Nick088's picture
added audio sr files, adapted them to zerogpu and optimization for memory
fa90792
import numpy as np
import torch
from torch import nn as nn
from torchvision.ops.misc import FrozenBatchNorm2d
import logging
from tqdm import tqdm
import random
import json
import os
import pathlib
# TODO: (yusong) this not a good place to store those information and does not scale. Need to be fixed later.
dataset_split = {
"audiocaps": ["train", "valid", "test"],
"audioset": ["balanced_train", "unbalanced_train", "eval"],
"BBCSoundEffects": ["train", "test"],
"Clotho": ["train", "test", "valid"],
"free_to_use_sounds": ["train", "test"],
"paramount_motion": ["train", "test"],
"sonniss_game_effects": ["train", "test"],
"wesoundeffects": ["train", "test"],
"MACS": ["train", "test"],
"freesound": ["train", "test"],
"FSD50K": ["train", "test", "valid"],
"fsd50k_class_label": ["train", "test", "valid"],
"esc50": ["train", "test"],
"audiostock": ["train", "test"],
"freesound_no_overlap_noesc50": ["train", "test"],
"epidemic_sound_effects": ["train", "test"],
"VGGSound": ["train", "test"],
"urbansound8k_class_label": ["train", "test"],
"audioset_t5": ["balanced_train", "unbalanced_train", "eval"],
"epidemic_sound_effects_t5": ["train", "test"],
"WavText5K": ["train", "test"],
"esc50_no_overlap": ["train", "test"],
"usd8k_no_overlap": ["train", "test"],
"fsd50k_200_class_label": ["train", "test", "valid"],
}
def freeze_batch_norm_2d(module, module_match={}, name=""):
"""
Converts all `BatchNorm2d` and `SyncBatchNorm` layers of provided module into `FrozenBatchNorm2d`. If `module` is
itself an instance of either `BatchNorm2d` or `SyncBatchNorm`, it is converted into `FrozenBatchNorm2d` and
returned. Otherwise, the module is walked recursively and submodules are converted in place.
Args:
module (torch.nn.Module): Any PyTorch module.
module_match (dict): Dictionary of full module names to freeze (all if empty)
name (str): Full module name (prefix)
Returns:
torch.nn.Module: Resulting module
Inspired by https://github.com/pytorch/pytorch/blob/a5895f85be0f10212791145bfedc0261d364f103/torch/nn/modules/batchnorm.py#L762
"""
res = module
is_match = True
if module_match:
is_match = name in module_match
if is_match and isinstance(
module, (nn.modules.batchnorm.BatchNorm2d, nn.modules.batchnorm.SyncBatchNorm)
):
res = FrozenBatchNorm2d(module.num_features)
res.num_features = module.num_features
res.affine = module.affine
if module.affine:
res.weight.data = module.weight.data.clone().detach()
res.bias.data = module.bias.data.clone().detach()
res.running_mean.data = module.running_mean.data
res.running_var.data = module.running_var.data
res.eps = module.eps
else:
for child_name, child in module.named_children():
full_child_name = ".".join([name, child_name]) if name else child_name
new_child = freeze_batch_norm_2d(child, module_match, full_child_name)
if new_child is not child:
res.add_module(child_name, new_child)
return res
def exist(dataset_name, dataset_type):
"""
Check if dataset exists
"""
if dataset_type in dataset_split[dataset_name]:
return True
else:
return False
def get_tar_path_from_dataset_name(
dataset_names, dataset_types, islocal, dataset_path, proportion=1, full_dataset=None
):
"""
Get tar path from dataset name and type
"""
output = []
for n in dataset_names:
if full_dataset is not None and n in full_dataset:
current_dataset_types = dataset_split[n]
else:
current_dataset_types = dataset_types
for s in current_dataset_types:
tmp = []
if islocal:
sizefilepath_ = f"{dataset_path}/{n}/{s}/sizes.json"
if not os.path.exists(sizefilepath_):
sizefilepath_ = f"./json_files/{n}/{s}/sizes.json"
else:
sizefilepath_ = f"./json_files/{n}/{s}/sizes.json"
if not os.path.exists(sizefilepath_):
continue
sizes = json.load(open(sizefilepath_, "r"))
for k in sizes.keys():
if islocal:
tmp.append(f"{dataset_path}/{n}/{s}/{k}")
else:
tmp.append(
f"pipe:aws s3 --cli-connect-timeout 0 cp s3://s-laion-audio/webdataset_tar/{n}/{s}/{k} -"
)
if proportion != 1:
tmp = random.sample(tmp, int(proportion * len(tmp)))
output.append(tmp)
return sum(output, [])
def get_tar_path_from_txts(txt_path, islocal, proportion=1):
"""
Get tar path from txt path
"""
if isinstance(txt_path, (list, tuple)):
return sum(
[
get_tar_path_from_txts(
txt_path[i], islocal=islocal, proportion=proportion
)
for i in range(len(txt_path))
],
[],
)
if isinstance(txt_path, str):
with open(txt_path) as f:
lines = f.readlines()
if islocal:
lines = [
lines[i]
.split("\n")[0]
.replace("pipe:aws s3 cp s3://s-laion-audio/", "/mnt/audio_clip/")
for i in range(len(lines))
]
else:
lines = [
lines[i].split("\n")[0].replace(".tar", ".tar -")
for i in range(len(lines))
]
if proportion != 1:
print("Sampling tars with proportion of {}".format(proportion))
lines = random.sample(lines, int(proportion * len(lines)))
return lines
def get_mix_lambda(mixup_alpha, batch_size):
mixup_lambdas = [
np.random.beta(mixup_alpha, mixup_alpha, 1)[0] for _ in range(batch_size)
]
return np.array(mixup_lambdas).astype(np.float32)
def do_mixup(x, mixup_lambda):
"""
Args:
x: (batch_size , ...)
mixup_lambda: (batch_size,)
Returns:
out: (batch_size, ...)
"""
out = (
x.transpose(0, -1) * mixup_lambda
+ torch.flip(x, dims=[0]).transpose(0, -1) * (1 - mixup_lambda)
).transpose(0, -1)
return out
def interpolate(x, ratio):
"""Interpolate data in time domain. This is used to compensate the
resolution reduction in downsampling of a CNN.
Args:
x: (batch_size, time_steps, classes_num)
ratio: int, ratio to interpolate
Returns:
upsampled: (batch_size, time_steps * ratio, classes_num)
"""
(batch_size, time_steps, classes_num) = x.shape
upsampled = x[:, :, None, :].repeat(1, 1, ratio, 1)
upsampled = upsampled.reshape(batch_size, time_steps * ratio, classes_num)
return upsampled
def pad_framewise_output(framewise_output, frames_num):
"""Pad framewise_output to the same length as input frames. The pad value
is the same as the value of the last frame.
Args:
framewise_output: (batch_size, frames_num, classes_num)
frames_num: int, number of frames to pad
Outputs:
output: (batch_size, frames_num, classes_num)
"""
pad = framewise_output[:, -1:, :].repeat(
1, frames_num - framewise_output.shape[1], 1
)
"""tensor for padding"""
output = torch.cat((framewise_output, pad), dim=1)
"""(batch_size, frames_num, classes_num)"""
# def process_ipc(index_path, classes_num, filename):
# # load data
# logging.info("Load Data...............")
# ipc = [[] for _ in range(classes_num)]
# with h5py.File(index_path, "r") as f:
# for i in tqdm(range(len(f["target"]))):
# t_class = np.where(f["target"][i])[0]
# for t in t_class:
# ipc[t].append(i)
# print(ipc)
# np.save(filename, ipc)
# logging.info("Load Data Succeed...............")
def save_to_dict(s, o_={}):
sp = s.split(": ")
o_.update({sp[0]: float(sp[1])})
return o_
def get_data_from_log(txt_path):
"""
Output dictionary from out.txt log file
"""
with open(txt_path) as f:
lines = f.readlines()
val_data = {}
train_data = {}
train_losses = []
train_losses_epoch = []
for i in range(len(lines)):
if "| INFO |" in lines[i]:
if "Eval Epoch" in lines[i]:
if "val_loss" in lines[i]:
# float(regex.sub("", lines[310].split(" ")[-1]).replace(" ", ""))
line = lines[i].split("Eval Epoch: ")[-1]
num_epoch = int(line.split(" ")[0].split(" ")[0])
d = {
line.split(" ")[0]
.split(" ")[1]
.replace(":", ""): float(line.split(" ")[0].split(" ")[-1])
}
for i in range(1, len(line.split(" "))):
d = save_to_dict(line.split(" ")[i], d)
val_data[num_epoch] = d
elif "Train Epoch" in lines[i]:
num_epoch = int(lines[i].split("Train Epoch: ")[1][0])
loss = float(lines[i].split("Loss: ")[-1].split(" (")[0])
train_losses.append(loss)
train_losses_epoch.append(num_epoch)
for i in range(len(train_losses)):
train_data[i] = {
"num_epoch": train_losses_epoch[i],
"train_loss": train_losses[i],
}
return train_data, val_data
def save_p(obj, filename):
import pickle
try:
from deepdiff import DeepDiff
except:
os.system("pip install deepdiff")
from deepdiff import DeepDiff
with open(filename, "wb") as file:
pickle.dump(obj, file, protocol=pickle.HIGHEST_PROTOCOL) # highest protocol
with open(filename, "rb") as file:
z = pickle.load(file)
assert (
DeepDiff(obj, z, ignore_string_case=True) == {}
), "there is something wrong with the saving process"
return
def load_p(filename):
import pickle
with open(filename, "rb") as file:
z = pickle.load(file)
return z
def save_json(data, name="data.json"):
import json
with open(name, "w") as fp:
json.dump(data, fp)
return
def load_json(name):
import json
with open(name, "r") as fp:
data = json.load(fp)
return data
def load_class_label(path):
# https://stackoverflow.com/questions/48004243/how-to-share-large-read-only-dictionary-list-across-processes-in-multiprocessing
# https://stackoverflow.com/questions/45693949/storing-strings-in-a-multiprocessing-sharedctypes-array
out = None
if path is not None:
if pathlib.Path(path).suffix in [".pkl", ".pickle"]:
out = load_p(path)
elif pathlib.Path(path).suffix in [".json", ".txt"]:
out = load_json(path)
elif pathlib.Path(path).suffix in [".npy", ".npz"]:
out = np.load(path)
elif pathlib.Path(path).suffix in [".csv"]:
import pandas as pd
out = pd.read_csv(path)
return out
# if out is None:
# return None
# else:
# key = Array(c_wchar, '\n'.join(list(out.keys())), lock=False)
# val = Array('i', out.values(), lock=False)
# return (key, val)
from torch import optim
def get_optimizer(params, lr, betas, eps, momentum, optimizer_name):
if optimizer_name.lower() == "adamw":
optimizer = optim.AdamW(params, lr=lr, betas=betas, eps=eps)
elif optimizer_name.lower() == "sgd":
optimizer = optim.SGD(params, lr=lr, momentum=momentum)
elif optimizer_name.lower() == "adam":
optimizer = optim.Adam(params, lr=lr, betas=betas, eps=eps)
else:
raise ValueError("optimizer name is not correct")
return optimizer