |
+
"Intended use": (
|
13 |
+
"The N-HiTS_M model specializes in monthly long-horizon forecasting by improving "
|
14 |
+
"accuracy and reducing the training time and memory requirements of the model."
|
15 |
+
),
|
16 |
+
"Secondary use": (
|
17 |
+
"The interpretable predictions of the model produce a natural frequency time "
|
18 |
+
"series signal decomposition."
|
19 |
+
),
|
20 |
+
"Limitations": (
|
21 |
+
"The transferability across different frequencies has not yet been tested, it is "
|
22 |
+
"advisable to restrict the use of N-HiTS_{M} to monthly data were it was pre-trained. "
|
23 |
+
"This model purely autorregresive, transferability of models with exogenous variables "
|
24 |
+
"is yet to be done."
|
25 |
+
),
|
26 |
+
"Training data": (
|
27 |
+
"N-HiTS_M was trained on 48,000 monthly series from the M4 competition "
|
28 |
+
"[Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The "
|
29 |
+
" M4 competition: 100,000 time series and 61 forecasting methods. International "
|
30 |
+
"Journal of Forecasting, 36(1):54–74, 2020. ISSN 0169-2070.]"
|
31 |
+
"(https://www.sciencedirect.com/science/article/pii/S0169207019301128)"
|
32 |
+
),
|
33 |
+
"Citation Info": (
|
34 |
+
"@article{challu2022nhits,\n "
|
35 |
+
"author = {Cristian Challu and \n"
|
36 |
+
" Kin G. Olivares and \n"
|
37 |
+
" Boris N. Oreshkin and \n"
|
38 |
+
" Federico Garza and \n"
|
39 |
+
" Max Mergenthaler and \n"
|
40 |
+
" Artur Dubrawski}, \n "
|
41 |
+
"title = {N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting},\n "
|
42 |
+
"journal = {Computing Research Repository},\n "
|
43 |
+
"volume = {abs/2201.12886},\n "
|
44 |
+
"year = {2022},\n "
|
45 |
+
"url = {https://arxiv.org/abs/2201.12886},\n "
|
46 |
+
"eprinttype = {arXiv},\n "
|
47 |
+
"eprint = {2201.12886},\n "
|
48 |
+
"biburl = {https://dblp.org/rec/journals/corr/abs-2201-12886.bib}\n}"
|
49 |
+
),
|
50 |
+
},
|
51 |
+
nhitsh={
|
52 |
+
"Abstract": (
|
53 |
+
"The N-HiTS_{H} incorporates hierarchical interpolation and multi-rate data sampling "
|
54 |
+
"techniques. It assembles its predictions sequentially, selectively emphasizing "
|
55 |
+
"components with different frequencies and scales, while decomposing the input signal "
|
56 |
+
" and synthesizing the forecast [Cristian Challu, Kin G. Olivares, Boris N. Oreshkin, "
|
57 |
+
"Federico Garza, Max Mergenthaler-Canseco, Artur Dubrawski. N-HiTS: Neural "
|
58 |
+
"Hierarchical Interpolation for Time Series Forecasting, Submitted working paper.]"
|
59 |
+
"(https://arxiv.org/abs/2201.12886)"
|
60 |
+
),
|
61 |
+
"Intended use": (
|
62 |
+
"The N-HiTS_{H} model specializes in hourly long-horizon forecasting by improving "
|
63 |
+
"accuracy and reducing the training time and memory requirements of the model."
|
64 |
+
),
|
65 |
+
"Secondary use": (
|
66 |
+
"The interpretable predictions of the model produce a natural frequency time "
|
67 |
+
"series signal decomposition."
|
68 |
+
),
|
69 |
+
"Limitations": (
|
70 |
+
"The transferability across different frequencies has not yet been tested, it is "
|
71 |
+
"advisable to restrict the use of N-HiTS_{H} to hourly data were it was pre-trained. "
|
72 |
+
"This model purely autorregresive, transferability of models with exogenous variables "
|
73 |
+
"is yet to be done."
|
74 |
+
),
|
75 |
+
"Training data": (
|
76 |
+
"N-HiTS_{H} was trained on 414 hourly series from the M4 competition "
|
77 |
+
"[Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The "
|
78 |
+
" M4 competition: 100,000 time series and 61 forecasting methods. International "
|
79 |
+
"Journal of Forecasting, 36(1):54–74, 2020. ISSN 0169-2070.]"
|
80 |
+
"(https://www.sciencedirect.com/science/article/pii/S0169207019301128)"
|
81 |
+
),
|
82 |
+
"Citation Info": (
|
83 |
+
"@article{challu2022nhits,\n "
|
84 |
+
"author = {Cristian Challu and \n"
|
85 |
+
" Kin G. Olivares and \n"
|
86 |
+
" Boris N. Oreshkin and \n"
|
87 |
+
" Federico Garza and \n"
|
88 |
+
" Max Mergenthaler and \n"
|
89 |
+
" Artur Dubrawski}, \n "
|
90 |
+
"title = {N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting},\n "
|
91 |
+
"journal = {Computing Research Repository},\n "
|
92 |
+
"volume = {abs/2201.12886},\n "
|
93 |
+
"year = {2022},\n "
|
94 |
+
"url = {https://arxiv.org/abs/2201.12886},\n "
|
95 |
+
"eprinttype = {arXiv},\n "
|
96 |
+
"eprint = {2201.12886},\n "
|
97 |
+
"biburl = {https://dblp.org/rec/journals/corr/abs-2201-12886.bib}\n}"
|
98 |
+
),
|
99 |
+
},
|
100 |
+
nhitsd={
|
101 |
+
"Abstract": (
|
102 |
+
"The N-HiTS_D incorporates hierarchical interpolation and multi-rate data sampling "
|
103 |
+
"techniques. It assembles its predictions sequentially, selectively emphasizing "
|
104 |
+
"components with different frequencies and scales, while decomposing the input signal "
|
105 |
+
" and synthesizing the forecast [Cristian Challu, Kin G. Olivares, Boris N. Oreshkin, "
|
106 |
+
"Federico Garza, Max Mergenthaler-Canseco, Artur Dubrawski. N-HiTS: Neural "
|
107 |
+
"Hierarchical Interpolation for Time Series Forecasting, Submitted working paper.]"
|
108 |
+
"(https://arxiv.org/abs/2201.12886)"
|
109 |
+
),
|
110 |
+
"Intended use": (
|
111 |
+
"The N-HiTS_D model specializes in daily long-horizon forecasting by improving "
|
112 |
+
"accuracy and reducing the training time and memory requirements of the model."
|
113 |
+
),
|
114 |
+
"Secondary use": (
|
115 |
+
"The interpretable predictions of the model produce a natural frequency time "
|
116 |
+
"series signal decomposition."
|
117 |
+
),
|
118 |
+
"Limitations": (
|
119 |
+
"The transferability across different frequencies has not yet been tested, it is "
|
120 |
+
"advisable to restrict the use of N-HiTS_D to daily data were it was pre-trained. "
|
121 |
+
"This model purely autorregresive, transferability of models with exogenous variables "
|
122 |
+
"is yet to be done."
|
123 |
+
),
|
124 |
+
"Training data": (
|
125 |
+
"N-HiTS_D was trained on 4,227 daily series from the M4 competition "
|
126 |
+
"[Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The "
|
127 |
+
" M4 competition: 100,000 time series and 61 forecasting methods. International "
|
128 |
+
"Journal of Forecasting, 36(1):54–74, 2020. ISSN 0169-2070.]"
|
129 |
+
"(https://www.sciencedirect.com/science/article/pii/S0169207019301128)"
|
130 |
+
),
|
131 |
+
"Citation Info": (
|
132 |
+
"@article{challu2022nhits,\n "
|
133 |
+
"author = {Cristian Challu and \n"
|
134 |
+
" Kin G. Olivares and \n"
|
135 |
+
" Boris N. Oreshkin and \n"
|
136 |
+
" Federico Garza and \n"
|
137 |
+
" Max Mergenthaler and \n"
|
138 |
+
" Artur Dubrawski}, \n "
|
139 |
+
"title = {N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting},\n "
|
140 |
+
"journal = {Computing Research Repository},\n "
|
141 |
+
"volume = {abs/2201.12886},\n "
|
142 |
+
"year = {2022},\n "
|
143 |
+
"url = {https://arxiv.org/abs/2201.12886},\n "
|
144 |
+
"eprinttype = {arXiv},\n "
|
145 |
+
"eprint = {2201.12886},\n "
|
146 |
+
"biburl = {https://dblp.org/rec/journals/corr/abs-2201-12886.bib}\n}"
|
147 |
+
),
|
148 |
+
},
|
149 |
+
nhitsy={
|
150 |
+
"Abstract": (
|
151 |
+
"The N-HiTS_Y incorporates hierarchical interpolation and multi-rate data sampling "
|
152 |
+
"techniques. It assembles its predictions sequentially, selectively emphasizing "
|
153 |
+
"components with different frequencies and scales, while decomposing the input signal "
|
154 |
+
" and synthesizing the forecast [Cristian Challu, Kin G. Olivares, Boris N. Oreshkin, "
|
155 |
+
"Federico Garza, Max Mergenthaler-Canseco, Artur Dubrawski. N-HiTS: Neural "
|
156 |
+
"Hierarchical Interpolation for Time Series Forecasting, Submitted working paper.]"
|
157 |
+
"(https://arxiv.org/abs/2201.12886)"
|
158 |
+
),
|
159 |
+
"Intended use": (
|
160 |
+
"The N-HiTS_Y model specializes in yearly long-horizon forecasting by improving "
|
161 |
+
"accuracy and reducing the training time and memory requirements of the model."
|
162 |
+
),
|
163 |
+
"Secondary use": (
|
164 |
+
"The interpretable predictions of the model produce a natural frequency time "
|
165 |
+
"series signal decomposition."
|
166 |
+
),
|
167 |
+
"Limitations": (
|
168 |
+
"The transferability across different frequencies has not yet been tested, it is "
|
169 |
+
"advisable to restrict the use of N-HiTS_Y to yearly data were it was pre-trained. "
|
170 |
+
"This model purely autorregresive, transferability of models with exogenous variables "
|
171 |
+
"is yet to be done."
|
172 |
+
),
|
173 |
+
"Training data": (
|
174 |
+
"N-HiTS_{H} was trained on 23,000 yearly series from the M4 competition "
|
175 |
+
"[Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The "
|
176 |
+
" M4 competition: 100,000 time series and 61 forecasting methods. International "
|
177 |
+
"Journal of Forecasting, 36(1):54–74, 2020. ISSN 0169-2070.]"
|
178 |
+
"(https://www.sciencedirect.com/science/article/pii/S0169207019301128)"
|
179 |
+
),
|
180 |
+
"Citation Info": (
|
181 |
+
"@article{challu2022nhits,\n "
|
182 |
+
"author = {Cristian Challu and \n"
|
183 |
+
" Kin G. Olivares and \n"
|
184 |
+
" Boris N. Oreshkin and \n"
|
185 |
+
" Federico Garza and \n"
|
186 |
+
" Max Mergenthaler and \n"
|
187 |
+
" Artur Dubrawski}, \n "
|
188 |
+
"title = {N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting},\n "
|
189 |
+
"journal = {Computing Research Repository},\n "
|
190 |
+
"volume = {abs/2201.12886},\n "
|
191 |
+
"year = {2022},\n "
|
192 |
+
"url = {https://arxiv.org/abs/2201.12886},\n "
|
193 |
+
"eprinttype = {arXiv},\n "
|
194 |
+
"eprint = {2201.12886},\n "
|
195 |
+
"biburl = {https://dblp.org/rec/journals/corr/abs-2201-12886.bib}\n}"
|
196 |
+
),
|
197 |
+
},
|
198 |
+
nbeatsm={
|
199 |
+
"Abstract": (
|
200 |
+
"The N-BEATS_M models is a model based on a deep stack multi-layer percentrons connected"
|
201 |
+
"with doubly residual connections. The model combines a multi-step forecasting strategy "
|
202 |
+
"with projections unto piecewise functions for its generic version or polynomials and "
|
203 |
+
"harmonics for its interpretable version. [Boris N. Oreshkin, Dmitri Carpov, Nicolas "
|
204 |
+
"Chapados, Yoshua Bengio. N-BEATS: Neural basis expansion analysis for interpretable "
|
205 |
+
"time series forecasting. 8th International Conference on Learning Representations, "
|
206 |
+
"ICLR 2020.](https://arxiv.org/abs/1905.10437)"
|
207 |
+
),
|
208 |
+
"Intended use": (
|
209 |
+
"The N-BEATS_M is an efficient univariate forecasting model specialized in monthly "
|
210 |
+
"data, that uses the multi-step forecasting strategy."
|
211 |
+
),
|
212 |
+
"Secondary use": (
|
213 |
+
"The interpretable variant of N-BEATSi_M produces a trend and seasonality "
|
214 |
+
"decomposition."
|
215 |
+
),
|
216 |
+
"Limitations": (
|
217 |
+
"The transferability across different frequencies has not yet been tested, it is "
|
218 |
+
"advisable to restrict the use of N-BEATS_M to monthly data were it was pre-trained."
|
219 |
+
"This model purely autorregresive, transferability of models with exogenous variables "
|
220 |
+
"is yet to be done."
|
221 |
+
),
|
222 |
+
"Training data": (
|
223 |
+
"N-BEATS_M was trained on 48,000 monthly series from the M4 competition "
|
224 |
+
"[Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The "
|
225 |
+
" M4 competition: 100,000 time series and 61 forecasting methods. International "
|
226 |
+
"Journal of Forecasting, 36(1):54–74, 2020. ISSN 0169-2070.]"
|
227 |
+
"(https://www.sciencedirect.com/science/article/pii/S0169207019301128)"
|
228 |
+
),
|
229 |
+
"Citation Info": (
|
230 |
+
"@inproceedings{oreshkin2020nbeats,\n "
|
231 |
+
"author = {Boris N. Oreshkin and \n"
|
232 |
+
" Dmitri Carpov and \n"
|
233 |
+
" Nicolas Chapados and\n"
|
234 |
+
" Yoshua Bengio},\n "
|
235 |
+
"title = {{N-BEATS:} Neural basis expansion analysis for interpretable time series forecasting},\n "
|
236 |
+
"booktitle = {8th International Conference on Learning Representations, {ICLR} 2020},\n "
|
237 |
+
"year = {2020},\n "
|
238 |
+
"url = {https://openreview.net/forum?id=r1ecqn4YwB}\n }"
|
239 |
+
),
|
240 |
+
},
|
241 |
+
nbeatsh={
|
242 |
+
"Abstract": (
|
243 |
+
"The N-BEATS_H models is a model based on a deep stack multi-layer percentrons connected"
|
244 |
+
"with doubly residual connections. The model combines a multi-step forecasting strategy "
|
245 |
+
"with projections unto piecewise functions for its generic version or polynomials and "
|
246 |
+
"harmonics for its interpretable version. [Boris N. Oreshkin, Dmitri Carpov, Nicolas "
|
247 |
+
"Chapados, Yoshua Bengio. N-BEATS: Neural basis expansion analysis for interpretable "
|
248 |
+
"time series forecasting. 8th International Conference on Learning Representations, "
|
249 |
+
"ICLR 2020.](https://arxiv.org/abs/1905.10437)"
|
250 |
+
),
|
251 |
+
"Intended use": (
|
252 |
+
"The N-BEATS_H is an efficient univariate forecasting model specialized in hourly "
|
253 |
+
"data, that uses the multi-step forecasting strategy."
|
254 |
+
),
|
255 |
+
"Secondary use": (
|
256 |
+
"The interpretable variant of N-BEATSi_H produces a trend and seasonality "
|
257 |
+
"decomposition."
|
258 |
+
),
|
259 |
+
"Limitations": (
|
260 |
+
"The transferability across different frequencies has not yet been tested, it is "
|
261 |
+
"advisable to restrict the use of N-BEATS_H to hourly data were it was pre-trained."
|
262 |
+
"This model purely autorregresive, transferability of models with exogenous variables "
|
263 |
+
"is yet to be done."
|
264 |
+
),
|
265 |
+
"Training data": (
|
266 |
+
"N-BEATS_H was trained on 414 hourly series from the M4 competition "
|
267 |
+
"[Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The "
|
268 |
+
" M4 competition: 100,000 time series and 61 forecasting methods. International "
|
269 |
+
"Journal of Forecasting, 36(1):54–74, 2020. ISSN 0169-2070.]"
|
270 |
+
"(https://www.sciencedirect.com/science/article/pii/S0169207019301128)"
|
271 |
+
),
|
272 |
+
"Citation Info": (
|
273 |
+
"@inproceedings{oreshkin2020nbeats,\n "
|
274 |
+
"author = {Boris N. Oreshkin and \n"
|
275 |
+
" Dmitri Carpov and \n"
|
276 |
+
" Nicolas Chapados and\n"
|
277 |
+
" Yoshua Bengio},\n "
|
278 |
+
"title = {{N-BEATS:} Neural basis expansion analysis for interpretable time series forecasting},\n "
|
279 |
+
"booktitle = {8th International Conference on Learning Representations, {ICLR} 2020},\n "
|
280 |
+
"year = {2020},\n "
|
281 |
+
"url = {https://openreview.net/forum?id=r1ecqn4YwB}\n }"
|
282 |
+
),
|
283 |
+
},
|
284 |
+
nbeatsd={
|
285 |
+
"Abstract": (
|
286 |
+
"The N-BEATS_D models is a model based on a deep stack multi-layer percentrons connected"
|
287 |
+
"with doubly residual connections. The model combines a multi-step forecasting strategy "
|
288 |
+
"with projections unto piecewise functions for its generic version or polynomials and "
|
289 |
+
"harmonics for its interpretable version. [Boris N. Oreshkin, Dmitri Carpov, Nicolas "
|
290 |
+
"Chapados, Yoshua Bengio. N-BEATS: Neural basis expansion analysis for interpretable "
|
291 |
+
"time series forecasting. 8th International Conference on Learning Representations, "
|
292 |
+
"ICLR 2020.](https://arxiv.org/abs/1905.10437)"
|
293 |
+
),
|
294 |
+
"Intended use": (
|
295 |
+
"The N-BEATS_D is an efficient univariate forecasting model specialized in hourly "
|
296 |
+
"data, that uses the multi-step forecasting strategy."
|
297 |
+
),
|
298 |
+
"Secondary use": (
|
299 |
+
"The interpretable variant of N-BEATSi_D produces a trend and seasonality "
|
300 |
+
"decomposition."
|
301 |
+
),
|
302 |
+
"Limitations": (
|
303 |
+
"The transferability across different frequencies has not yet been tested, it is "
|
304 |
+
"advisable to restrict the use of N-BEATS_D to daily data were it was pre-trained."
|
305 |
+
"This model purely autorregresive, transferability of models with exogenous variables "
|
306 |
+
"is yet to be done."
|
307 |
+
),
|
308 |
+
"Training data": (
|
309 |
+
"N-BEATS_D was trained on 4,227 daily series from the M4 competition "
|
310 |
+
"[Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The "
|
311 |
+
" M4 competition: 100,000 time series and 61 forecasting methods. International "
|
312 |
+
"Journal of Forecasting, 36(1):54–74, 2020. ISSN 0169-2070.]"
|
313 |
+
"(https://www.sciencedirect.com/science/article/pii/S0169207019301128)"
|
314 |
+
),
|
315 |
+
"Citation Info": (
|
316 |
+
"@inproceedings{oreshkin2020nbeats,\n "
|
317 |
+
"author = {Boris N. Oreshkin and \n"
|
318 |
+
" Dmitri Carpov and \n"
|
319 |
+
" Nicolas Chapados and\n"
|
320 |
+
" Yoshua Bengio},\n "
|
321 |
+
"title = {{N-BEATS:} Neural basis expansion analysis for interpretable time series forecasting},\n "
|
322 |
+
"booktitle = {8th International Conference on Learning Representations, {ICLR} 2020},\n "
|
323 |
+
"year = {2020},\n "
|
324 |
+
"url = {https://openreview.net/forum?id=r1ecqn4YwB}\n }"
|
325 |
+
),
|
326 |
+
},
|
327 |
+
nbeatsw={
|
328 |
+
"Abstract": (
|
329 |
+
"The N-BEATS_W models is a model based on a deep stack multi-layer percentrons connected"
|
330 |
+
"with doubly residual connections. The model combines a multi-step forecasting strategy "
|
331 |
+
"with projections unto piecewise functions for its generic version or polynomials and "
|
332 |
+
"harmonics for its interpretable version. [Boris N. Oreshkin, Dmitri Carpov, Nicolas "
|
333 |
+
"Chapados, Yoshua Bengio. N-BEATS: Neural basis expansion analysis for interpretable "
|
334 |
+
"time series forecasting. 8th International Conference on Learning Representations, "
|
335 |
+
"ICLR 2020.](https://arxiv.org/abs/1905.10437)"
|
336 |
+
),
|
337 |
+
"Intended use": (
|
338 |
+
"The N-BEATS_W is an efficient univariate forecasting model specialized in weekly "
|
339 |
+
"data, that uses the multi-step forecasting strategy."
|
340 |
+
),
|
341 |
+
"Secondary use": (
|
342 |
+
"The interpretable variant of N-BEATSi_W produces a trend and seasonality "
|
343 |
+
"decomposition."
|
344 |
+
),
|
345 |
+
"Limitations": (
|
346 |
+
"The transferability across different frequencies has not yet been tested, it is "
|
347 |
+
"advisable to restrict the use of N-BEATS_W to weekly data were it was pre-trained."
|
348 |
+
"This model purely autorregresive, transferability of models with exogenous variables "
|
349 |
+
"is yet to be done."
|
350 |
+
),
|
351 |
+
"Training data": (
|
352 |
+
"N-BEATS_W was trained on 359 weekly series from the M4 competition "
|
353 |
+
"[Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The "
|
354 |
+
" M4 competition: 100,000 time series and 61 forecasting methods. International "
|
355 |
+
"Journal of Forecasting, 36(1):54–74, 2020. ISSN 0169-2070.]"
|
356 |
+
"(https://www.sciencedirect.com/science/article/pii/S0169207019301128)"
|
357 |
+
),
|
358 |
+
"Citation Info": (
|
359 |
+
"@inproceedings{oreshkin2020nbeats,\n "
|
360 |
+
"author = {Boris N. Oreshkin and \n"
|
361 |
+
" Dmitri Carpov and \n"
|
362 |
+
" Nicolas Chapados and\n"
|
363 |
+
" Yoshua Bengio},\n "
|
364 |
+
"title = {{N-BEATS:} Neural basis expansion analysis for interpretable time series forecasting},\n "
|
365 |
+
"booktitle = {8th International Conference on Learning Representations, {ICLR} 2020},\n "
|
366 |
+
"year = {2020},\n "
|
367 |
+
"url = {https://openreview.net/forum?id=r1ecqn4YwB}\n }"
|
368 |
+
),
|
369 |
+
},
|
370 |
+
nbeatsy={
|
371 |
+
"Abstract": (
|
372 |
+
"The N-BEATS_Y models is a model based on a deep stack multi-layer percentrons connected"
|
373 |
+
"with doubly residual connections. The model combines a multi-step forecasting strategy "
|
374 |
+
"with projections unto piecewise functions for its generic version or polynomials and "
|
375 |
+
"harmonics for its interpretable version. [Boris N. Oreshkin, Dmitri Carpov, Nicolas "
|
376 |
+
"Chapados, Yoshua Bengio. N-BEATS: Neural basis expansion analysis for interpretable "
|
377 |
+
"time series forecasting. 8th International Conference on Learning Representations, "
|
378 |
+
"ICLR 2020.](https://arxiv.org/abs/1905.10437)"
|
379 |
+
),
|
380 |
+
"Intended use": (
|
381 |
+
"The N-BEATS_Y is an efficient univariate forecasting model specialized in hourly "
|
382 |
+
"data, that uses the multi-step forecasting strategy."
|
383 |
+
),
|
384 |
+
"Secondary use": (
|
385 |
+
"The interpretable variant of N-BEATSi_Y produces a trend and seasonality "
|
386 |
+
"decomposition."
|
387 |
+
),
|
388 |
+
"Limitations": (
|
389 |
+
"The transferability across different frequencies has not yet been tested, it is "
|
390 |
+
"advisable to restrict the use of N-BEATS_Y to yearly data were it was pre-trained."
|
391 |
+
"This model purely autorregresive, transferability of models with exogenous variables "
|
392 |
+
"is yet to be done."
|
393 |
+
),
|
394 |
+
"Training data": (
|
395 |
+
"N-BEATS_Y was trained on 23,000 yearly series from the M4 competition "
|
396 |
+
"[Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The "
|
397 |
+
" M4 competition: 100,000 time series and 61 forecasting methods. International "
|
398 |
+
"Journal of Forecasting, 36(1):54–74, 2020. ISSN 0169-2070.]"
|
399 |
+
"(https://www.sciencedirect.com/science/article/pii/S0169207019301128)"
|
400 |
+
),
|
401 |
+
"Citation Info": (
|
402 |
+
"@inproceedings{oreshkin2020nbeats,\n "
|
403 |
+
"author = {Boris N. Oreshkin and \n"
|
404 |
+
" Dmitri Carpov and \n"
|
405 |
+
" Nicolas Chapados and\n"
|
406 |
+
" Yoshua Bengio},\n "
|
407 |
+
"title = {{N-BEATS:} Neural basis expansion analysis for interpretable time series forecasting},\n "
|
408 |
+
"booktitle = {8th International Conference on Learning Representations, {ICLR} 2020},\n "
|
409 |
+
"year = {2020},\n "
|
410 |
+
"url = {https://openreview.net/forum?id=r1ecqn4YwB}\n }"
|
411 |
+
),
|
412 |
+
},
|
413 |
+
arima={
|
414 |
+
"Abstract": (
|
415 |
+
"The AutoARIMA model is a classic autoregressive model that automatically explores ARIMA"
|
416 |
+
"models with a step-wise algorithm using Akaike Information Criterion. It applies to "
|
417 |
+
"seasonal and non-seasonal data and has a proven record in the M3 forecasting competition. "
|
418 |
+
"An efficient open-source version of the model was only available in R but is now also "
|
419 |
+
"available in Python. [StatsForecast: Lightning fast forecasting with statistical and "
|
420 |
+
"econometric models](https://github.com/Nixtla/statsforecast)."
|
421 |
+
),
|
422 |
+
"Intended use": (
|
423 |
+
"The AutoARIMA is an univariate forecasting model, intended to produce automatic "
|
424 |
+
"predictions for large numbers of time series."
|
425 |
+
),
|
426 |
+
"Secondary use": (
|
427 |
+
"It is a classical model and is an almost obligated forecasting baseline."
|
428 |
+
),
|
429 |
+
"Limitations": (
|
430 |
+
"ARIMA model uses a recurrent prediction strategy. It concatenates errors on long "
|
431 |
+
"horizon forecasting settings. It is a fairly simple model that does not model "
|
432 |
+
"non-linear relationships."
|
433 |
+
),
|
434 |
+
"Training data": (
|
435 |
+
"The AutoARIMA is a univariate model that uses only autorregresive data from "
|
436 |
+
"the target variable."
|
437 |
+
),
|
438 |
+
"Citation Info": (
|
439 |
+
"@article{hyndman2008auto_arima,"
|
440 |
+
"title={Automatic Time Series Forecasting: The forecast Package for R},\n"
|
441 |
+
"author={Hyndman, Rob J. and Khandakar, Yeasmin},\n"
|
442 |
+
"volume={27},\n"
|
443 |
+
"url={https://www.jstatsoft.org/index.php/jss/article/view/v027i03},\n"
|
444 |
+
"doi={10.18637/jss.v027.i03},\n"
|
445 |
+
"number={3},\n"
|
446 |
+
"journal={Journal of Statistical Software},\n"
|
447 |
+
"year={2008},\n"
|
448 |
+
"pages={1–22}\n"
|
449 |
+
"}"
|
450 |
+
),
|
451 |
+
},
|
452 |
+
exp_smoothing={
|
453 |
+
"Abstract": (
|
454 |
+
"Exponential smoothing is a classic technique using exponential window functions, "
|
455 |
+
"and one of the most successful forecasting methods. It has a long history, the "
|
456 |
+
"name was coined by Charles C. Holt. [Holt, Charles C. (1957). Forecasting Trends "
|
457 |
+
'and Seasonal by Exponentially Weighted Averages". Office of Naval Research '
|
458 |
+
"Memorandum.](https://www.sciencedirect.com/science/article/abs/pii/S0169207003001134)."
|
459 |
+
),
|
460 |
+
"Intended use": (
|
461 |
+
"Simple variants of exponential smoothing can serve as an efficient baseline method."
|
462 |
+
),
|
463 |
+
"Secondary use": (
|
464 |
+
"The exponential smoothing method can also act as a low-pass filter removing "
|
465 |
+
"high-frequency noise. "
|
466 |
+
),
|
467 |
+
"Limitations": (
|
468 |
+
"The method can face limitations if the series show strong discontinuities, or if "
|
469 |
+
"the high-frequency components are an important part of the predicted signal."
|
470 |
+
),
|
471 |
+
"Training data": (
|
472 |
+
"Just like the ARIMA method, exponential smoothing uses only autorregresive data "
|
473 |
+
" from the target variable."
|
474 |
+
),
|
475 |
+
"Citation Info": (
|
476 |
+
"@article{holt1957exponential_smoothing, \n"
|
477 |
+
"title = {Forecasting seasonals and trends by exponentially weighted moving averages},\n"
|
478 |
+
"author = {Charles C. Holt},\n"
|
479 |
+
"journal = {International Journal of Forecasting},\n"
|
480 |
+
"volume = {20},\n"
|
481 |
+
"number = {1},\n"
|
482 |
+
"pages = {5-10}\n,"
|
483 |
+
"year = {2004(1957)},\n"
|
484 |
+
"issn = {0169-2070},\n"
|
485 |
+
"doi = {https://doi.org/10.1016/j.ijforecast.2003.09.015},\n"
|
486 |
+
"url = {https://www.sciencedirect.com/science/article/pii/S0169207003001134},\n"
|
487 |
+
"}"
|
488 |
+
),
|
489 |
+
},
|
490 |
+
prophet={
|
491 |
+
"Abstract": (
|
492 |
+
"Prophet is a widely used forecasting method. Prophet is a nonlinear regression model."
|
493 |
+
),
|
494 |
+
"Intended use": ("Prophet can serve as a baseline method."),
|
495 |
+
"Secondary use": (
|
496 |
+
"The Prophet model is also useful for time series decomposition."
|
497 |
+
),
|
498 |
+
"Limitations": (
|
499 |
+
"The method can face limitations if the series show strong discontinuities, or if "
|
500 |
+
"the high-frequency components are an important part of the predicted signal."
|
501 |
+
),
|
502 |
+
"Training data": (
|
503 |
+
"Just like the ARIMA method and exponential smoothing, Prophet uses only autorregresive data "
|
504 |
+
" from the target variable."
|
505 |
+
),
|
506 |
+
"Citation Info": (
|
507 |
+
"@article{doi:10.1080/00031305.2017.1380080,\n"
|
508 |
+
"author = {Sean J. Taylor and Benjamin Letham},\n"
|
509 |
+
"title = {Forecasting at Scale},\n"
|
510 |
+
"journal = {The American Statistician},\n"
|
511 |
+
"volume = {72},\n"
|
512 |
+
"number = {1},\n"
|
513 |
+
"pages = {37-45},\n"
|
514 |
+
"year = {2018},\n"
|
515 |
+
"publisher = {Taylor & Francis},\n"
|
516 |
+
"doi = {10.1080/00031305.2017.1380080},\n"
|
517 |
+
"URL = {https://doi.org/10.1080/00031305.2017.1380080},\n"
|
518 |
+
"eprint = {https://doi.org/10.1080/00031305.2017.1380080},\n"
|
519 |
+
"}"
|
520 |
+
),
|
521 |
+
},
|
522 |
+
)
|
src/nf.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from itertools import chain
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import List, Optional
|
4 |
+
|
5 |
+
import neuralforecast as nf
|
6 |
+
import numpy as np
|
7 |
+
import pandas as pd
|
8 |
+
import pytorch_lightning as pl
|
9 |
+
from datasetsforecast.utils import download_file
|
10 |
+
from hyperopt import hp
|
11 |
+
from neuralforecast.auto import NHITS as autoNHITS
|
12 |
+
from neuralforecast.data.tsdataset import WindowsDataset
|
13 |
+
from neuralforecast.data.tsloader import TimeSeriesLoader
|
14 |
+
from neuralforecast.models.mqnhits.mqnhits import MQNHITS
|
15 |
+
from neuralforecast.models.nhits.nhits import NHITS
|
16 |
+
|
17 |
+
# GLOBAL PARAMETERS
|
18 |
+
DEFAULT_HORIZON = 30
|
19 |
+
HYPEROPT_STEPS = 10
|
20 |
+
MAX_STEPS = 1000
|
21 |
+
N_TS_VAL = 2 * 30
|
22 |
+
|
23 |
+
MODELS = {
|
24 |
+
"Pretrained N-HiTS M4 Hourly": {
|
25 |
+
"card": "nhitsh",
|
26 |
+
"max_steps": 0,
|
27 |
+
"model": "nhits_m4_hourly",
|
28 |
+
},
|
29 |
+
"Pretrained N-HiTS M4 Hourly (Tiny)": {
|
30 |
+
"card": "nhitsh",
|
31 |
+
"max_steps": 0,
|
32 |
+
"model": "nhits_m4_hourly_tiny",
|
33 |
+
},
|
34 |
+
"Pretrained N-HiTS M4 Daily": {
|
35 |
+
"card": "nhitsd",
|
36 |
+
"max_steps": 0,
|
37 |
+
"model": "nhits_m4_daily",
|
38 |
+
},
|
39 |
+
"Pretrained N-HiTS M4 Monthly": {
|
40 |
+
"card": "nhitsm",
|
41 |
+
"max_steps": 0,
|
42 |
+
"model": "nhits_m4_monthly",
|
43 |
+
},
|
44 |
+
"Pretrained N-HiTS M4 Yearly": {
|
45 |
+
"card": "nhitsy",
|
46 |
+
"max_steps": 0,
|
47 |
+
"model": "nhits_m4_yearly",
|
48 |
+
},
|
49 |
+
"Pretrained N-BEATS M4 Hourly": {
|
50 |
+
"card": "nbeatsh",
|
51 |
+
"max_steps": 0,
|
52 |
+
"model": "nbeats_m4_hourly",
|
53 |
+
},
|
54 |
+
"Pretrained N-BEATS M4 Daily": {
|
55 |
+
"card": "nbeatsd",
|
56 |
+
"max_steps": 0,
|
57 |
+
"model": "nbeats_m4_daily",
|
58 |
+
},
|
59 |
+
"Pretrained N-BEATS M4 Weekly": {
|
60 |
+
"card": "nbeatsw",
|
61 |
+
"max_steps": 0,
|
62 |
+
"model": "nbeats_m4_weekly",
|
63 |
+
},
|
64 |
+
"Pretrained N-BEATS M4 Monthly": {
|
65 |
+
"card": "nbeatsm",
|
66 |
+
"max_steps": 0,
|
67 |
+
"model": "nbeats_m4_monthly",
|
68 |
+
},
|
69 |
+
"Pretrained N-BEATS M4 Yearly": {
|
70 |
+
"card": "nbeatsy",
|
71 |
+
"max_steps": 0,
|
72 |
+
"model": "nbeats_m4_yearly",
|
73 |
+
},
|
74 |
+
}
|
75 |
+
|
76 |
+
|
77 |
+
def download_models():
|
78 |
+
for _, meta in MODELS.items():
|
79 |
+
if not Path(f'./models/{meta["model"]}.ckpt').is_file():
|
80 |
+
download_file(
|
81 |
+
"./models/",
|
82 |
+
f'https://nixtla-public.s3.amazonaws.com/transfer/pretrained_models/{meta["model"]}.ckpt',
|
83 |
+
)
|
84 |
+
|
85 |
+
|
86 |
+
download_models()
|
87 |
+
|
88 |
+
|
89 |
+
class StandardScaler:
|
90 |
+
"""This class helps to standardize a dataframe with multiple time series."""
|
91 |
+
|
92 |
+
def __init__(self):
|
93 |
+
self.norm: pd.DataFrame
|
94 |
+
|
95 |
+
def fit(self, X: pd.DataFrame) -> "StandardScaler":
|
96 |
+
self.norm = X.groupby("unique_id").agg({"y": [np.mean, np.std]})
|
97 |
+
self.norm = self.norm.droplevel(0, 1).reset_index()
|
98 |
+
|
99 |
+
def transform(self, X: pd.DataFrame) -> pd.DataFrame:
|
100 |
+
transformed = X.merge(self.norm, how="left", on=["unique_id"])
|
101 |
+
transformed["y"] = (transformed["y"] - transformed["mean"]) / transformed["std"]
|
102 |
+
return transformed[["unique_id", "ds", "y"]]
|
103 |
+
|
104 |
+
def inverse_transform(self, X: pd.DataFrame, cols: List[str]) -> pd.DataFrame:
|
105 |
+
transformed = X.merge(self.norm, how="left", on=["unique_id"])
|
106 |
+
for col in cols:
|
107 |
+
transformed[col] = (
|
108 |
+
transformed[col] * transformed["std"] + transformed["mean"]
|
109 |
+
)
|
110 |
+
return transformed[["unique_id", "ds"] + cols]
|
111 |
+
|
112 |
+
|
113 |
+
def compute_ds_future(Y_df, fh):
|
114 |
+
if Y_df["unique_id"].nunique() == 1:
|
115 |
+
ds_ = pd.to_datetime(Y_df["ds"].values)
|
116 |
+
try:
|
117 |
+
freq = pd.infer_freq(ds_)
|
118 |
+
except:
|
119 |
+
freq = None
|
120 |
+
if freq is not None:
|
121 |
+
ds_future = pd.date_range(ds_[-1], periods=fh + 1, freq=freq)[1:]
|
122 |
+
else:
|
123 |
+
freq = ds_[-1] - ds_[-2]
|
124 |
+
ds_future = [ds_[-1] + (i + 1) * freq for i in range(fh)]
|
125 |
+
ds_future = list(map(str, ds_future))
|
126 |
+
return ds_future
|
127 |
+
else:
|
128 |
+
ds_future = chain(
|
129 |
+
*[compute_ds_future(df, fh) for _, df in Y_df.groupby("unique_id")]
|
130 |
+
)
|
131 |
+
return list(ds_future)
|
132 |
+
|
133 |
+
|
134 |
+
def forecast_pretrained_model(
|
135 |
+
Y_df: pd.DataFrame, model: str, fh: int, max_steps: int = 0
|
136 |
+
):
|
137 |
+
if "unique_id" not in Y_df:
|
138 |
+
Y_df.insert(0, "unique_id", "ts_1")
|
139 |
+
|
140 |
+
scaler = StandardScaler()
|
141 |
+
scaler.fit(Y_df)
|
142 |
+
Y_df = scaler.transform(Y_df)
|
143 |
+
|
144 |
+
# Model
|
145 |
+
file_ = f"./models/{model}.ckpt"
|
146 |
+
mqnhits = MQNHITS.load_from_checkpoint(file_)
|
147 |
+
|
148 |
+
# Fit
|
149 |
+
if max_steps > 0:
|
150 |
+
train_dataset = WindowsDataset(
|
151 |
+
Y_df=Y_df,
|
152 |
+
X_df=None,
|
153 |
+
S_df=None,
|
154 |
+
mask_df=None,
|
155 |
+
f_cols=[],
|
156 |
+
input_size=mqnhits.n_time_in,
|
157 |
+
output_size=mqnhits.n_time_out,
|
158 |
+
sample_freq=1,
|
159 |
+
complete_windows=True,
|
160 |
+
verbose=False,
|
161 |
+
)
|
162 |
+
|
163 |
+
train_loader = TimeSeriesLoader(
|
164 |
+
dataset=train_dataset, batch_size=1, n_windows=32, shuffle=True
|
165 |
+
)
|
166 |
+
|
167 |
+
trainer = pl.Trainer(
|
168 |
+
max_epochs=None,
|
169 |
+
checkpoint_callback=False,
|
170 |
+
logger=False,
|
171 |
+
max_steps=max_steps,
|
172 |
+
gradient_clip_val=1.0,
|
173 |
+
progress_bar_refresh_rate=1,
|
174 |
+
log_every_n_steps=1,
|
175 |
+
)
|
176 |
+
|
177 |
+
trainer.fit(mqnhits, train_loader)
|
178 |
+
|
179 |
+
# Forecast
|
180 |
+
forecast_df = mqnhits.forecast(Y_df=Y_df)
|
181 |
+
forecast_df = scaler.inverse_transform(forecast_df, cols=["y_5", "y_50", "y_95"])
|
182 |
+
|
183 |
+
# Foreoast
|
184 |
+
n_ts = forecast_df["unique_id"].nunique()
|
185 |
+
if fh * n_ts > len(forecast_df):
|
186 |
+
forecast_df = (
|
187 |
+
forecast_df.groupby("unique_id")
|
188 |
+
.apply(lambda df: pd.concat([df] * fh).head(fh))
|
189 |
+
.reset_index(drop=True)
|
190 |
+
)
|
191 |
+
else:
|
192 |
+
forecast_df = forecast_df.groupby("unique_id").head(fh)
|
193 |
+
forecast_df["ds"] = compute_ds_future(Y_df, fh)
|
194 |
+
|
195 |
+
return forecast_df
|
196 |
+
|
197 |
+
|
198 |
+
if __name__ == "__main__":
|
199 |
+
df = pd.read_csv(
|
200 |
+
"https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/ercot_COAST.csv"
|
201 |
+
)
|
202 |
+
df.columns = ["ds", "y"]
|
203 |
+
multi_df = pd.concat([df.assign(unique_id=f"ts{i}") for i in range(2)])
|
204 |
+
assert len(compute_ds_future(multi_df, 80)) == 2 * 80
|
205 |
+
for _, meta in MODELS.items():
|
206 |
+
# test just a time series (without unique_id)
|
207 |
+
forecast = forecast_pretrained_model(df, model=meta["model"], fh=80)
|
208 |
+
assert forecast.shape == (80, 5)
|
209 |
+
# test multiple time series
|
210 |
+
multi_forecast = forecast_pretrained_model(multi_df, model=meta["model"], fh=80)
|
211 |
+
assert multi_forecast.shape == (80 * 2, 5)
|
src/st_deploy.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
|
4 |
+
from streamlit.web import cli
|
5 |
+
|
6 |
+
if __name__ == "__main__":
|
7 |
+
sys.argv = [
|
8 |
+
"streamlit",
|
9 |
+
"run",
|
10 |
+
f"{os.path.dirname(os.path.realpath(__file__))}/st_app.py",
|
11 |
+
"--server.port=8501",
|
12 |
+
"--server.address=0.0.0.0",
|
13 |
+
"--server.baseUrlPath=transfer-learning",
|
14 |
+
"--logger.level=debug",
|
15 |
+
]
|
16 |
+
sys.exit(cli.main())
|