File size: 5,693 Bytes
212a881 afad0ed 212a881 afad0ed 212a881 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
# Copyright (c) 2021 Justin Pinkney
import dlib
import numpy as np
import os
from PIL import Image
from PIL import ImageOps
from scipy.ndimage import gaussian_filter
import cv2
MODEL_PATH = "shape_predictor_5_face_landmarks.dat"
detector = dlib.get_frontal_face_detector()
def align(image_in, face_index=0, output_size=256):
try:
image_in = ImageOps.exif_transpose(image_in)
except:
print("exif problem, not rotating")
landmarks = list(get_landmarks(image_in))
n_faces = len(landmarks)
face_index = min(n_faces-1, face_index)
if n_faces == 0:
aligned_image = image_in
quad = None
else:
aligned_image, quad = image_align(image_in, landmarks[face_index], output_size=output_size)
return aligned_image, n_faces, quad
def composite_images(quad, img, output):
"""Composite an image into and output canvas according to transformed co-ords"""
output = output.convert("RGBA")
img = img.convert("RGBA")
input_size = img.size
src = np.array(((0, 0), (0, input_size[1]), input_size, (input_size[0], 0)), dtype=np.float32)
dst = np.float32(quad)
mtx = cv2.getPerspectiveTransform(dst, src)
img = img.transform(output.size, Image.PERSPECTIVE, mtx.flatten(), Image.BILINEAR)
output.alpha_composite(img)
return output.convert("RGB")
def get_landmarks(image):
"""Get landmarks from PIL image"""
shape_predictor = dlib.shape_predictor(MODEL_PATH)
max_size = max(image.size)
reduction_scale = int(max_size/512)
if reduction_scale == 0:
reduction_scale = 1
downscaled = image.reduce(reduction_scale)
img = np.array(downscaled)
detections = detector(img, 0)
for detection in detections:
try:
face_landmarks = [(reduction_scale*item.x, reduction_scale*item.y) for item in shape_predictor(img, detection).parts()]
yield face_landmarks
except Exception as e:
print(e)
def image_align(src_img, face_landmarks, output_size=512, transform_size=2048, enable_padding=True, x_scale=1, y_scale=1, em_scale=0.1, alpha=False):
# Align function modified from ffhq-dataset
# See https://github.com/NVlabs/ffhq-dataset for license
lm = np.array(face_landmarks)
lm_eye_left = lm[2:3] # left-clockwise
lm_eye_right = lm[0:1] # left-clockwise
# Calculate auxiliary vectors.
eye_left = np.mean(lm_eye_left, axis=0)
eye_right = np.mean(lm_eye_right, axis=0)
eye_avg = (eye_left + eye_right) * 0.5
eye_to_eye = 0.71*(eye_right - eye_left)
mouth_avg = lm[4]
eye_to_mouth = 1.35*(mouth_avg - eye_avg)
# Choose oriented crop rectangle.
x = eye_to_eye.copy()
x /= np.hypot(*x)
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
x *= x_scale
y = np.flipud(x) * [-y_scale, y_scale]
c = eye_avg + eye_to_mouth * em_scale
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
quad_orig = quad.copy()
qsize = np.hypot(*x) * 2
img = src_img.convert('RGBA').convert('RGB')
# Shrink.
shrink = int(np.floor(qsize / output_size * 0.5))
if shrink > 1:
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
img = img.resize(rsize, Image.Resampling.LANCZOS)
quad /= shrink
qsize /= shrink
# Crop.
border = max(int(np.rint(qsize * 0.1)), 3)
crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1]))
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
img = img.crop(crop)
quad -= crop[0:2]
# Pad.
pad = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0))
if enable_padding and max(pad) > border - 4:
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
h, w, _ = img.shape
y, x, _ = np.ogrid[:h, :w, :1]
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w-1-x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h-1-y) / pad[3]))
blur = qsize * 0.02
img += (gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
img += (np.median(img, axis=(0,1)) - img) * np.clip(mask, 0.0, 1.0)
img = np.uint8(np.clip(np.rint(img), 0, 255))
if alpha:
mask = 1-np.clip(3.0 * mask, 0.0, 1.0)
mask = np.uint8(np.clip(np.rint(mask*255), 0, 255))
img = np.concatenate((img, mask), axis=2)
img = Image.fromarray(img, 'RGBA')
else:
img = Image.fromarray(img, 'RGB')
quad += pad[:2]
# Transform.
img = img.transform((transform_size, transform_size), Image.QUAD, (quad + 0.5).flatten(), Image.BILINEAR)
if output_size < transform_size:
img = img.resize((output_size, output_size), Image.Resampling.LANCZOS)
return img, quad_orig
|