Spaces:
Running
Running
Support CPU
Browse files
app.py
CHANGED
@@ -1,32 +1,55 @@
|
|
1 |
-
import os
|
2 |
-
from unittest.mock import patch
|
3 |
-
import spaces
|
4 |
import gradio as gr
|
5 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
6 |
-
|
7 |
-
|
8 |
import requests
|
9 |
-
|
10 |
-
|
11 |
-
import
|
|
|
12 |
import matplotlib.pyplot as plt
|
13 |
import matplotlib.patches as patches
|
14 |
-
import cv2
|
15 |
-
import io
|
16 |
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
if not str(filename).endswith("/modeling_florence2.py"):
|
19 |
return get_imports(filename)
|
20 |
imports = get_imports(filename)
|
21 |
imports.remove("flash_attn")
|
22 |
return imports
|
23 |
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large-ft", trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
colormap = ['blue',
|
29 |
-
'lime',
|
30 |
|
31 |
def fig_to_pil(fig):
|
32 |
buf = io.BytesIO()
|
@@ -40,21 +63,20 @@ def run_example(task_prompt, image, text_input=None):
|
|
40 |
prompt = task_prompt
|
41 |
else:
|
42 |
prompt = task_prompt + text_input
|
43 |
-
inputs = processor(text=prompt, images=image, return_tensors="pt").to(
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
)
|
53 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
54 |
parsed_answer = processor.post_process_generation(
|
55 |
generated_text,
|
56 |
task=task_prompt,
|
57 |
-
image_size=(image.
|
58 |
)
|
59 |
return parsed_answer
|
60 |
|
@@ -65,161 +87,164 @@ def plot_bbox(image, data):
|
|
65 |
x1, y1, x2, y2 = bbox
|
66 |
rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor='r', facecolor='none')
|
67 |
ax.add_patch(rect)
|
68 |
-
plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='
|
69 |
ax.axis('off')
|
70 |
-
return
|
71 |
|
72 |
def draw_polygons(image, prediction, fill_mask=False):
|
73 |
-
|
74 |
-
ax.imshow(image)
|
75 |
scale = 1
|
76 |
for polygons, label in zip(prediction['polygons'], prediction['labels']):
|
77 |
color = random.choice(colormap)
|
78 |
fill_color = random.choice(colormap) if fill_mask else None
|
79 |
for _polygon in polygons:
|
80 |
_polygon = np.array(_polygon).reshape(-1, 2)
|
81 |
-
if _polygon
|
82 |
print('Invalid polygon:', _polygon)
|
83 |
continue
|
84 |
_polygon = (_polygon * scale).reshape(-1).tolist()
|
85 |
-
if len(_polygon) % 2 != 0:
|
86 |
-
print('Invalid polygon:', _polygon)
|
87 |
-
continue
|
88 |
-
polygon_points = np.array(_polygon).reshape(-1, 2)
|
89 |
if fill_mask:
|
90 |
-
polygon
|
91 |
else:
|
92 |
-
polygon
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
def draw_ocr_bboxes(image, prediction):
|
99 |
-
fig, ax = plt.subplots()
|
100 |
-
ax.imshow(image)
|
101 |
scale = 1
|
|
|
102 |
bboxes, labels = prediction['quad_boxes'], prediction['labels']
|
103 |
for box, label in zip(bboxes, labels):
|
104 |
color = random.choice(colormap)
|
105 |
new_box = (np.array(box) * scale).tolist()
|
106 |
-
polygon
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
return
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
css = """
|
152 |
-
#output {
|
153 |
-
|
154 |
-
overflow: auto;
|
155 |
-
border: 1px solid #ccc;
|
156 |
-
}
|
157 |
"""
|
158 |
|
159 |
with gr.Blocks(css=css) as demo:
|
160 |
-
gr.
|
161 |
-
with gr.Tab(label="Image"):
|
162 |
with gr.Row():
|
163 |
with gr.Column():
|
164 |
-
input_img = gr.Image(label="Input Picture"
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
)
|
172 |
-
text_input = gr.Textbox(label="Text Input (
|
173 |
submit_btn = gr.Button(value="Submit")
|
174 |
with gr.Column():
|
175 |
-
output_text = gr.Textbox(label="
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
input_video = gr.Video(label="Video")
|
182 |
-
video_task_radio = gr.Radio(
|
183 |
-
["Object Detection", "Dense Region Caption"],
|
184 |
-
label="Video Task", value="Object Detection"
|
185 |
-
)
|
186 |
-
video_submit_btn = gr.Button(value="Process Video")
|
187 |
-
with gr.Column():
|
188 |
-
output_video = gr.Video(label="Video")
|
189 |
-
|
190 |
-
def update_text_input(task):
|
191 |
-
return gr.update(visible=task in ["Caption to Phrase Grounding", "Referring Expression Segmentation",
|
192 |
-
"Region to Segmentation", "Open Vocabulary Detection", "Region to Category",
|
193 |
-
"Region to Description"])
|
194 |
-
|
195 |
-
task_radio.change(fn=update_text_input, inputs=task_radio, outputs=text_input)
|
196 |
-
|
197 |
-
def process_image(image, task, text):
|
198 |
-
task_mapping = {
|
199 |
-
"Caption": ("<CAPTION>", lambda result: (result['<CAPTION>'], image)),
|
200 |
-
"Detailed Caption": ("<DETAILED_CAPTION>", lambda result: (result['<DETAILED_CAPTION>'], image)),
|
201 |
-
"More Detailed Caption": ("<MORE_DETAILED_CAPTION>", lambda result: (result['<MORE_DETAILED_CAPTION>'], image)),
|
202 |
-
"Caption to Phrase Grounding": ("<CAPTION_TO_PHRASE_GROUNDING>", lambda result: (str(result['<CAPTION_TO_PHRASE_GROUNDING>']), plot_bbox(image, result['<CAPTION_TO_PHRASE_GROUNDING>']))),
|
203 |
-
"Object Detection": ("<OD>", lambda result: (str(result['<OD>']), plot_bbox(image, result['<OD>']))),
|
204 |
-
"Dense Region Caption": ("<DENSE_REGION_CAPTION>", lambda result: (str(result['<DENSE_REGION_CAPTION>']), plot_bbox(image, result['<DENSE_REGION_CAPTION>']))),
|
205 |
-
"Region Proposal": ("<REGION_PROPOSAL>", lambda result: (str(result['<REGION_PROPOSAL>']), plot_bbox(image, result['<REGION_PROPOSAL>']))),
|
206 |
-
"Referring Expression Segmentation": ("<REFERRING_EXPRESSION_SEGMENTATION>", lambda result: (str(result['<REFERRING_EXPRESSION_SEGMENTATION>']), draw_polygons(image, result['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True))),
|
207 |
-
"Region to Segmentation": ("<REGION_TO_SEGMENTATION>", lambda result: (str(result['<REGION_TO_SEGMENTATION>']), draw_polygons(image, result['<REGION_TO_SEGMENTATION>'], fill_mask=True))),
|
208 |
-
"Open Vocabulary Detection": ("<OPEN_VOCABULARY_DETECTION>", lambda result: (str(convert_to_od_format(result['<OPEN_VOCABULARY_DETECTION>'])), plot_bbox(image, convert_to_od_format(result['<OPEN_VOCABULARY_DETECTION>'])))),
|
209 |
-
"Region to Category": ("<REGION_TO_CATEGORY>", lambda result: (result['<REGION_TO_CATEGORY>'], image)),
|
210 |
-
"Region to Description": ("<REGION_TO_DESCRIPTION>", lambda result: (result['<REGION_TO_DESCRIPTION>'], image)),
|
211 |
-
"OCR": ("<OCR>", lambda result: (result['<OCR>'], image)),
|
212 |
-
"OCR with Region": ("<OCR_WITH_REGION>", lambda result: (str(result['<OCR_WITH_REGION>']), draw_ocr_bboxes(image, result['<OCR_WITH_REGION>']))),
|
213 |
-
}
|
214 |
-
|
215 |
-
if task in task_mapping:
|
216 |
-
prompt, process_func = task_mapping[task]
|
217 |
-
result = run_example(prompt, image, text)
|
218 |
-
return process_func(result)
|
219 |
-
else:
|
220 |
-
return "", image
|
221 |
-
|
222 |
-
submit_btn.click(fn=process_image, inputs=[input_img, task_radio, text_input], outputs=[output_text, output_image])
|
223 |
-
video_submit_btn.click(fn=process_video, inputs=[input_video, video_task_radio], outputs=output_video)
|
224 |
-
|
225 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
3 |
+
import spaces
|
4 |
+
|
5 |
import requests
|
6 |
+
import copy
|
7 |
+
|
8 |
+
from PIL import Image, ImageDraw, ImageFont
|
9 |
+
import io
|
10 |
import matplotlib.pyplot as plt
|
11 |
import matplotlib.patches as patches
|
|
|
|
|
12 |
|
13 |
+
import random
|
14 |
+
import numpy as np
|
15 |
+
|
16 |
+
import os
|
17 |
+
from unittest.mock import patch
|
18 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
19 |
+
from transformers.dynamic_module_utils import get_imports
|
20 |
+
|
21 |
+
def fixed_get_imports(filename: str | os.PathLike) -> list[str]:
|
22 |
+
"""Work around for https://huggingface.co/microsoft/phi-1_5/discussions/72."""
|
23 |
if not str(filename).endswith("/modeling_florence2.py"):
|
24 |
return get_imports(filename)
|
25 |
imports = get_imports(filename)
|
26 |
imports.remove("flash_attn")
|
27 |
return imports
|
28 |
|
29 |
+
|
30 |
+
@spaces.GPU
|
31 |
+
def get_device_type():
|
32 |
+
import torch
|
33 |
+
return "cuda" if torch.cuda.is_available() else "cpu"
|
34 |
+
|
35 |
+
model_id = 'microsoft/Florence-2-base-ft'
|
36 |
+
|
37 |
+
import subprocess
|
38 |
+
device = get_device_type()
|
39 |
+
if (device == "cuda"):
|
40 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
41 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large-ft", trust_remote_code=True)
|
42 |
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large-ft", trust_remote_code=True)
|
43 |
+
else:
|
44 |
+
#https://huggingface.co/microsoft/Florence-2-large-ft/discussions/4
|
45 |
+
with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports):
|
46 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-large-ft", trust_remote_code=True)
|
47 |
+
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-large-ft", trust_remote_code=True)
|
48 |
+
|
49 |
+
DESCRIPTION = "# [Florence-2 base-ft Demo with CPU inference support](https://huggingface.co/microsoft/Florence-2-base-ft)"
|
50 |
|
51 |
+
colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
|
52 |
+
'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
|
53 |
|
54 |
def fig_to_pil(fig):
|
55 |
buf = io.BytesIO()
|
|
|
63 |
prompt = task_prompt
|
64 |
else:
|
65 |
prompt = task_prompt + text_input
|
66 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
|
67 |
+
generated_ids = model.generate(
|
68 |
+
input_ids=inputs["input_ids"],
|
69 |
+
pixel_values=inputs["pixel_values"],
|
70 |
+
max_new_tokens=1024,
|
71 |
+
early_stopping=False,
|
72 |
+
do_sample=False,
|
73 |
+
num_beams=3,
|
74 |
+
)
|
|
|
75 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
76 |
parsed_answer = processor.post_process_generation(
|
77 |
generated_text,
|
78 |
task=task_prompt,
|
79 |
+
image_size=(image.width, image.height)
|
80 |
)
|
81 |
return parsed_answer
|
82 |
|
|
|
87 |
x1, y1, x2, y2 = bbox
|
88 |
rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor='r', facecolor='none')
|
89 |
ax.add_patch(rect)
|
90 |
+
plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='red', alpha=0.5))
|
91 |
ax.axis('off')
|
92 |
+
return fig
|
93 |
|
94 |
def draw_polygons(image, prediction, fill_mask=False):
|
95 |
+
draw = ImageDraw.Draw(image)
|
|
|
96 |
scale = 1
|
97 |
for polygons, label in zip(prediction['polygons'], prediction['labels']):
|
98 |
color = random.choice(colormap)
|
99 |
fill_color = random.choice(colormap) if fill_mask else None
|
100 |
for _polygon in polygons:
|
101 |
_polygon = np.array(_polygon).reshape(-1, 2)
|
102 |
+
if len(_polygon) < 3:
|
103 |
print('Invalid polygon:', _polygon)
|
104 |
continue
|
105 |
_polygon = (_polygon * scale).reshape(-1).tolist()
|
|
|
|
|
|
|
|
|
106 |
if fill_mask:
|
107 |
+
draw.polygon(_polygon, outline=color, fill=fill_color)
|
108 |
else:
|
109 |
+
draw.polygon(_polygon, outline=color)
|
110 |
+
draw.text((_polygon[0] + 8, _polygon[1] + 2), label, fill=color)
|
111 |
+
return image
|
112 |
+
|
113 |
+
def convert_to_od_format(data):
|
114 |
+
bboxes = data.get('bboxes', [])
|
115 |
+
labels = data.get('bboxes_labels', [])
|
116 |
+
od_results = {
|
117 |
+
'bboxes': bboxes,
|
118 |
+
'labels': labels
|
119 |
+
}
|
120 |
+
return od_results
|
121 |
|
122 |
def draw_ocr_bboxes(image, prediction):
|
|
|
|
|
123 |
scale = 1
|
124 |
+
draw = ImageDraw.Draw(image)
|
125 |
bboxes, labels = prediction['quad_boxes'], prediction['labels']
|
126 |
for box, label in zip(bboxes, labels):
|
127 |
color = random.choice(colormap)
|
128 |
new_box = (np.array(box) * scale).tolist()
|
129 |
+
draw.polygon(new_box, width=3, outline=color)
|
130 |
+
draw.text((new_box[0]+8, new_box[1]+2),
|
131 |
+
"{}".format(label),
|
132 |
+
align="right",
|
133 |
+
fill=color)
|
134 |
+
return image
|
135 |
+
|
136 |
+
def process_image(image, task_prompt, text_input=None):
|
137 |
+
image = Image.fromarray(image) # Convert NumPy array to PIL Image
|
138 |
+
if task_prompt == 'Caption':
|
139 |
+
task_prompt = '<CAPTION>'
|
140 |
+
result = run_example(task_prompt, image)
|
141 |
+
return result, None
|
142 |
+
elif task_prompt == 'Detailed Caption':
|
143 |
+
task_prompt = '<DETAILED_CAPTION>'
|
144 |
+
result = run_example(task_prompt, image)
|
145 |
+
return result, None
|
146 |
+
elif task_prompt == 'More Detailed Caption':
|
147 |
+
task_prompt = '<MORE_DETAILED_CAPTION>'
|
148 |
+
result = run_example(task_prompt, image)
|
149 |
+
return result, None
|
150 |
+
elif task_prompt == 'Object Detection':
|
151 |
+
task_prompt = '<OD>'
|
152 |
+
results = run_example(task_prompt, image)
|
153 |
+
fig = plot_bbox(image, results['<OD>'])
|
154 |
+
return results, fig_to_pil(fig)
|
155 |
+
elif task_prompt == 'Dense Region Caption':
|
156 |
+
task_prompt = '<DENSE_REGION_CAPTION>'
|
157 |
+
results = run_example(task_prompt, image)
|
158 |
+
fig = plot_bbox(image, results['<DENSE_REGION_CAPTION>'])
|
159 |
+
return results, fig_to_pil(fig)
|
160 |
+
elif task_prompt == 'Region Proposal':
|
161 |
+
task_prompt = '<REGION_PROPOSAL>'
|
162 |
+
results = run_example(task_prompt, image)
|
163 |
+
fig = plot_bbox(image, results['<REGION_PROPOSAL>'])
|
164 |
+
return results, fig_to_pil(fig)
|
165 |
+
elif task_prompt == 'Caption to Phrase Grounding':
|
166 |
+
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
|
167 |
+
results = run_example(task_prompt, image, text_input)
|
168 |
+
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
|
169 |
+
return results, fig_to_pil(fig)
|
170 |
+
elif task_prompt == 'Referring Expression Segmentation':
|
171 |
+
task_prompt = '<REFERRING_EXPRESSION_SEGMENTATION>'
|
172 |
+
results = run_example(task_prompt, image, text_input)
|
173 |
+
output_image = copy.deepcopy(image)
|
174 |
+
output_image = draw_polygons(output_image, results['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True)
|
175 |
+
return results, output_image
|
176 |
+
elif task_prompt == 'Region to Segmentation':
|
177 |
+
task_prompt = '<REGION_TO_SEGMENTATION>'
|
178 |
+
results = run_example(task_prompt, image, text_input)
|
179 |
+
output_image = copy.deepcopy(image)
|
180 |
+
output_image = draw_polygons(output_image, results['<REGION_TO_SEGMENTATION>'], fill_mask=True)
|
181 |
+
return results, output_image
|
182 |
+
elif task_prompt == 'Open Vocabulary Detection':
|
183 |
+
task_prompt = '<OPEN_VOCABULARY_DETECTION>'
|
184 |
+
results = run_example(task_prompt, image, text_input)
|
185 |
+
bbox_results = convert_to_od_format(results['<OPEN_VOCABULARY_DETECTION>'])
|
186 |
+
fig = plot_bbox(image, bbox_results)
|
187 |
+
return results, fig_to_pil(fig)
|
188 |
+
elif task_prompt == 'Region to Category':
|
189 |
+
task_prompt = '<REGION_TO_CATEGORY>'
|
190 |
+
results = run_example(task_prompt, image, text_input)
|
191 |
+
return results, None
|
192 |
+
elif task_prompt == 'Region to Description':
|
193 |
+
task_prompt = '<REGION_TO_DESCRIPTION>'
|
194 |
+
results = run_example(task_prompt, image, text_input)
|
195 |
+
return results, None
|
196 |
+
elif task_prompt == 'OCR':
|
197 |
+
task_prompt = '<OCR>'
|
198 |
+
result = run_example(task_prompt, image)
|
199 |
+
return result, None
|
200 |
+
elif task_prompt == 'OCR with Region':
|
201 |
+
task_prompt = '<OCR_WITH_REGION>'
|
202 |
+
results = run_example(task_prompt, image)
|
203 |
+
output_image = copy.deepcopy(image)
|
204 |
+
output_image = draw_ocr_bboxes(output_image, results['<OCR_WITH_REGION>'])
|
205 |
+
return results, output_image
|
206 |
+
else:
|
207 |
+
return "", None # Return empty string and None for unknown task prompts
|
208 |
|
209 |
css = """
|
210 |
+
#output {
|
211 |
+
height: 500px;
|
212 |
+
overflow: auto;
|
213 |
+
border: 1px solid #ccc;
|
214 |
+
}
|
215 |
"""
|
216 |
|
217 |
with gr.Blocks(css=css) as demo:
|
218 |
+
gr.Markdown(DESCRIPTION)
|
219 |
+
with gr.Tab(label="Florence-2 Image Captioning"):
|
220 |
with gr.Row():
|
221 |
with gr.Column():
|
222 |
+
input_img = gr.Image(label="Input Picture")
|
223 |
+
task_prompt = gr.Dropdown(choices=[
|
224 |
+
'Caption', 'Detailed Caption', 'More Detailed Caption', 'Object Detection',
|
225 |
+
'Dense Region Caption', 'Region Proposal', 'Caption to Phrase Grounding',
|
226 |
+
'Referring Expression Segmentation', 'Region to Segmentation',
|
227 |
+
'Open Vocabulary Detection', 'Region to Category', 'Region to Description',
|
228 |
+
'OCR', 'OCR with Region'
|
229 |
+
], label="Task Prompt", value= 'Caption')
|
230 |
+
text_input = gr.Textbox(label="Text Input (optional)")
|
231 |
submit_btn = gr.Button(value="Submit")
|
232 |
with gr.Column():
|
233 |
+
output_text = gr.Textbox(label="Output Text")
|
234 |
+
output_img = gr.Image(label="Output Image")
|
235 |
+
|
236 |
+
gr.Examples(
|
237 |
+
examples=[
|
238 |
+
["image1.jpg", 'Object Detection'],
|
239 |
+
["image2.jpg", 'OCR with Region']
|
240 |
+
],
|
241 |
+
inputs=[input_img, task_prompt],
|
242 |
+
outputs=[output_text, output_img],
|
243 |
+
fn=process_image,
|
244 |
+
cache_examples=True,
|
245 |
+
label='Try examples'
|
246 |
+
)
|
247 |
|
248 |
+
submit_btn.click(process_image, [input_img, task_prompt, text_input], [output_text, output_img])
|
249 |
+
|
250 |
+
demo.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|