import os os.system("pip install dlib") import sys import face_detection import PIL from PIL import Image, ImageOps, ImageFile import numpy as np import cv2 as cv import torch torch.set_grad_enabled(False) model = torch.jit.load('u2net_bce_itr_25000_train_3.856416_tar_0.547567-400x_360x.jit.pt') model.eval() # https://en.wikipedia.org/wiki/Unsharp_masking # https://stackoverflow.com/a/55590133/1495606 def unsharp_mask(image, kernel_size=(5, 5), sigma=1.0, amount=2.0, threshold=0): """Return a sharpened version of the image, using an unsharp mask.""" blurred = cv.GaussianBlur(image, kernel_size, sigma) sharpened = float(amount + 1) * image - float(amount) * blurred sharpened = np.maximum(sharpened, np.zeros(sharpened.shape)) sharpened = np.minimum(sharpened, 255 * np.ones(sharpened.shape)) sharpened = sharpened.round().astype(np.uint8) if threshold > 0: low_contrast_mask = np.absolute(image - blurred) < threshold np.copyto(sharpened, image, where=low_contrast_mask) return sharpened def normPRED(d): ma = np.max(d) mi = np.min(d) dn = (d-mi)/(ma-mi) return dn def array_to_np(array_in): array_in = normPRED(array_in) array_in = np.squeeze(255.0*(array_in)) array_in = np.transpose(array_in, (1, 2, 0)) return array_in def array_to_image(array_in): array_in = normPRED(array_in) array_in = np.squeeze(255.0*(array_in)) array_in = np.transpose(array_in, (1, 2, 0)) im = Image.fromarray(array_in.astype(np.uint8)) return im def image_as_array(image_in): image_in = np.array(image_in, np.float32) tmpImg = np.zeros((image_in.shape[0],image_in.shape[1],3)) image_in = image_in/np.max(image_in) if image_in.shape[2]==1: tmpImg[:,:,0] = (image_in[:,:,0]-0.485)/0.229 tmpImg[:,:,1] = (image_in[:,:,0]-0.485)/0.229 tmpImg[:,:,2] = (image_in[:,:,0]-0.485)/0.229 else: tmpImg[:,:,0] = (image_in[:,:,0]-0.485)/0.229 tmpImg[:,:,1] = (image_in[:,:,1]-0.456)/0.224 tmpImg[:,:,2] = (image_in[:,:,2]-0.406)/0.225 tmpImg = tmpImg.transpose((2, 0, 1)) image_out = np.expand_dims(tmpImg, 0) return image_out def find_aligned_face(image_in, size=400): aligned_image, n_faces, quad = face_detection.align(image_in, face_index=0, output_size=size) return aligned_image, n_faces, quad def align_first_face(image_in, size=400): aligned_image, n_faces, quad = find_aligned_face(image_in,size=size) if n_faces == 0: try: image_in = ImageOps.exif_transpose(image_in) except: print("exif problem, not rotating") image_in = image_in.resize((size, size)) im_array = image_as_array(image_in) else: im_array = image_as_array(aligned_image) return im_array def img_concat_h(im1, im2): dst = Image.new('RGB', (im1.width + im2.width, im1.height)) dst.paste(im1, (0, 0)) dst.paste(im2, (im1.width, 0)) return dst import gradio as gr def face2doll( img: Image.Image, size: int ) -> Image.Image: aligned_img = align_first_face(img) if aligned_img is None: output=None else: input = torch.Tensor(aligned_img) results = model(input) doll_np_image = array_to_np(results[1].detach().numpy()) doll_image = unsharp_mask(doll_np_image) doll_image = Image.fromarray(doll_image) output = img_concat_h(array_to_image(aligned_img), doll_image) del results return output def inference(img): out = face2doll(img, 400) return out title = "Face2Doll U2Net" description = "Style transfer a face into one of a \"Doll\". Upload an image with a face, or click on one of the examples below. If a face could not be detected, an image will still be created. Faces with glasses on, seem not to yield good results." article = "
See the Github Repo
samples:
The \"Face2Doll (U2Net)\" model was trained by Doron Adler
" examples=[['Example00001.jpg'],['Example00002.jpg'],['Example00003.jpg'],['Example00004.jpg'],['Example00005.jpg'], ['Example00006.jpg']] gr.Interface( inference, gr.inputs.Image(type="pil", label="Input"), gr.outputs.Image(type="pil", label="Output"), title=title, description=description, article=article, examples=examples, enable_queue=True, allow_flagging=False ).launch()