Spaces:
Build error
Build error
asd
Browse files
app.py
CHANGED
@@ -1,18 +1,182 @@
|
|
1 |
-
import gradio as gr
|
2 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
#
|
5 |
-
|
6 |
-
|
7 |
-
if not hf_token:
|
8 |
-
raise ValueError("No hf_token found in environment variables")
|
9 |
-
|
10 |
-
# Load the model using the token
|
11 |
-
try:
|
12 |
-
interface = gr.load("models/NoaiGPT/777", api_key=hf_token)
|
13 |
-
# Launch the Gradio interface
|
14 |
-
interface.launch()
|
15 |
-
except gradio.exceptions.ModelNotFoundError as e:
|
16 |
-
print(f"Model not found: {e}")
|
17 |
-
except Exception as e:
|
18 |
-
print(f"An error occurred: {e}")
|
|
|
|
|
1 |
import os
|
2 |
+
import json
|
3 |
+
import gradio as gr
|
4 |
+
import spaces
|
5 |
+
import torch
|
6 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification
|
7 |
+
from sentence_splitter import SentenceSplitter
|
8 |
+
from itertools import product
|
9 |
+
|
10 |
+
# Get the Hugging Face token from environment variable
|
11 |
+
hf_token = os.getenv('HF_TOKEN')
|
12 |
+
|
13 |
+
cuda_available = torch.cuda.is_available()
|
14 |
+
device = torch.device("cuda" if cuda_available else "cpu")
|
15 |
+
print(f"Using device: {device}")
|
16 |
+
|
17 |
+
# Initialize paraphraser model and tokenizer
|
18 |
+
paraphraser_model_name = "NoaiGPT/777"
|
19 |
+
paraphraser_tokenizer = AutoTokenizer.from_pretrained(paraphraser_model_name, use_auth_token=hf_token)
|
20 |
+
paraphraser_model = AutoModelForSeq2SeqLM.from_pretrained(paraphraser_model_name, use_auth_token=hf_token).to(device)
|
21 |
+
|
22 |
+
# Initialize classifier model and tokenizer
|
23 |
+
classifier_model_name = "andreas122001/roberta-mixed-detector"
|
24 |
+
classifier_tokenizer = AutoTokenizer.from_pretrained(classifier_model_name)
|
25 |
+
classifier_model = AutoModelForSequenceClassification.from_pretrained(classifier_model_name).to(device)
|
26 |
+
|
27 |
+
# Initialize sentence splitter
|
28 |
+
splitter = SentenceSplitter(language='en')
|
29 |
+
|
30 |
+
def classify_text(text):
|
31 |
+
inputs = classifier_tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
|
32 |
+
with torch.no_grad():
|
33 |
+
outputs = classifier_model(**inputs)
|
34 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
35 |
+
predicted_class = torch.argmax(probabilities, dim=-1).item()
|
36 |
+
main_label = classifier_model.config.id2label[predicted_class]
|
37 |
+
main_score = probabilities[0][predicted_class].item()
|
38 |
+
return main_label, main_score
|
39 |
+
|
40 |
+
@spaces.GPU
|
41 |
+
def generate_paraphrases(text, setting, output_format):
|
42 |
+
sentences = splitter.split(text)
|
43 |
+
all_sentence_paraphrases = []
|
44 |
+
|
45 |
+
if setting == 1:
|
46 |
+
num_return_sequences = 5
|
47 |
+
repetition_penalty = 1.1
|
48 |
+
no_repeat_ngram_size = 2
|
49 |
+
temperature = 1.0
|
50 |
+
max_length = 128
|
51 |
+
elif setting == 2:
|
52 |
+
num_return_sequences = 10
|
53 |
+
repetition_penalty = 1.2
|
54 |
+
no_repeat_ngram_size = 3
|
55 |
+
temperature = 1.2
|
56 |
+
max_length = 192
|
57 |
+
elif setting == 3:
|
58 |
+
num_return_sequences = 15
|
59 |
+
repetition_penalty = 1.3
|
60 |
+
no_repeat_ngram_size = 4
|
61 |
+
temperature = 1.4
|
62 |
+
max_length = 256
|
63 |
+
elif setting == 4:
|
64 |
+
num_return_sequences = 20
|
65 |
+
repetition_penalty = 1.4
|
66 |
+
no_repeat_ngram_size = 5
|
67 |
+
temperature = 1.6
|
68 |
+
max_length = 320
|
69 |
+
else:
|
70 |
+
num_return_sequences = 25
|
71 |
+
repetition_penalty = 1.5
|
72 |
+
no_repeat_ngram_size = 6
|
73 |
+
temperature = 1.8
|
74 |
+
max_length = 384
|
75 |
+
|
76 |
+
top_k = 50
|
77 |
+
top_p = 0.95
|
78 |
+
length_penalty = 1.0
|
79 |
+
|
80 |
+
formatted_output = "Original text:\n" + text + "\n\n"
|
81 |
+
formatted_output += "Paraphrased versions:\n"
|
82 |
+
|
83 |
+
json_output = {
|
84 |
+
"original_text": text,
|
85 |
+
"paraphrased_versions": [],
|
86 |
+
"combined_versions": [],
|
87 |
+
"human_like_versions": []
|
88 |
+
}
|
89 |
+
|
90 |
+
for i, sentence in enumerate(sentences):
|
91 |
+
inputs = paraphraser_tokenizer(f'paraphraser: {sentence}', return_tensors="pt", padding="longest", truncation=True, max_length=max_length).to(device)
|
92 |
+
|
93 |
+
# Generate paraphrases using the specified parameters
|
94 |
+
outputs = paraphraser_model.generate(
|
95 |
+
inputs.input_ids,
|
96 |
+
attention_mask=inputs.attention_mask,
|
97 |
+
num_return_sequences=num_return_sequences,
|
98 |
+
repetition_penalty=repetition_penalty,
|
99 |
+
no_repeat_ngram_size=no_repeat_ngram_size,
|
100 |
+
temperature=temperature,
|
101 |
+
max_length=max_length,
|
102 |
+
top_k=top_k,
|
103 |
+
top_p=top_p,
|
104 |
+
do_sample=True,
|
105 |
+
early_stopping=False,
|
106 |
+
length_penalty=length_penalty
|
107 |
+
)
|
108 |
+
|
109 |
+
paraphrases = paraphraser_tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
110 |
+
|
111 |
+
formatted_output += f"Original sentence {i+1}: {sentence}\n"
|
112 |
+
for j, paraphrase in enumerate(paraphrases, 1):
|
113 |
+
formatted_output += f" Paraphrase {j}: {paraphrase}\n"
|
114 |
+
|
115 |
+
json_output["paraphrased_versions"].append({
|
116 |
+
f"original_sentence_{i+1}": sentence,
|
117 |
+
"paraphrases": paraphrases
|
118 |
+
})
|
119 |
+
|
120 |
+
all_sentence_paraphrases.append(paraphrases)
|
121 |
+
formatted_output += "\n"
|
122 |
+
|
123 |
+
all_combinations = list(product(*all_sentence_paraphrases))
|
124 |
+
|
125 |
+
formatted_output += "\nCombined paraphrased versions:\n"
|
126 |
+
combined_versions = []
|
127 |
+
for i, combination in enumerate(all_combinations[:50], 1): # Limit to 50 combinations
|
128 |
+
combined_paraphrase = " ".join(combination)
|
129 |
+
combined_versions.append(combined_paraphrase)
|
130 |
+
|
131 |
+
json_output["combined_versions"] = combined_versions
|
132 |
+
|
133 |
+
# Classify combined versions
|
134 |
+
human_versions = []
|
135 |
+
for i, version in enumerate(combined_versions, 1):
|
136 |
+
label, score = classify_text(version)
|
137 |
+
formatted_output += f"Version {i}:\n{version}\n"
|
138 |
+
formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
|
139 |
+
if label == "human-produced" or (label == "machine-generated" and score < 0.98):
|
140 |
+
human_versions.append((version, label, score))
|
141 |
+
|
142 |
+
formatted_output += "\nHuman-like or Less Confident Machine-generated versions:\n"
|
143 |
+
for i, (version, label, score) in enumerate(human_versions, 1):
|
144 |
+
formatted_output += f"Version {i}:\n{version}\n"
|
145 |
+
formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
|
146 |
+
|
147 |
+
json_output["human_like_versions"] = [
|
148 |
+
{"version": version, "label": label, "confidence_score": score}
|
149 |
+
for version, label, score in human_versions
|
150 |
+
]
|
151 |
+
|
152 |
+
# If no human-like versions, include the top 5 least confident machine-generated versions
|
153 |
+
if not human_versions:
|
154 |
+
human_versions = sorted([(v, l, s) for v, l, s in zip(combined_versions, [classify_text(v)[0] for v in combined_versions], [classify_text(v)[1] for v in combined_versions])], key=lambda x: x[2])[:5]
|
155 |
+
formatted_output += "\nNo human-like versions found. Showing top 5 least confident machine-generated versions:\n"
|
156 |
+
for i, (version, label, score) in enumerate(human_versions, 1):
|
157 |
+
formatted_output += f"Version {i}:\n{version}\n"
|
158 |
+
formatted_output += f"Classification: {label} (confidence: {score:.2%})\n\n"
|
159 |
+
|
160 |
+
if output_format == "text":
|
161 |
+
return formatted_output, "\n\n".join([v[0] for v in human_versions])
|
162 |
+
else:
|
163 |
+
return json.dumps(json_output, indent=2), "\n\n".join([v[0] for v in human_versions])
|
164 |
+
|
165 |
+
# Define the Gradio interface
|
166 |
+
iface = gr.Interface(
|
167 |
+
fn=generate_paraphrases,
|
168 |
+
inputs=[
|
169 |
+
gr.Textbox(lines=5, label="Input Text"),
|
170 |
+
gr.Slider(minimum=1, maximum=5, step=1, label="Readability to Human-like Setting"),
|
171 |
+
gr.Radio(["text", "json"], label="Output Format")
|
172 |
+
],
|
173 |
+
outputs=[
|
174 |
+
gr.Textbox(lines=20, label="Detailed Paraphrases and Classifications"),
|
175 |
+
gr.Textbox(lines=10, label="Human-like or Less Confident Machine-generated Paraphrases")
|
176 |
+
],
|
177 |
+
title="Advanced Diverse Paraphraser with Human-like Filter",
|
178 |
+
description="Enter a text, select a setting from readable to human-like, and choose the output format to generate diverse paraphrased versions. Combined versions are classified, and those detected as human-produced or less confidently machine-generated are presented in the final output."
|
179 |
+
)
|
180 |
|
181 |
+
# Launch the interface
|
182 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|